1
|
Chen Y, Zhang H, Wang Y. Dual Cu(II)-Based Functional MOFs with Fluorescent Sensing Capability toward Fe 3⁺ and CrO₄ 2⁻ Ions. J Fluoresc 2025:10.1007/s10895-025-04369-w. [PMID: 40402431 DOI: 10.1007/s10895-025-04369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
In this work, two Cu(II)-based coordination polymers, [Cu(oba)(bpta)]·(DMF)₂ (CP1) and [Cu(oba)(bpfb)]·(DMF)₂ (CP2), were synthesized via a mixed-ligand solvothermal method using 4,4'-oxybisbenzoic acid (H₂oba) and bis-pyridyl co-ligands. Both CPs exhibit strong solid-state fluorescence and excellent water stability. CP1 shows high selectivity for Fe3⁺ with a KSV of 2.63 × 105 M⁻1 and LOD of 0.37 μmol·L⁻1, while CP2 is highly sensitive to CrO₄2⁻ with a KSV of 1.47 × 105 M⁻1 and LOD of 0.65 μmol·L⁻1. Both materials demonstrate reversible fluorescence quenching over multiple cycles. These results indicate that CP1 and CP2 are promising luminescent probes for the sensitive and recyclable detection of environmentally hazardous ions, offering potential for real-time water quality monitoring.
Collapse
Affiliation(s)
- Yanjun Chen
- School of Chemical and Environmental Engineering, Jiaozuo University, Jiaozuo, 454000, China.
| | | | | |
Collapse
|
2
|
Afshariazar F, Morsali A. Mixed-valence metal-organic frameworks: concepts, opportunities, and prospects. Chem Soc Rev 2025; 54:1318-1383. [PMID: 39704326 DOI: 10.1039/d4cs01061b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Owing to increasing global demand for the development of multifunctional advanced materials with various practical applications, great attention has been paid to metal-organic frameworks due to their unique properties, such as structural, chemical, and functional diversity. Several strategies have been developed to promote the applicability of these materials in practical fields. The induction of mixed-valency is a promising strategy, contributing to exceptional features in these porous materials such as enhanced charge delocalization, conductivity, magnetism, etc. The current review provides a detailed study of mixed-valence MOFs, including their fundamental properties, synthesis challenges, and characterization methods. The outstanding applicability of these materials in diverse fields such as energy storage, catalysis, sensing, gas sorption, separation, etc. is also discussed, providing a roadmap for future design strategies to exploit mixed valency in advanced materials. Interestingly, mixed-valence MOFs have demonstrated fascinating features in practical fields compared to their homo-valence MOFs, resulting from an enhanced synergy between mixed-valence states within the framework.
Collapse
Affiliation(s)
- Farzaneh Afshariazar
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, PO Box 14115-4838, Tehran, Islamic Republic of Iran.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, PO Box 14115-4838, Tehran, Islamic Republic of Iran.
| |
Collapse
|
3
|
Mohammed Ameen SS, Bedair A, Hamed M, R Mansour F, Omer KM. Recent Advances in Metal-Organic Frameworks as Oxidase Mimics: A Comprehensive Review on Rational Design and Modification for Enhanced Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:110-129. [PMID: 39772422 DOI: 10.1021/acsami.4c17397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Metal-organic frameworks (MOFs) have emerged as innovative nanozyme mimics, particularly in the area of oxidase catalysis, outperforming traditional MOF-based peroxidase and other nanomaterial-based oxidase systems. This review explores the various advantages that MOFs offer in terms of catalytic activity, low-cost, stability, and structural versatility. With a primary focus on their application in biochemical sensing, MOF-based oxidases have demonstrated remarkable utility, prompting a thorough exploration of their design and modification strategies. Moreover, the review aims to provide a comprehensive analysis of the strategies employed in the rational design and modification of MOF structures to optimize key parameters such as sensitivity, selectivity, and stability in the context of biochemical sensors. Through an exhaustive examination of recent research and developments, this article seeks to offer insights into the nuanced interplay between MOF structures and their catalytic performance, shedding light on the mechanisms that underpin their effectiveness as nanozyme mimics. Finally, this review addresses challenges and opportunities associated with MOF-based oxidase mimics, aiming to drive further advancements in MOF structure design and the development of highly effective biochemical sensors for diverse applications.
Collapse
Affiliation(s)
- Sameera Sh Mohammed Ameen
- Department of Chemistry, College of Science, University of Zakho, 46002 Zakho, Kurdistan Region, Iraq
| | - Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt
| | - Mahmoud Hamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo 44971, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan St., 46002 Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
4
|
Ghaffari-Bohlouli P, Jafari H, Nie L, Kakkar A, Shavandi A. Enzymes in Addressing Hypoxia for Biomaterials Engineering. Adv Healthc Mater 2024; 13:e2401713. [PMID: 39183514 DOI: 10.1002/adhm.202401713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Oxygen is essential for normal cellular functions. Hypoxia impacts various cellular processes, such as metabolism, growth, proliferation, angiogenesis, metastasis, tumorigenesis, microbial infection, and immune response, mediated by hypoxia-inducible factors (HIFs). Hypoxia contributes to the progression and development of cancer, cardiovascular diseases, metabolic disorders, kidney diseases, and infections. The potential alleviation of hypoxia has been explored through the enzymatic in situ decomposition of hydrogen peroxide, leading to the generation of oxygen. However, challenges such as limited stability restrict the effectiveness of enzymes such as catalase in biomedical and in vivo applications. To overcome these limitations, targeted delivery of the enzymes has been proposed. This review offers a critical comparison of i) current approaches to enhance the in vivo stability of catalase; and ii) the structure, mechanism of action, and kinetics of catalase and catalase-like nanozymes.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Hafez Jafari
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
5
|
Qamar Z, Aslam AA, Fatima F, Hassan SU, Nazir MS, Ali Z, Awad SA, Khan AA. Recent development towards the novel applications and future prospects for cellulose-metal organic framework hybrid materials: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63501-63523. [PMID: 39500790 DOI: 10.1007/s11356-024-35449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
The hybrid material created by combining cellulose and MOF is highly promising and possesses a wide range of useful properties. Cellulose-based metal-organic frameworks (CelloMOFs) combine the inherent biocompatibility and sustainability of cellulose with the tunable porosity and diverse metal coordination chemistry of MOFs. Cellulose-MOF hybrids have countless applications in various fields, such as energy storage, water treatment, air filtration, gas adsorption, catalysis, and biomedicine. They are particularly remarkable as adsorbents that can eliminate pollutants from wastewater, including metals, oils, dyes, antibiotics, and drugs, and act as catalysts for oxidation and reduction reactions. Furthermore, they are highly efficient air filters, able to remove carbon dioxide, particulate matter, and volatile organic compounds. When it comes to energy storage, these hybrids have demonstrated exceptional results. They are also highly versatile in the realm of biomedicine, with applications such as antibacterial and drug delivery. This article provides an in-depth look at the fabrication methods, advanced applications of cellulose-MOF hybrids, and existing and future challenges.
Collapse
Affiliation(s)
- Zeenat Qamar
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Awais Ali Aslam
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
- Chemistry Department, University of Education Lahore, Vehari Campus, Vehari, Punjab, Pakistan
| | - Farheen Fatima
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Muhammad Shahid Nazir
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan.
| | - Zulfiqar Ali
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab, Pakistan
| | - Sameer Ahmed Awad
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, Ramadi, 31001, Al-Anbar Governorate, Iraq
- Department of Chemistry, School of Science and Technology, University of New England, Armidale, 2351, NSW, Australia
| | - Aqeel Ahmad Khan
- Department of Chemical Engineering, Brunel University London, London, Uxbridge Middlesex, UB8 3PH, UK
| |
Collapse
|
6
|
An M, He MQ, Lin C, Deng K, Ai Y, Xin H. Metal-ligand cross-link strategy engineered iron-doped dopamine-based superstructure as peroxidase-like nanozymes for detection of glucose. Anal Bioanal Chem 2024; 416:6125-6136. [PMID: 38739158 DOI: 10.1007/s00216-024-05317-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Nanozymes are nanomaterials with mimetic enzyme properties and the related research has attracted much attention. It is of great value to develop methods to construct nanozymes and to study their application in bioanalysis. Herein, the metal-ligand cross-linking strategy was developed to fabricate superstructure nanozymes. This strategy takes advantage of being easy to operate, adjustable, cheap, and universal. The fabricated superstructure nanozymes possess efficient peroxidase-like catalytic activity. The enzyme reaction kinetic tests demonstrated that for TMB and H2O2, the Km is 0.229 and 1.308 mM, respectively. Furthermore, these superstructure nanozymes are applied to highly efficient and sensitive detection of glucose. The linear range for detecting glucose is 20-2000 μM, and the limit of detection is 17.5 μM. Furthermore, mechanistic research illustrated that this integrated system oxidizes glucose to produce hydrogen peroxide and further catalyzes the production of ·OH and O2·-, which results in a chromogenic reaction of oxidized TMB for the detection of glucose. This work could not only contribute to the development of efficient nanozymes but also inspire research in the highly sensitive detection of other biomarkers.
Collapse
Affiliation(s)
- Mengying An
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330088, People's Republic of China
| | - Meng-Qi He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, People's Republic of China.
| | - Caishi Lin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330088, People's Republic of China
| | - Keyu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330088, People's Republic of China
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330088, People's Republic of China.
| |
Collapse
|
7
|
Saboorizadeh B, Zare-Dorabei R, Safavi M, Safarifard V. Applications of Metal-Organic Frameworks (MOFs) in Drug Delivery, Biosensing, and Therapy: A Comprehensive Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22477-22503. [PMID: 39418638 DOI: 10.1021/acs.langmuir.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The porous materials known as metal-organic frameworks (MOFs) stand out for their enormous surface area, adaptable pore size and shape, and structural variety. These characteristics make them well-suited for various applications, especially in healthcare. This review thoroughly summarizes recent studies on the use of MOFs in drug delivery, biosensing, and therapeutics. MOFs may encapsulate medications, target certain cells or tissues, and regulate their release over time. Additionally, MOFs have the potential to be used in biosensing applications, allowing for the selective detection of chemical and biological substances. MOFs' optical or electrical characteristics may be modified to make biosensors that track physiological data. MOFs show potential for targeted drug delivery and the regulated release of therapeutic substances in cancer treatment. In addition, they may work as potent antibacterial agents, providing a less dangerous option than traditional antibiotics that increase antibiotic resistance. For practical applications, further research is required as well as more consideration for the problems with toxicity and biocompatibility. In addition to addressing the difficulties and promising possibilities in this area, this study intends to provide insights into the potential of MOFs in healthcare for drug delivery, biosensing, and treatment. Despite several essential reviews in this area, it was necessary to look into the most recent research on drug delivery, biosensing, and therapy as a combined concept.
Collapse
Affiliation(s)
- Bahar Saboorizadeh
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P.O. Box 3353-5111, Tehran 33131-93685, Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
8
|
K Algethami F, Abdelhamid HN. Heteroatoms-doped carbon dots as dual probes for heavy metal detection. Talanta 2024; 273:125893. [PMID: 38508123 DOI: 10.1016/j.talanta.2024.125893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/17/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
The utilization of l-cysteine in hydrothermal synthesis allows for the manufacture of carbon dots (CDs) that are doped with heteroatoms including oxygen, nitrogen, and sulfur (N, S, O-doped CDs). CDs have a particle size ranging from 1 to 3 nm, with an average particle size of 2.5 nm. N, S, and O-doped CDs display a blue fluorescence emission at a wavelength of 425 nm. It shows a reliance on the specific excitation wavelength between 320 and 500 nm. It has a selective quenching effect specifically with copper (Cu2+) ions when exposed to interactions with heavy metal ions, as compared to other metal ions. The assay has a limit of detection (LOD) of 2 μM and exhibits a linear correlation within the concentration range of 10-33.3 μM. The fluorescence mechanism was elucidated by employing various analytical techniques, such as transmission electron microscopy (TEM), high-resolution TEM , UV-Vis spectroscopy, zeta potential analysis, and conductometry. An analysis of the data reveals that Cu2+ ions exhibit a strong attraction to the external surface of N, S, and O-doped CDs, leading to the formation of aggregates. N, S, and O-doped CDs can be also used as probes for electrochemical investigations utilizing cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) to produce Nyquist and Bode plots. The electrochemical results offer substantiation for the interaction between Cu2+ ions and N, S, and O-doped CDs. Zero-dimensional carbon nanomaterials, i.e. CDs, can improve the detection of heavy metals using optical and electrochemical methods.
Collapse
Affiliation(s)
- Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11432, Saudi Arabia
| | - Hani Nasser Abdelhamid
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71575, Egypt; Egyptian-Russian University, Badr City, Cairo, 11829, Egypt.
| |
Collapse
|
9
|
Tian X, Qin Y, Jiang Y, Guo X, Wen Y, Yang H. Chemically renewable SERS sensor for the inspection of H 2O 2 residue in food stuff. Food Chem 2024; 438:137777. [PMID: 37979276 DOI: 10.1016/j.foodchem.2023.137777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/30/2023] [Accepted: 10/14/2023] [Indexed: 11/20/2023]
Abstract
Hydrogen peroxide (H2O2) residue in foodstuffs will bring great harm to human health. We immobilize the composite of the reduced polyaniline (PANIR) modified gold nanoparticles on the surface of ITO (ITO/AuNPs/PANIR) to develop surface-enhanced Raman scattering (SERS) sensor for H2O2.detection. The principle is that PANIR is oxidized by H2O2 to generate a new SERS peak at 1460 cm-1 for realizing quantitative analysis of H2O2. Fe2+-Fenton reaction is introduced to catalytically react with H2O2 to hydroxyl radical, which speeds up the oxidation of PANIR. Before SERS detection, acidic treatment could guarantee the reduced state of PANIR in composite. Limit of detection of ITO/AuNPs/PANIR-based SERS assay for H2O2 is down to 1.78 × 10-12 mol/L and a good linear relationship from 1 × 10-10 to 3.16 × 10-7 mol/L is achieved. Furthermore, the SERS sensor could be regenerated by acidic treatment. As a scenario, the renewable SERS sensor is utilized to monitor H2O2 residues in food and environmental samples.
Collapse
Affiliation(s)
- Xin Tian
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yun Qin
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yuning Jiang
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
10
|
Lei L, Luan TX, Li PZ, Qiu Y, Su J, Wang Z, Wang P, Zheng Z, Cheng H, Dai Y, Huang B, Liu Y. Strong Second-Harmonic Generation Induced by a Triphenylamine-Based Bismuth-Organic Framework for Photocatalytic Activity Enhancement. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38603468 DOI: 10.1021/acsami.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Taking advantage of the well-defined geometry of metal centers and highly directional metal-ligand coordination bonds, metal-organic frameworks (MOFs) have emerged as promising candidates for nonlinear optical (NLO) materials. In this work, taking a photoresponsive carboxylate triphenylamine derivative as an organic ligand, a bismuth-based MOF, Bi-NBC, NBC = 4',4‴,4‴″-nitrilotris(([1,1'-biphenyl]-4-carboxylic acid)) is obtained. Structure determination reveals that it is a potential NLO material derived from its noncentrosymmetric structure, which is finally confirmed by its rarely strong second harmonic generation (SHG) effect. Theoretical calculations reveal that the potential difference around Bi atoms is large; therefore, it leads to a strong local built-in electric field, which greatly facilitates the charge separation and transfer and finally improves the photocatalytic performance. Our results provide a reference for the exploration of MOFs with NLO properties.
Collapse
Affiliation(s)
- Longfei Lei
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
- The 46th Research Institute, China Electronics Technology Group Corporation, Tianjin 300220, P. R. China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yi Qiu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jie Su
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Ying Dai
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
11
|
Yang D, Ran J, Yi H, Feng P, Liu B. A Homogeneous Colorimetric Strategy Based on Rose-like CuS@Prussian Blue/Pt for Detection of Dopamine. SENSORS (BASEL, SWITZERLAND) 2023; 23:9029. [PMID: 38005417 PMCID: PMC10675490 DOI: 10.3390/s23229029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
The development of effective methods for dopamine detection is critical. In this study, a homogeneous colorimetric strategy for the detection of dopamine based on a copper sulfide and Prussian blue/platinum (CuS@PB/Pt) composite was developed. A rose-like CuS@PB/Pt composite was synthesized for the first time, and it was discovered that when hydrogen peroxide was present, the 3,3',5,5'-tetramethylbenzidine (TMB) changed from colorless into blue-oxidized TMB. The CuS@PB/Pt composite was characterized with a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and an X-ray photoelectron spectrometer (XPS). Moreover, the catalytic activity of the CuS@PB/Pt composite was inhibited by the binding of dopamine to the composite. The color change of TMB can be evaluated by the UV spectrum and a portable smartphone detection device. The developed colorimetric sensor can be used to quantitatively analyze dopamine between 1 and 60 µM with a detection limit of 0.28 μM. Furthermore, the sensor showed good long-term stability and good performance in human serum samples. Compared with other reported methods, this strategy can be performed rapidly (16 min) and has the advantage of smartphone visual detection. The portable smartphone detection device is portable and user-friendly, providing convenient colorimetric analysis for serum. This colorimetric strategy also has considerable potential for the development of in vitro diagnosis methods in combination with other test strips.
Collapse
Affiliation(s)
| | | | | | | | - Bingqian Liu
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Chuang HT, Liu RY, Trinh MM, Chang MB. Ozone catalytic oxidation of toluene over triple perovskite-type catalysts modified with KMnO 4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106068-106082. [PMID: 37726623 DOI: 10.1007/s11356-023-29785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
A unique triple perovskite-type catalyst was successfully synthesized using the simple sol-gel approach, and surface acid modification was added to improve the ozone catalytic oxidation (OZCO) process ability to remove toluene more effectively. Our study indicates that La3MnCuNiO9 catalyst treated with KMnO4 shows the best toluene oxidation activity. At 250 °C, the rates of conversion and mineralization were 100% and 83%, respectively, under thermal catalytic system when C7H8 concentration = 500 ppm. During the OZCO system ([C7H8] = 20 ppm, O3/C7H8=8; room temperature), for 6 h, the conversion rate remained at 100%. The high ratios of Mn4+/(Mn4++Mn3+), Cu2+, and abundant surface oxygen species, high specific surface area, and pore volume lead to remarkable catalytic performance of this catalyst. Meanwhile, the catalyst contributes to superior stability and water resistance. The catalytic mechanism of La3MnCuNiO9 after KMnO4 treatment in the context of OZCO was further discussed. Overall, after KMnO4 treatment, the La3MnCuNiO9 catalyst reveals extraordinary catalytic activity and excellent stability combination of this catalyst with ozone exhibits high toluene removal efficiency in the OZCO system and has a good potential for industrial applications.
Collapse
Affiliation(s)
- Hsin Tzu Chuang
- Graduate Institute of Environmental Engineering, National Central University, Chungli, Taiwan
| | - Run Yu Liu
- Graduate Institute of Environmental Engineering, National Central University, Chungli, Taiwan
| | - Minh Man Trinh
- Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, 31040, Taiwan
| | - Moo Been Chang
- Graduate Institute of Environmental Engineering, National Central University, Chungli, Taiwan.
| |
Collapse
|
13
|
Song Y, Huang C, Li Y. Nanozyme Rich in Oxygen Vacancies Derived from Mn-Based Metal-Organic Gel for the Determination of Alkaline Phosphatase. Inorg Chem 2023; 62:12697-12707. [PMID: 37526919 DOI: 10.1021/acs.inorgchem.3c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Vacancy engineering as an effective strategy has been widely employed to regulate the enzyme-mimic activity of nanomaterials by adjusting the surface, electronic structure, and creating more active sites. Herein, we purposed a facile and simple method to acquire transition metal manganese oxide rich in oxygen vacancies (OVs-Mn2O3-400) by pyrolyzing the precursor of the Mn(II)-based metal-organic gel directly. The as-prepared OVs-Mn2O3-400 exhibited superior oxidase-like activity as oxygen vacancies participated in the generation of O2•-. Besides, steady state kinetic constant (Km) and catalytic kinetic constant (Ea) suggested that OVs-Mn2O3-400 had a stronger affinity toward 3,3',5,5'-tetramethylbenzidine and possessed prominent catalytic performance. By taking 2-phospho-l-ascorbic acid as the substrate, which can be converted into reducing substance ascorbic acid in the presence of alkaline phosphatase (ALP), OVs-Mn2O3-400 can be applied as an efficient nanozyme for ALP colorimetric analysis without the help of destructive H2O2. The colorimetric sensor established by OVs-Mn2O3-400 for ALP detection showed a good linearity from 0.1 to 12 U/L and a lower limit of detection of 0.054 U/L. Our work paves the way for designing enhanced enzyme-like activity nanozymes, which is of significance in biosensing.
Collapse
Affiliation(s)
- Yunfei Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuanfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
14
|
Abdelhamid HN. An introductory review on advanced multifunctional materials. Heliyon 2023; 9:e18060. [PMID: 37496901 PMCID: PMC10366438 DOI: 10.1016/j.heliyon.2023.e18060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
This review summarizes the applications of some of the advanced materials. It included the synthesis of several nanoparticles such as metal oxide nanoparticles (e.g., Fe3O4, ZnO, ZrOSO4, MoO3-x, CuO, AgFeO2, Co3O4, CeO2, SiO2, and CuFeO2); metal hydroxide nanosheets (e.g., Zn5(OH)8(NO3)2·2H2O, Zn(OH)(NO3)·H2O, and Zn5(OH)8(NO3)2); metallic nanoparticles (Ag, Au, Pd, and Pt); carbon-based nanomaterials (graphene, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and carbon dots (CDs)); biopolymers (cellulose, nanocellulose, TEMPO-oxidized cellulose nanofibers (TOCNFs), and chitosan); organic polymers (e.g. covalent-organic frameworks (COFs)); and hybrid materials (e.g. metal-organic frameworks (MOFs)). Most of these materials were applied in several fields such as environmental-based technologies (e.g., water remediation, air purification, gas storage), energy (production of hydrogen, dimethyl ether, solar cells, and supercapacitors), and biomedical sectors (sensing, biosensing, cancer therapy, and drug delivery). They can be used as efficient adsorbents and catalysts to remove emerging contaminants e.g., inorganic (i.e., heavy metals) and organic (e.g., dyes, antibiotics, pesticides, and oils in water via adsorption. They can be also used as catalysts for catalytic degradation reactions such as redox reactions of pollutants. They can be used as filters for air purification by capturing carbon dioxide (CO2) and volatile organic compounds (VOCs). They can be used for hydrogen production via water splitting, alcohol oxidation, and hydrolysis of NaBH4. Nanomedicine for some of these materials was also included being an effective agent as an antibacterial, nanocarrier for drug delivery, and probe for biosensing.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Chemistry Department-Faculty of Science, Assiut University, Egypt
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo 11837, Egypt
| |
Collapse
|
15
|
Mehmandoust M, Tiris G, Pourhakkak P, Erk N, Soylak M, Kanberoglu GS, Zahmakiran M. An electrochemical sensing platform with a molecularly imprinted polymer based on chitosan-stabilized metal@metal-organic frameworks for topotecan detection. Mikrochim Acta 2023; 190:142. [PMID: 36933052 DOI: 10.1007/s00604-023-05722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
The present study aims to develop an electroanalytical method to determine one of the most significant antineoplastic agents, topotecan (TPT), using a novel and selective molecular imprinted polymer (MIP) method for the first time. The MIP was synthesized using the electropolymerization method using TPT as a template molecule and pyrrole (Pyr) as the functional monomer on a metal-organic framework decorated with chitosan-stabilized gold nanoparticles (Au-CH@MOF-5). The materials' morphological and physical characteristics were characterized using various physical techniques. The analytical characteristics of the obtained sensors were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). After all characterizations and optimizing the experimental conditions, MIP-Au-CH@MOF-5 and NIP-Au-CH@MOF-5 were evaluated on the glassy carbon electrode (GCE). MIP-Au-CH@MOF-5/GCE indicated a wide linear response of 0.4-70.0 nM and a low detection limit (LOD) of 0.298 nM. The developed sensor also showed excellent recovery in human plasma and nasal samples with recoveries of 94.41-106.16 % and 95.1-107.0 %, respectively, confirming its potential for future on-site monitoring of TPT in real samples. This methodology offers a different approach to electroanalytical procedures using MIP methods. Moreover, the high sensitivity and selectivity of the developed sensor were illustrated by the ability to recognize TPT over potentially interfering agents. Hence, it can be speculated that the fabricated MIP-Au-CH@MOF-5/GCE may be utilized in a multitude of areas, including public health and food quality.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Department of Life Sciences and Chemistry, Constructor University, 28719, Bremen, Germany.
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
| | - Gizem Tiris
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | | | - Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey
| | - Gulsah S Kanberoglu
- Department of Chemistry, Faculty of Science, Van Yuzuncu Yil University, Van, Turkey
| | - Mehmet Zahmakiran
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| |
Collapse
|
16
|
Bis(2,4,6-trichlorophenyl)oxalate-based chemically initiated electron exchange chromogenic reaction system for colorimetric detection of fentanyl and norfentanyl. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Sharmoukh W, Abdelhamid HN. Fenton-like Cerium Metal–Organic Frameworks (Ce-MOFs) for Catalytic Oxidation of Olefins, Alcohol, and Dyes Degradation. J CLUST SCI 2023. [DOI: 10.1007/s10876-022-02402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractA metal–organic framework (MOF) of cerium (Ce) ions and 4,4′,4′′-nitrilotribenzoic acid linker was synthesized via a hydrothermal method. Ce-MOF consists of a Lewis acid moiety, i.e. Ce3+ and triphenylamine cores. It showed Fenton-like properties with excellent catalytic oxidation activity for olefins, primary/secondary alcohols, and water pollutants e.g., organic dyes. It displayed high oxidation conversion of cinnamyl alcohol and styrene of 100% and 53%, respectively. It offered good selectivity towards styrene oxide and benzaldehyde (i.e. 75% and 100%, respectively). It was applied for the oxidative degradation of dyes e.g. rhodamine B (RhB), methyl blue (MeB), Congo red (CR), and direct blue (DB) using hydrogen peroxide (H2O2) as an oxidant. It exhibited high efficiency in the oxidative degradation of these water pollutants. The mechanistic study of oxidation involves the formation of radical hydroxyl (•OH) species. This study revealed the possibility of enhancing the oxidative catalytic performance, including oxidative degradation of organic pollutants, by employing advanced oxidation processes (AOPs) using Ce-MOF. The catalyst is recyclable five times without significantly decreasing of the material’s catalytic performance.
Collapse
|
18
|
Jia H, Li Z, Wang F, Lu R, Zhang S, Zhang Z. Facile synthesis of NH2-MIL-53(Al)@RhB as a dual-emitting “on-off-on” probe for the detection of Fe3+ and ascorbic acid. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Glutathione-Capped CdTe Quantum Dots Based Sensors for Detection of H 2O 2 and Enrofloxacin in Foods Samples. Foods 2022; 12:foods12010062. [PMID: 36613278 PMCID: PMC9818724 DOI: 10.3390/foods12010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Additives and antibiotic abuse during food production and processing are among the key factors affecting food safety. The efficient and rapid detection of hazardous substances in food is of crucial relevance to ensure food safety. In this study, a water-soluble quantum dot with glutathione as a ligand was synthesized as a fluorescent probe by hydrothermal method to achieve the detection and analysis of H2O2. The detection limits were 0.61 μM in water and 68 μM in milk. Meanwhile, it was used as a fluorescent donor probe and manganese dioxide nanosheets were used as a fluorescent acceptor probe in combination with an immunoassay platform to achieve the rapid detection and analysis of enrofloxacin (ENR) in a variety of foods with detection limits of 0.05-0.25 ng/mL in foods. The proposed systems provided new ideas for the construction of fluorescence sensors with high sensitivity.
Collapse
|
20
|
Yang H, Li K, Wang Y, Yuan X, Zhang M. A label-free strategy for H2O2 assay by chemical vapor generation-atomic fluorescence spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Kaur G, Komal, Kandwal P, Sud D. Sonochemically synthesized Zn (II) and Cd (II) based metal-organic frameworks as fluoroprobes for sensing of 2,6-dichlorophenol. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Zheng L, Wang F, Jiang C, Ye S, Tong J, Dramou P, He H. Recent progress in the construction and applications of metal-organic frameworks and covalent-organic frameworks-based nanozymes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Liao L, Tong S, Luo X, Liu G, Wu F. Iron porphyrin-based porous organic polymer with high peroxidase-like activity as colorimetric sensor for glutathione and ascorbic acid assay. Mikrochim Acta 2022; 189:384. [PMID: 36125580 DOI: 10.1007/s00604-022-05471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022]
Abstract
A new iron porphyrin-based organic polymer (Fe-POP) was synthesized through the William ether reaction. The as-prepared Fe-POP presented high chemical stability, wide pore distribution, high iron content, and strong affinity with 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2), which contributed to its excellent peroxidase-mimicking performance. In the presence of H2O2, Fe-POP could catalyze the transparent TMB into blue ox-TMB, which could be easily distinguished by the naked eyes. Moreover, glutathione (GSH) and ascorbic acid (AA) could convert blue ox-TMB into colorless TMB due to the inhibitory effect of GSH/AA to the catalytic oxidation of TMB. Based on this phenomenon, a rapid and sensitive colorimetric method for the assay of H2O2, GSH, and AA was developed using Fe-POP as sensor. The detection limits of H2O2, GSH, and AA were 1.37, 0.44, and 0.33 μM, respectively. Finally, the colorimetric method based on Fe-POP was used to evaluate the GSH and AA content in real samples, which provided the guidance for GSH and AA supplements in our daily diet, suggesting the significant potential of Fe-POP in practical applications.
Collapse
Affiliation(s)
- Linhong Liao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, People's Republic of China
| | - Simiao Tong
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, People's Republic of China.,Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430072, People's Republic of China
| | - Xiaogang Luo
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, People's Republic of China.,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Genyan Liu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, People's Republic of China. .,Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430072, People's Republic of China.
| | - Fengshou Wu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, People's Republic of China. .,Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
24
|
Copper-olsalazine metal-organic frameworks as a nanocatalyst and epigenetic modulator for efficient inhibition of colorectal cancer growth and metastasis. Acta Biomater 2022; 152:495-506. [PMID: 36087871 DOI: 10.1016/j.actbio.2022.08.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
Despite the extensive explorations of nanoscale metal-organic frameworks (nanoMOFs) in drug delivery, the intrinsic bioactivity of nanoMOFs, such as anticancer activity, is severely underestimated owing to the overlooked integration of the hierarchical components including nanosized MOFs and molecular-level organic ligands and metal-organic complexes. Herein, we propose a de novo design of multifunctional bioactive nanoMOFs ranging from molecular to nanoscale level, and demonstrate this proof-of-concept by a copper-olsalazine (Olsa, a clinically approved drug for inflammatory bowel disease, here as a bioactive linker and DNA hypomethylating agent) nanoMOF displaying a multifaceted anticancer mechanism: (1) Cu-Olsa nanoMOF-mediated redox dyshomeostasis for enhanced catalytic tumor therapy, (2) targeting downregulation of cyclooxygenase-2 by the organic complex of Cu2+ and Olsa, and (3) Olsa-mediated epigenetic regulation. Cu-Olsa nanoMOF displayed an enzyme-like catalytic activity to generate cancericidal species ·OH and 1O2 from rich H2O2 in tumors, improved the expression of tumor suppressors TIMP3 and AXIN2 by epigenetic modulation, and fulfilled selective inhibition of colorectal cancer cells over normal cells. The hyaluronic acid-modified nanoMOF further verified the efficient suppression of CT26 colorectal tumor growth and metastasis in murine models. Overall, these results suggest that Olsa-based MOF presents a platform of epigenetic therapy-synergized nanomedicine for efficient cancer treatment and provides a powerful strategy for the design of intrinsically bioactive nanoMOFs. STATEMENT OF SIGNIFICANCE: Metal-organic frameworks (MOFs) with intrinsic bioactivities such as anticancer and antibacterial activity are of great interest. Herein, we reported a bioactive copper-olsalazine (Cu-Olsa) nanoMOF as a nanodrug for colorectal cancer treatment. This nanoMOF per se displayed enzyme-like catalytic activity to generate cancericidal species ·OH and 1O2 from rich H2O2 in tumors for nanocatalytic tumor therapy. Upon dissociation into small molecular copper-organic complex and olsalazine in cancer cells, COX-2 inhibition and epigenetic modulation were fulfilled for selective inhibition of colorectal cancer growth and metastasis.
Collapse
|
25
|
Kumari R, Dkhar DS, Mahapatra S, Divya, Kumar R, Chandra P. Nano-bioengineered sensing technologies for real-time monitoring of reactive oxygen species in in vitro and in vivo models. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Zhang T, Qiao C, Xia L, Yuan T, Wei Q, Yang Q, Chen S. Triphenylamine-based cadmium coordination polymer as a heterogeneous photocatalyst for visible-light-driven α-alkylation of aldehydes. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Reusable ring-like Fe3O4/Au nanozymes with enhanced peroxidase-like activities for colorimetric-SERS dual-mode sensing of biomolecules in human blood. Biosens Bioelectron 2022; 209:114253. [DOI: 10.1016/j.bios.2022.114253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/07/2022] [Accepted: 04/02/2022] [Indexed: 12/26/2022]
|
28
|
The Chemistry and Applications of Metal-Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144529. [PMID: 35889401 PMCID: PMC9320690 DOI: 10.3390/molecules27144529] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/02/2023]
Abstract
Enzymatic biocatalysis is a sustainable technology. Enzymes are versatile and highly efficient biocatalysts, and have been widely employed due to their biodegradable nature. However, because the three-dimensional structure of these enzymes is predominantly maintained by weaker non-covalent interactions, external conditions, such as temperature and pH variations, as well as the presence of chemical compounds, can modify or even neutralize their biological activity. The enablement of this category of processes is the result of the several advances in the areas of molecular biology and biotechnology achieved over the past two decades. In this scenario, metal–organic frameworks (MOFs) are highlighted as efficient supports for enzyme immobilization. They can be used to ‘house’ a specific enzyme, providing it with protection from environmental influences. This review discusses MOFs as structures; emphasizes their synthesis strategies, properties, and applications; explores the existing methods of using immobilization processes of various enzymes; and lists their possible chemical modifications and combinations with other compounds to formulate the ideal supports for a given application.
Collapse
|
29
|
Abdelhamid HN. Removal of Carbon Dioxide using Zeolitic Imidazolate Frameworks: Adsorption and Conversion via Catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry Assiut University Assiut Egypt
- Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry Assiut University Assiut Egypt
- Nanotechnology Research Centre (NTRC) The British University in Egypt Cairo Egypt
| |
Collapse
|
30
|
Negm A, Gouda M, Ibrahim HIM. Carboxymethyl Cellulose/Zn-Organic Framework Down-Regulates Proliferation and Up-Regulates Apoptosis and DNA Damage in Colon and Lung Cancer Cell Lines. Polymers (Basel) 2022; 14:2015. [PMID: 35631897 PMCID: PMC9148085 DOI: 10.3390/polym14102015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
A solvothermal technique was used to prepare a Zn-benzenetricarboxylic acid (Zn@BTC) organic framework covered with a carboxymethyl cellulose (CMC/Zn@BTC). Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), and Brunauer, Emmett, and Teller (BET) surface area were applied to characterize CMC/Zn@BTC. Moreover, the anticancer, anti-migrative, anti-invasive, and anti-proliferative action of CMC/Zn@BTC nanoparticles were assessed on cancer cell lines. Apoptotic markers and DNA damage were assessed to explore the cellular and biological changes induced by CMC/Zn@BTC nanoparticles. The microscopic observation revealed that CMC controls the surface morphology and surface characteristics of the Zn@BTC. The obtained BET data revealed that the Zn@BTC nanocomposite surface area lowers from 1061 m2/g to 740 m2/g, and the pore volume decreases from 0.50 cm3/g to 0.37 cm3/g when CMC is applied to Zn@BTC nanocomposites. The cellular growth of DLD1 and A549 was suppressed by CMC/Zn@BTC, with IC50 values of 19.1 and 23.1 μg/mL, respectively. P53 expression was upregulated, and Bcl-2 expression was downregulated by CMC/Zn@BTC, which promoted the apoptotic process. Furthermore, CMC/Zn@BTC caused DNA damage in both cancer cell lines with diverse impact, 66 percent (A549) and 20 percent (DLD1) compared to cisplatin's 52 percent reduction. CMC/Zn@BTC has anti-invasive properties and significantly reduced cellular migration. Moreover, CMC/Zn@BTC aims key proteins associated with metastasis, proliferation and programmed cellular death.
Collapse
Affiliation(s)
- Amr Negm
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Hairul-Islam M. Ibrahim
- Biological Science Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
31
|
Zhu Z, Gong L, Miao X, Chen C, Su S. Prussian Blue Nanoparticle Supported MoS 2 Nanocomposites as a Peroxidase-Like Nanozyme for Colorimetric Sensing of Dopamine. BIOSENSORS 2022; 12:260. [PMID: 35624561 PMCID: PMC9139080 DOI: 10.3390/bios12050260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 06/15/2023]
Abstract
An abnormal level of dopamine (DA) is usually related to neurological disorders, including Parkinson's disease. Herein, cubic-shaped, Prussian blue nanoparticle-supported MoS2 nanocomposites (MoS2-CPBNPs) were prepared as peroxidase-like nanozymes for the label-free, colorimetric detection of DA. As expected, the as-prepared MoS2-CPBNPs nanozymes have outstanding peroxidase-like mimicking activity, which can catalyze 3,3',5,5'-Tetramethylbenzidine (TMB) to generate blue, oxidized TMB in the presence of hydrogen peroxide (H2O2). DA can inhibit the oxidation of TMB, which causes blue solutions to fade and become colorless. According to this phenomenon, the developed colorimetric sensor can qualitatively and quantitatively analyze DA ranging from 0 to 300 μM with a detection limit of 0.09 μM. In addition, the high recovery and low relative standard deviation for practical DA determination suggested that this colorimetric sensor has potential for application in biological biosensing and diagnostic fields.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Suzhou Chien-Shiung Institute of Technology, 1 Jianxiong Road, Suzhou 215411, China; (Z.Z.); (X.M.); (C.C.)
| | - Lingbo Gong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China;
| | - Xiangyang Miao
- Suzhou Chien-Shiung Institute of Technology, 1 Jianxiong Road, Suzhou 215411, China; (Z.Z.); (X.M.); (C.C.)
| | - Chaoyang Chen
- Suzhou Chien-Shiung Institute of Technology, 1 Jianxiong Road, Suzhou 215411, China; (Z.Z.); (X.M.); (C.C.)
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China;
| |
Collapse
|
32
|
A Comprehensive Review on the Use of Metal–Organic Frameworks (MOFs) Coupled with Enzymes as Biosensors. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several studies have shown the development of electrochemical biosensors based on enzymes immobilized in metal–organic frameworks (MOFs). Although enzymes have unique properties, such as efficiency, selectivity, and environmental sustainability, when immobilized, these properties are improved, presenting significant potential for several biotechnological applications. Using MOFs as matrices for enzyme immobilization has been considered a promising strategy due to their many advantages compared to other supporting materials, such as larger surface areas, higher porosity rates, and better stability. Biosensors are analytical tools that use a bioactive element and a transducer for the detection/quantification of biochemical substances in the most varied applications and areas, in particular, food, agriculture, pharmaceutical, and medical. This review will present novel insights on the construction of biosensors with materials based on MOFs. Herein, we have been highlighted the use of MOF for biosensing for biomedical, food safety, and environmental monitoring areas. Additionally, different methods by which immobilizations are performed in MOFs and their main advantages and disadvantages are presented.
Collapse
|
33
|
Singh J, Singh R, Singh S, Mitra K, Mondal S, Vishwakarma S, Ray B. Colorimetric detection of hydrogen peroxide and cholesterol using Fe3O4-brominated graphene nanocomposite. Anal Bioanal Chem 2022; 414:2131-2145. [DOI: 10.1007/s00216-021-03848-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/24/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022]
|
34
|
Asiwal EP, Shelar DS, Gujja CS, Manjare ST, Pawar SD. A Ni-MOF based luminescent sensor for selective and rapid sensing of Fe( ii) and Fe( iii) ions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02263j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a bis(N,N-trimellitoyl)-4,4′-oxydianiline linker was synthesized and characterized by spectroscopic techniques. The molecular structure and luminescence intensity of the Ni-MOF treated with different metal ions were investigated.
Collapse
Affiliation(s)
- Ekta P. Asiwal
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai-400098, India
| | - Divyesh S. Shelar
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai-400098, India
| | - Chaturvedi S. Gujja
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai-400098, India
| | - Sudesh T. Manjare
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai-400098, India
| | - Suresh D. Pawar
- Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai-400098, India
| |
Collapse
|
35
|
Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214263] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Yin J, Chu H, Qin S, Qi H, Hu M. Preparation of Eu 0.075Tb 0.925-Metal Organic Framework as a Fluorescent Probe and Application in the Detection of Fe 3+ and Cr 2O 72. SENSORS (BASEL, SWITZERLAND) 2021; 21:7355. [PMID: 34770661 PMCID: PMC8587718 DOI: 10.3390/s21217355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022]
Abstract
Luminescent Ln-MOFs (Eu0.075Tb0.925-MOF) were successfully synthesised through the solvothermal reaction of Tb(NO3)3·6H2O, Eu(NO3)3·6H2O, and the ligand pyromellitic acid. The product was characterised by X-ray diffraction (XRD), TG analysis, EM, X-ray photoelectron spectroscopy (XPS), and luminescence properties, and results show that the synthesised material Eu0.075Tb0.925-MOF has a selective ratio-based fluorescence response to Fe3+ or Cr2O72-. On the basis of the internal filtering effect, the fluorescence detection experiment shows that as the concentration of Fe3+ or Cr2O72- increases, the intensity of the characteristic emission peak at 544 nm of Tb3+ decreases, and the intensity of the characteristic emission peak at 653 nm of Eu3+ increases in Eu0.075Tb0.925-MOF. The fluorescence intensity ratio (I653/I544) has a good linear relationship with the target concentration. The detection linear range for Fe3+ or Cr2O72- is 10-100 μM/L, and the detection limits are 2.71 × 10-7 and 8.72 × 10-7 M, respectively. Compared with the sensor material with a single fluorescence emission, the synthesised material has a higher anti-interference ability. The synthesised Eu0.075Tb0.925-MOF can be used as a highly selective and recyclable sensing material for Fe3+ or Cr2O72-. This material should be an excellent candidate for multifunctional sensors.
Collapse
Affiliation(s)
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihaer University, Qiqihaer 161006, China; (J.Y.); (S.Q.); (H.Q.); (M.H.)
| | | | | | | |
Collapse
|
37
|
Ma X, Lu K, Tang KL, Zhao W. Construction of electrocatalyst based on in-situ growth silver nanoparticles into hollow porous carbon spheres for hydrogen peroxide detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
A metal-organic framework MIL-53(Fe) containing sliver ions with antibacterial property. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Desai ML, Basu H, Saha S, Singhal RK, Kailasa SK. Fluorescence enhancement of bovine serum albumin gold nanoclusters from La3+ ion: Detection of four divalent metal ions (Hg2+, Cu2+, Pb2+ and Cd2+). J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
A novel copper-based metal-organic framework as a peroxidase-mimicking enzyme and its glucose chemiluminescence sensing application. Anal Bioanal Chem 2021; 413:4407-4416. [PMID: 34081166 DOI: 10.1007/s00216-021-03394-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022]
Abstract
A novel copper-based metal-organic framework (Cu-MOF) with a large specific surface area and high porosity was synthesized. The Cu-MOF was a good peroxidase-mimicking enzyme and showed a high affinity with hydrogen peroxide in a wide pH range. The catalytic mechanism of Cu-MOF has been studied further based on comparing the characteristic of the Cu-MOF with some isomorphic MOFs. The catalytic activity center of Cu-MOF was determined to be the cupric ion rather than the ligand, which effectively promoted the generation of free radicals and electron transfer in the reaction progress. The high affinity of Cu-MOF to hydrogen peroxide proved it as an ideal catalyst for the chemiluminescence (CL) reaction involving hydrogen peroxide. Therefore, the CL method with high sensitivity could be established for detecting various substrates. A double-enzyme CL glucose biosensing platform was constructed for the determination of serum glucose employing the peroxidase-mimicking properties of Cu-MOF as well as glucose oxidase (GOx).
Collapse
|
41
|
Abdelhamid HN. Dehydrogenation of sodium borohydride using cobalt embedded zeolitic imidazolate frameworks. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Yu H, Li Y, Huang A. Facile Synthesis of Boronic‐Acid‐Functionalized Metal‐Organic Framework UiO‐66‐NH
2
@B(OH)
2
with High Selectivity and Sensitivity to Hydrogen Peroxide. ChemistrySelect 2021. [DOI: 10.1002/slct.202100589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Huazheng Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Yanhong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Aisheng Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Dongchuan Road 500 Shanghai 200241 China
| |
Collapse
|
43
|
Abdelhamid HN, Badr G. Nanobiotechnology as a platform for the diagnosis of COVID-19: a review. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2021; 6:19. [PMCID: PMC7988262 DOI: 10.1007/s41204-021-00109-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Abstract
A sensitive method for diagnosing co ronavi rus d isease 2019 (COVID-19) is highly required to fight the current and future global health threats due to s evere a cute r espiratory s yndrome c oronavirus 2 (SARS-CoV 2). However, most of the current methods exhibited high false‐negative rates, resulting in patient misdiagnosis and impeding early treatment. Nanoparticles show promising performance and great potential to serve as a platform for diagnosing viral infection in a short time and with high sensitivity. This review highlighted the potential of nanoparticles as platforms for the diagnosis of COVID-19. Nanoparticles such as gold nanoparticles, magnetic nanoparticles, and graphene (G) were applied to detect SARS-CoV 2. They have been used for molecular-based diagnosis methods and serological methods. Nanoparticles improved specificity and shorten the time required for the diagnosis. They may be implemented into small devices that facilitate the self-diagnosis at home or in places such as airports and shops. Nanoparticles-based methods can be used for the analysis of virus-contaminated samples from a patient, surface, and air. The advantages and challenges were discussed to introduce useful information for designing a sensitive, fast, and low-cost diagnostic method. This review aims to present a helpful survey for the lesson learned from handling this outbreak to prepare ourself for future pandemic.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| | - Gamal Badr
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|