1
|
Cetinkaya A, Kaya SI, Ozcelikay G, Budak F, Ozkan SA. Carbon Nanomaterials-Based Novel Hybrid Platforms for Electrochemical Sensor Applications in Drug Analysis. Crit Rev Anal Chem 2024; 54:1227-1242. [PMID: 35943520 DOI: 10.1080/10408347.2022.2109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Nowadays, the rapid improvements in the medical and pharmaceutical fields increase the diversity and use of drugs. However, problems such as the use of multiple or combined drugs in the treatment of diseases and insensible use of over-the-counter drugs have caused concerns about the side-effect profiles and therapeutic ranges of drugs and environmental contamination and pollution problems due to pharmaceuticals waste. Therefore, the analysis of drugs in various media such as biological, pharmaceutical, and environmental samples is an important topic of discussion. Electrochemical methods are advantageous for sensor applications due to their easy application, low cost, versatility, high sensitivity, and environmentally-friendliness. Carbon nanomaterials such as diamond-like carbon thin films, carbon nanotubes, carbon nanofibers, graphene oxide, and nanodiamonds are used to enhance the performance of the electrochemical sensors with catalytic effects. To further improve this effect, it is aimed to create hybrid platforms by using different carbon nanomaterials together or with materials such as conductive polymers and ionic liquids. In this review, the most used carbon nanoforms will be evaluated in terms of electrochemical characterizations and physicochemical properties. Furthermore, the effect of hybrid platforms developed in the most recent studies on electrochemical sensors will be examined and evaluated in terms of drug analysis studies in the last five years.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Goksu Ozcelikay
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Fatma Budak
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Patil Y, Megalamani MB, Nandi S, Nandibewoor ST, Adimule V, Rajendrachari S. Electrochemical Determination of Cyclobenzaprine Hydrochloride Muscle Relaxant Using Novel S-GCN/TiO 2-Based Carbon Electrode. ACS OMEGA 2024; 9:31657-31668. [PMID: 39072069 PMCID: PMC11270554 DOI: 10.1021/acsomega.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
We have successfully prepared the titanium dioxide (TiO2) nanoparticles (NPs) and sulfur-incorporated graphitic carbon nitride (S-GCN)-modified carbon paste electrode (CPE). The CPEs modified with TiO2 NPs and S-GCN were employed for detecting and quantifying the skeletal muscle relaxant cyclobenzaprine hydrochloride (CBP) using cyclic voltammetry and square wave voltammetry (SWV) techniques. Optimal electrochemical conditions were indicated by the pH study results, with the highest peak current observed at a physiological pH of 7.4. The electrochemical process was determined to involve an equivalent number of protons (H+) and electrons (e-). The concentration variation of CBP (ranging from 0.06 to 10 × 10-7 mol L-1) was explored using SWV. The limits of detection and quantification were determined as 6.4 × 10-9 and 2.1 × 10-8 M, respectively. The proposed electrode configuration was applied to analyze real samples, including water, biomedical, and pharmaceutical specimens.
Collapse
Affiliation(s)
- Yuvarajgouda
N. Patil
- Department
of Chemistry, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Manjunath B. Megalamani
- Department
of Chemistry, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Santosh Nandi
- Department
of Chemistry, KLE Technological University
Dr. M. S. Sheshgiri Campus, Udyambag, Belagavi, Karnataka 590008, India
| | - Sharanappa T. Nandibewoor
- Department
of Chemistry, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Vinayak Adimule
- Department
of Chemistry, Angadi Institute of Technology
and Management (AITM), Savagaon Road, Belagavi, Karnataka 590009, India
| | - Shashanka Rajendrachari
- Department
of Metallurgical and Materials Engineering, Bartin University, Bartin 74100, Turkey
| |
Collapse
|
3
|
Yuan Y, Jia H, Xu D, Wang J. Novel method in emerging environmental contaminants detection: Fiber optic sensors based on microfluidic chips. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159563. [PMID: 36265627 DOI: 10.1016/j.scitotenv.2022.159563] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Recently, human industrial practices and certain activities have caused the widespread spread of emerging contaminants throughout the environmental matrix, even in trace amounts, which constitute a serious threat to human health and environmental ecology, and have therefore attracted the attention of research scholars. Different traditional techniques are used to monitor water pollutants, However, they still have some disadvantages such as high costs, ecological problems and treatment times, and require technicians and researchers to operate them effectively. There is therefore an urgent need to develop simple, inexpensive and highly sensitive methods to sense and detect these toxic environmental contaminants. Optical fiber microfluidic coupled sensors offer different advantages over other detection technologies, allowing manipulation of light through controlled microfluidics, precise detection results and good stability, and have therefore become a logical device for screening and identifying environmental contaminants. This paper reviews the application of fiber optic microfluidic sensors in emerging environmental contaminant detection, focusing on the characteristics of different emerging contaminant types, different types of fiber optic microfluidic sensors, methodological principles of detection, and specific emerging contaminant detection applications. The optical detection methods in fiber optic microfluidic chips and their respective advantages and disadvantages are analyzed in the discussion. The applications of fiber optic biochemical sensors in microfluidic chips, especially for the detection of emerging contaminants in the aqueous environment, such as personal care products, endocrine disruptors, and perfluorinated compounds, are reviewed. Finally, the prospects of fiber optic microfluidic coupled sensors in environmental detection and related fields are foreseen.
Collapse
Affiliation(s)
- Yang Yuan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - DanYu Xu
- Tianjin Academy of Eco-enviromental Sciences, Tianjin 300191, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
4
|
Abd-Elsabour M, Abou-Krisha MM, Alhamzani AG, Yousef TA. An effective, novel, and cheap carbon paste electrode for naproxen estimation. REVIEWS IN ANALYTICAL CHEMISTRY 2022; 41:168-179. [DOI: 10.1515/revac-2022-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Herein, a carbon paste electrode (CPE) modified with poly(reduced-o-nitrobenzoic acid [r-o-NBA]) supported in graphene quantum dots (GQDs) was fabricated for the first time. The fabricated electrode’s surface morphology and composition were characterised by scanning electron microscope and transmission electron microscope. The poly(r-o-NBA)/GQDs/CPE showed high electrocatalytic activity towards the oxidation of naproxen (NPX) using cyclic and differential pulse voltammetric methods. The effect of scan rate on the oxidation peak of NPX suggests that the electrode process was typically diffusion-controlled. In addition, the effect of pH reflects the participation of protons in the oxidation process of NPX. The peak current is linearly proportional to the concentration of NPX ranging from 1.0 to 100.0 µM, with the correlation coefficient (R
2), sensitivity, limit of detection (3σ), and limit of quantification (10σ) being 0.9995, 0.419 µA·µM−1·cm−2, 0.672, and 2.241 µM, respectively. Using chronoamperometry, the diffusion coefficient of NPX at the poly(r-o-NBA)/GQDs/CPE was estimated to be 5.36 × 10−6 cm2·s−1. The proposed electrode has good reproducibility, stability, and high selectivity for NPX oxidation. The obtained recovery range (96.7–102.0%) means that the proposed sensor performed satisfactorily when applied for the detection of NPX in its pharmaceutical formulations.
Collapse
Affiliation(s)
- Mohamed Abd-Elsabour
- Chemistry Department, Faculty of Science, South Valley University , Qena , 83523 , Egypt
| | - Mortaga M. Abou-Krisha
- Chemistry Department, Faculty of Science, South Valley University , Qena , 83523 , Egypt
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) , Riyadh 11623 , Saudi Arabia
| | - Abdulrahman G. Alhamzani
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) , Riyadh 11623 , Saudi Arabia
| | - Tarek A. Yousef
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) , Riyadh 11623 , Saudi Arabia
- Department of Toxic and Narcotic Drug, Forensic Medicine, Mansoura Laboratory, Medicolegal Organization , Ministry of Justice , Egypt
| |
Collapse
|
5
|
Sivaranjanee R, Senthil Kumar P, Saravanan R, Govarthanan M. Electrochemical sensing system for the analysis of emerging contaminants in aquatic environment: A review. CHEMOSPHERE 2022; 294:133779. [PMID: 35114262 DOI: 10.1016/j.chemosphere.2022.133779] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
This survey distinguishes understudied spaces of arising impurity research in wastewaters and the habitat, and suggests bearing for future checking. Thinking about the impeding effect of toxins on human wellbeing and biological system, their discovery in various media including water is fundamental. This review sums up and assesses the latest advances in the electrochemical detecting of emerging contaminants (ECs). This survey is expected to add to the advancement in electrochemical applications towards the ECs. Different electrochemical insightful procedures like Amperometry, Voltammetry has been examined in this overview. The improvement of cutting edge nanomaterial-based electrochemical sensors and biosensors for the discovery of drug compounds has accumulated monstrous consideration because of their benefits, like high affectability and selectivity, continuous observing, and convenience has been reviewed in this survey. This survey likewise features the diverse electrochemical treatment procedures accessible for the removal of ECs.
Collapse
Affiliation(s)
- R Sivaranjanee
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|