1
|
Almehizia A, Naglah AM, Alanazi MG, Amr AEGE, Kamel AH. Paper-Based Analytical Device Based on Potentiometric Transduction for Sensitive Determination of Phenobarbital. ACS OMEGA 2023; 8:43538-43545. [PMID: 38027332 PMCID: PMC10666222 DOI: 10.1021/acsomega.3c03977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023]
Abstract
In medicine, barbiturates are a class of depressive medications used as hypnotics, anticonvulsants, and anxiolytics. For the treatment of specific forms of epilepsy and seizures in young children in underdeveloped countries, the World Health Organization recommends phenobarbital (PBAR), a barbiturate drug. This review describes the fabrication and characterization of a paper-based analytical apparatus for phenobarbital detection that is straightforward, affordable, portable, and disposable. All of the solid-state ion-selective electrodes (ISEs) for PBAR as well as a Ag/AgCl reference electrode were constructed and optimized on a nonconductive paper substrate. Using carbon nanotube ink, the sensors were made to function as an ion-to-electron transducer and to make the paper conductive. A suitable polymeric membrane is drop-cast onto the surface of the carbon ink orifice. The pyrido-tetrapeptide and pyrido-hexapeptide derivatives, which were recently synthesized, functioned as distinct ionophores in the PBAR-membrane sensor, enabling its detection. With a detection limit of 5.0 × 10-7 M, the manufactured analytical device demonstrated a Nernstian response to PBAR anions in 50 mM phosphate buffer, pH 8.5, over a linear range of 1.0 × 10-6 to 1.0 × 10-3 M. The PBAR-based sensors showed quick (less than 5 s) response times for PBAR ion detection. The modified separate solution method was utilized to evaluate the selectivity pattern of these novel ionophores with respect to PBAR ions in comparison to other common anions. The analytical instrument that was exhibited on paper had good precision both within and between days. The suggested technology assisted in the detection of trace amounts of PBAR in real pharmaceutical samples. A comparison was made between the data acquired using the HPLC reference method and the information obtained by the recommended potentiometric approach. The described paper-based analytical device may be a good choice for point-of-care PBAR determination because it is cheap and easy to find and can self-pump (especially when combined with potentiometric detection).
Collapse
Affiliation(s)
- Abdulrahman
A. Almehizia
- Drug
Exploration and Development Chair (DEDC), Department of Pharmaceutical
Chemistry, College of Pharmacy, King Saud
University, P. O. Box 2457,Riyadh 11451, Saudi Arabia
| | - Ahmed M. Naglah
- Drug
Exploration and Development Chair (DEDC), Department of Pharmaceutical
Chemistry, College of Pharmacy, King Saud
University, P. O. Box 2457,Riyadh 11451, Saudi Arabia
| | - Mashael G. Alanazi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457,Riyadh 11451, Saudi Arabia
| | - Abd El-Galil E. Amr
- Applied
Organic Chemistry Department, National Research
Center, Dokki, Giza 12622, Egypt
| | - Ayman H. Kamel
- Department,
College of Science, University of Bahrain, Sokheer 32038, Kingdom of Bahrain
- Department
of Chemistry, Faculty of Science, Ain Shams
University, Cairo 11566, Egypt
| |
Collapse
|
2
|
He S, Yang L, Xu T, Peng X, Chen Q, Li X, Yuan Y, Zuo C, Zhang X, Bai Z. A dense SERS substrate of the AgNPs@GO compound film for detecting homocysteine molecules. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5875-5884. [PMID: 37902496 DOI: 10.1039/d3ay01396k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
This study focuses on the development of a highly sensitive surface-enhanced Raman scattering (SERS) sensor for detecting homocysteine (Hcy) molecules. The Hcy sensor was created by depositing silver nanoparticles (AgNPs) onto the surface of graphene oxide (GO) film to form a dense AgNPs@GO composite film. The AgNPs on the composite film interacted with sulfur atoms (S) of Hcy molecules to form Ag-S bonds, which boosted the chemisorption of Hcy molecules and enabled them to be specifically recognized. The SERS sensor exhibited a maximum enhancement factor of up to 1.1 × 104, with a reliable linear response range from 1 to 60 ng mL-1. The limit of detection (LOD) for Hcy molecules was as low as 1.1 × 10-9 M. Moreover, Hcy molecules were successfully distinguished in a mixed solution of γ-aminobutyric acid and Hcy molecules. In this study, a simple preparation process of SERS substrate and a novel detection method for Hcy molecules provided a new pathway for the rapid and effective detection of Hcy molecules in the food and biomedicine fields.
Collapse
Affiliation(s)
- Song He
- Guizhou Provincial People's Hospital, Guiyang City, 550002, China
- College of Medicine, Guizhou University, Guiyang City, 550025, China.
| | - Li Yang
- College of Medicine, Guizhou University, Guiyang City, 550025, China.
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City, 550025, China
| | - Tianwen Xu
- College of Medicine, Guizhou University, Guiyang City, 550025, China.
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City, 550025, China
| | - Xishun Peng
- College of Medicine, Guizhou University, Guiyang City, 550025, China.
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City, 550025, China
| | - Qixin Chen
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City, 550025, China
| | - Xinghua Li
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City, 550025, China
| | - Yiheng Yuan
- College of Medicine, Guizhou University, Guiyang City, 550025, China.
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City, 550025, China
| | - Cheng Zuo
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City, 550025, China
| | - Xin Zhang
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City, 550025, China
| | - Zhongchen Bai
- College of Medicine, Guizhou University, Guiyang City, 550025, China.
- Guizhou Province Key Lab. for Photoelectric Technology and Application, Guizhou University, Guiyang City, 550025, China
| |
Collapse
|
3
|
Ziyatdinova G, Gimadutdinova L. Recent Advances in Electrochemical Sensors for Sulfur-Containing Antioxidants. MICROMACHINES 2023; 14:1440. [PMID: 37512751 PMCID: PMC10384414 DOI: 10.3390/mi14071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Sulfur-containing antioxidants are an important part of the antioxidant defense systems in living organisms under the frame of a thiol-disulfide equilibrium. Among them, l-cysteine, l-homocysteine, l-methionine, glutathione, and α-lipoic acid are the most typical representatives. Their actions in living systems are briefly discussed. Being electroactive, sulfur-containing antioxidants are interesting analytes to be determined using various types of electrochemical sensors. Attention is paid to the chemically modified electrodes with various nanostructured coverages. The analytical capabilities of electrochemical sensors for sulfur-containing antioxidant quantification are summarized and discussed. The data are summarized and presented on the basis of the electrode surface modifier applied, i.e., carbon nanomaterials, metal and metal oxide nanoparticles (NPs) and nanostructures, organic mediators, polymeric coverage, and mixed modifiers. The combination of various types of nanomaterials provides a wider linear dynamic range, lower limits of detection, and higher selectivity in comparison to bare electrodes and sensors based on the one type of surface modifier. The perspective of the combination of chromatography with electrochemical detection providing the possibility for simultaneous determination of sulfur-containing antioxidants in a complex matrix has also been discussed.
Collapse
Affiliation(s)
- Guzel Ziyatdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| | - Liliya Gimadutdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| |
Collapse
|
4
|
da Conceição P, Dos Santos Neto AG, Khan S, Tanaka AA, Santana AEG, Del Pilar Taboada-Sotomayor M, Goulart MOF, Santos ACF. Extraction-assisted voltammetric determination of homocysteine using magnetic nanoparticles modified with molecularly imprinted polymer. Mikrochim Acta 2023; 190:159. [PMID: 36973457 DOI: 10.1007/s00604-023-05738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
A magnetic graphite-epoxy composite (m-GEC) electrochemical sensor is presented based on magnetic imprinted polymer (mag-MIP) to determine homocysteine (Hcy). Mag-MIP was synthesized via precipitation polymerization, using functionalized magnetic nanoparticles (Fe3O4) together with the template molecule (Hcy), the functional monomer 2-hydroxyethyl methacrylate (HEMA), and the structural monomer trimethylolpropane trimethacrylate (TRIM). For mag-NIP (magnetic non-imprinted polymer), the procedure was the same in the absence of Hcy. Morphological and structural properties of the resultant mag-MIP and mag-NIP were examined using TEM, FT-IR, and Vibrating Sample Magnetometer. Under optimized conditions, the m-GEC/mag-MIP sensor showed a linear range of 0.1-2 µmol L-1, with a limit of detection (LOD) of 0.030 µmol L-1. In addition, the proposed sensor responded selectively to Hcy compared to several interferents present in biological samples. The recovery values determined by differential pulse voltammetry (DPV) were close to 100% for natural and synthetic samples, indicating good method accuracy. The developed electrochemical sensor proves to be a suitable device for determining Hcy, with advantages related to magnetic separation and electrochemical analysis.
Collapse
Affiliation(s)
- Poliana da Conceição
- Programa de Pós-graduação em Química e Biotecnologia (PPGQB), Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, AL, 57072-970, Maceió, Brazil
| | - Antonio Gomes Dos Santos Neto
- Departamento de Química, Universidade Federal do Maranhão, Avenida dos Portugueses, MA, 1966, 65080-805, São Luís, Brazil
| | - Sabir Khan
- Instituto de Química, INCT-DATREM, Universidade Estadual Paulista, Rua Prof. Francisco Degni, 55, Araraquara, SP, Brazil
| | - Auro A Tanaka
- Departamento de Química, Universidade Federal do Maranhão, Avenida dos Portugueses, MA, 1966, 65080-805, São Luís, Brazil
- National Institute of Science and Technology of Bioanalytics (INCT-Bio), Campinas, Brazil
| | - Antônio Euzébio G Santana
- Programa de Pós-graduação em Química e Biotecnologia (PPGQB), Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, AL, 57072-970, Maceió, Brazil
| | | | - Marília O F Goulart
- Programa de Pós-graduação em Química e Biotecnologia (PPGQB), Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, AL, 57072-970, Maceió, Brazil
- National Institute of Science and Technology of Bioanalytics (INCT-Bio), Campinas, Brazil
| | - Ana Caroline Ferreira Santos
- Programa de Pós-graduação em Química e Biotecnologia (PPGQB), Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, AL, 57072-970, Maceió, Brazil.
- National Institute of Science and Technology of Bioanalytics (INCT-Bio), Campinas, Brazil.
| |
Collapse
|
5
|
Zaimbashi R, Tajik S, Beitollahi H, Torkzadeh-Mahani M. Fabrication of a Novel and Ultrasensitive Label-Free Electrochemical Aptasensor Based on Gold Nanostructure for Detection of Homocysteine. BIOSENSORS 2023; 13:bios13020244. [PMID: 36832010 PMCID: PMC9953955 DOI: 10.3390/bios13020244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 06/12/2023]
Abstract
The current attempt was made to detect the amino acid homocysteine (HMC) using an electrochemical aptasensor. A high-specificity HMC aptamer was used to fabricate an Au nanostructured/carbon paste electrode (Au-NS/CPE). HMC at high blood concentration (hyperhomocysteinemia) can be associated with endothelial cell damage leading to blood vessel inflammation, thereby possibly resulting in atherogenesis leading to ischemic damage. Our proposed protocol was to selectively immobilize the aptamer on the gate electrode with a high affinity to the HMC. The absence of a clear alteration in the current due to common interferants (methionine (Met) and cysteine (Cys)) indicated the high specificity of the sensor. The aptasensor was successful in sensing HMC ranging between 0.1 and 30 μM, with a narrow limit of detection (LOD) as low as 0.03 μM.
Collapse
Affiliation(s)
- Reza Zaimbashi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
| | - Masoud Torkzadeh-Mahani
- Biotechnology Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
| |
Collapse
|
6
|
Zhu C, Zhang J, Zhang S, Liu C, Liu X, Jin J, Zheng D. An Amperometric Biomedical Sensor for the Determination of Homocysteine Using Gold Nanoparticles and Acetylene Black-Dihexadecyl Phosphate-Modified Glassy Carbon Electrode. MICROMACHINES 2023; 14:198. [PMID: 36677259 PMCID: PMC9865262 DOI: 10.3390/mi14010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
A novel nanocomposite film composed of gold nanoparticles and acetylene black-dihexadecyl phosphate was fabricated and modified on the surface of a glassy carbon electrode through a simple and controllable dropping and electropolymerization method. The nanocomposite film electrode showed a good electrocatalytic response to the oxidation of homocysteine and can work as an amperometric biomedical sensor for homocysteine. With the aid of scanning electron microscopy, energy dispersive X-ray technology and electrochemical impedance spectroscopy, the sensing interface was characterized, and the sensing mechanism was discussed. Under optimal conditions, the oxidation peak current of homocysteine was linearly increased with its concentration in the range of 3.0 µmol/L~1.0 mmol/L, and a sensitivity of 18 nA/(μmol/L) was obtained. Furthermore, the detection limit was determined as 0.6 µmol/L, and the response time was detected as 3 s. Applying the nanocomposite film electrode for monitoring the homocysteine in human blood serum, the results were satisfactory.
Collapse
Affiliation(s)
- Chunnan Zhu
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
- Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Jingfang Zhang
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Shunrun Zhang
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Chao Liu
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
- Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Xiaojun Liu
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
- Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Jian Jin
- The First Hospital of Wuhan, Wuhan 430022, China
| | - Dongyun Zheng
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
- The First Hospital of Wuhan, Wuhan 430022, China
| |
Collapse
|
7
|
Jia R, Bai H, He Y. Electrochemical Determination of Homocysteine Using Self-Assembled 6-Ferrocenylhexanethiol on a Molybdenum Disulfide Nanoparticle Modified Glassy Carbon Electrode (GCE). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2138421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ruihong Jia
- Department of Pharmacy, Changzhi Medical College, Changzhi, P.R. China
| | - Huiyun Bai
- Department of Pharmacy, Changzhi Medical College, Changzhi, P.R. China
| | - Yanbin He
- Department of Pharmacy, Changzhi Medical College, Changzhi, P.R. China
- Shanxi Province Key Laboratory of Functional Food with Homologous of Medicine and Food, Changzhi, P.R. China
| |
Collapse
|
8
|
Reddy YVM, Shin JH, Palakollu VN, Sravani B, Choi CH, Park K, Kim SK, Madhavi G, Park JP, Shetti NP. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Adv Colloid Interface Sci 2022; 304:102664. [PMID: 35413509 DOI: 10.1016/j.cis.2022.102664] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
Abstract
Graphene is an intriguing two-dimensional honeycomb-like carbon material with a unique basal plane structure, charge carrier mobility, thermal conductivity, wide electrochemical spectrum, and unusual physicochemical properties. Therefore, it has attracted considerable scientific interest in the field of nanoscience and bionanotechnology. The high specific surface area of graphene allows it to support high biomolecule loading for good detection sensitivity. As such, graphene, graphene oxide (GO), and reduced GO are excellent materials for the fabrication of new nanocomposites and electrochemical sensors. Graphene has been widely used as a chemical building block and/or scaffold with various materials to create highly sensitive and selective electrochemical sensing microdevices. Over the past decade, significant advancements have been made by utilizing graphene and graphene-based nanocomposites to design electrochemical sensors with enhanced analytical performance. This review focus on the synthetic strategies, as well as the structure-to-function studies of graphene, electrochemistry, novel multi nanocomposites combining graphene, limit of detection, stability, sensitivity, assay time. Finally, the review describes the challenges, strategies and outlook on the future development of graphene sensors technology that would be usable for the internet of things are also highlighted.
Collapse
|
9
|
Anupriya J, Senthilkumar T, Chen SM. A precise electrochemical sensor based on Sm2O3/2D TiC hybrid for highly sensitive and selective detection of antihypertensive drug nimodipine. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Khoshroo A, Fattahi A, Hosseinzadeh L. Development of paper-based aptasensor for circulating tumor cells detection in the breast cancer. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Manibalan G, Murugadoss G, Hazra S, Marimuthu R, Manikandan C, Jothi Ramalingam R, Rajesh Kumar M. A facile synthesis of Sn-doped CeO2 nanoparticles: High performance electrochemical nitrite sensing application. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Khoshroo A, Mavaei M, Rostami M, Valinezhad-Saghezi B, Fattahi A. Recent advances in electrochemical strategies for bacteria detection. BIOIMPACTS : BI 2022; 12:567-588. [PMID: 36644549 PMCID: PMC9809139 DOI: 10.34172/bi.2022.23616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/20/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022]
Abstract
Introduction: Bacterial infections have always been a major threat to public health and humans' life, and fast detection of bacteria in various samples is significant to provide early and effective treatments. Cell-culture protocols, as well-established methods, involve labor-intensive and complicated preparation steps. For overcoming this drawback, electrochemical methods may provide promising alternative tools for fast and reliable detection of bacterial infections. Methods: Therefore, this review study was done to present an overview of different electrochemical strategy based on recognition elements for detection of bacteria in the studies published during 2015-2020. For this purpose, many references in the field were reviewed, and the review covered several issues, including (a) enzymes, (b) receptors, (c) antimicrobial peptides, (d) lectins, (e) redox-active metabolites, (f) aptamer, (g) bacteriophage, (h) antibody, and (i) molecularly imprinted polymers. Results: Different analytical methods have developed are used to bacteria detection. However, most of these methods are highly time, and cost consuming, requiring trained personnel to perform the analysis. Among of these methods, electrochemical based methods are well accepted powerful tools for the detection of various analytes due to the inherent properties. Electrochemical sensors with different recognition elements can be used to design diagnostic system for bacterial infections. Recent studies have shown that electrochemical assay can provide promising reliable method for detection of bacteria. Conclusion: In general, the field of bacterial detection by electrochemical sensors is continuously growing. It is believed that this field will focus on portable devices for detection of bacteria based on electrochemical methods. Development of these devices requires close collaboration of various disciplines, such as biology, electrochemistry, and biomaterial engineering.
Collapse
Affiliation(s)
- Alireza Khoshroo
- Nutrition Health Research center, Hamadan University of Medical Sciences, Hamadan, Iran
,Corresponding authors: Alireza Khoshroo, ; Ali Fattahi,
| | - Maryamosadat Mavaei
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoume Rostami
- Student Research Committe, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Ali Fattahi
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
,Medical Biology Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
,Corresponding authors: Alireza Khoshroo, ; Ali Fattahi,
| |
Collapse
|