1
|
Wang XR, Xie LX, Yang YL, Li ZF, Li G. High proton conduction in a series of three-dimensional lanthanide(III)-organic frameworks constructed by 2,5-dihydroxyterephthalic acid. J Colloid Interface Sci 2025; 694:137743. [PMID: 40315560 DOI: 10.1016/j.jcis.2025.137743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
In designing and preparing new proton-conductive materials, using cheap and easily available raw materials to efficiently prepare metal-organic frameworks (MOFs) with high stability and excellent proton conductivity is still a huge challenge. Herein, six lanthanide(III)-MOFs, {[Ln2(DHBDC)3(DMF)4](DMF)2}n [(Ln III = Pr III (1), Nd III (2), Sm III (3), Eu III (4), Gd III (5), Tb III (6))] with high stability were solvothermally synthesized utilizing 2,5-dihydroxy-1,4-benzenedicarboxylic acid (H4-DHBDC) as a bridging ligand. These isostructural MOFs all possess a three-dimensional framework and a dense H-bond network formed by the carbonyl groups in the framework, the non-coordinated hydroxyl groups, and the coordinated and free DMF molecules, which ensure efficient proton conduction. Their good water and thermal stability were verified using various characterization techniques (powder X-ray diffraction, thermogravimetric analysis, and infrared). Then, their proton conductivity was investigated in detail concerning temperature and relative humidity (RH). At 100 °C and 97 % RH, their optimum proton conductivity can reach up to 0.96 × 10-2, 0.67 × 10-2, 0.85 × 10-2, 1.03 × 10-2, 0.53 × 10-2, and 0.93 × 10-2 S/cm for 1-6, respectively. Finally, their proton-transport processes were thoroughly examined through detailed structural analyses, adsorption-property determinations, and activation energy values. Notably, these MOF materials have the advantages of easy preparation and relatively low cost, which paves the way for their practical applications.
Collapse
Affiliation(s)
- Xiao-Ran Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001 Henan, PR China
| | - Li-Xia Xie
- College of Science, Henan Agricultural University, Zhengzhou 450002 Henan, PR China
| | - Yi-Lin Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001 Henan, PR China
| | - Zi-Feng Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001 Henan, PR China.
| | - Gang Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001 Henan, PR China.
| |
Collapse
|
2
|
Gong Y, Fu Y, Lou D. A Eu-MOF-Based Fluorescent Sensing Probe for the Detection of Tryptophan and Cu 2+ in Aqueous Solutions. J Fluoresc 2025; 35:1599-1609. [PMID: 38416282 DOI: 10.1007/s10895-024-03633-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Abnormal tryptophan (Trp) metabolism can be used as an important indicator of chronic hepatitis, paranoia, Parkinson's disease and other diseases. Deficiency or excessive accumulation of Cu2+ can cause diseases such as Wilson's disease and Alzheimer's disease. Eu-based metal-organic framework (Eu-MOF) was successfully prepared for fluorescence sensing of Trp and Cu2+ in an aqueous solution (pH = 7.4). Eu-MOF showed high selectivity and sensitivity for Trp and Cu2+ with detection limits of 0.22 µM and 0.09 µM and Ksv of 6.17 × 103 M- 1 and 2.37 × 104 M- 1 respectively. Trp and Cu2+ had overlapped UV absorption spectra with that of Eu-MOF and competed for the excitation light source. Trp also attenuated the antennae effect of organic ligands on Eu-MOF, thus quenching the red fluorescence of Eu-MOF. This study provides insights into the application of MOFs in bioanalysis and diagnostics.
Collapse
Affiliation(s)
- Yafei Gong
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, 132022, P.R. China
| | - Yan Fu
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, 132022, P.R. China
| | - Dawei Lou
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, 132022, P.R. China.
| |
Collapse
|
3
|
Zhang D, Zhang X, Liang M, Li X, Xiao H, Cao D, Zhao X. Ratiometric fluorescence sensor for Escherichia coli detection using fluorescein isothiocyanate-labeled metal-organic frameworks. Mikrochim Acta 2025; 192:188. [PMID: 40000471 DOI: 10.1007/s00604-025-07053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
A ratiometric fluorescence sensor for detecting Escherichia coli (E. coli) was fabricated based on the fluorescein isothiocyanate (FITC)-labeled zirconium (Zr)-tetraphenylporphyrin tetrasulfonic acid (TPPS) hydrate metal-organic frameworks (ZTMs@FITC). The ZTMs have strong red fluorescence emission at 683 nm, which can be quenched by Cu2+. E. coli can capture and convert external Cu2+ into Cu+ through its distinctive metabolic activities. To minimize environmental and instrumental influences and enhance detection precision, green FITC with an emission peak at 515 nm was utilized as the fluorescence labeling agent to fabricate the ratiometric fluorescence probe (ZTMs@FITC). The prepared ZTMs@FITC probe showed excellent performance in the detection of E. coli. As the concentration of E. coli increased, the fluorescence intensity at 683 nm (ZTMs, F683) increased considerably, while the fluorescence intensity at 515 nm (FITC, F515) decreased. By monitoring the increase in the ratio of F683 to F515, this sensor achieved rapid and sensitive detection of E. coli within the concentration range from 1.0 × 101 to 5.0 × 105 CFU/mL. The limit of detection was 6 CFU/mL. When observed under a 365 nm ultraviolet lamp, the fluorescence color of the solution changed from yellow to red. Additionally, the dual-signal ratiometric fluorescence method exhibited high selectivity for E. coli and was successfully utilized to detect E. coli in juice samples, demonstrating its practical application potential in food analysis.
Collapse
Affiliation(s)
- Duoduo Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
- Jiangsu Province Postdoctoral Innovation Practice Base, Changzhou Joel Plastic Co., Ltd, Changzhou, 213373, China.
| | - Xinyu Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Mingshuang Liang
- School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Xiuxiu Li
- School of Investigation, China People's Police University, Langfang, 065000, China
| | - Heping Xiao
- Jiangsu Province Postdoctoral Innovation Practice Base, Changzhou Joel Plastic Co., Ltd, Changzhou, 213373, China
| | - Dawei Cao
- Jiangsu Province Postdoctoral Innovation Practice Base, Changzhou Joel Plastic Co., Ltd, Changzhou, 213373, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
4
|
Dai H, Zhang Y, Jin X, Yang W, Luo Y, Yang K, Fu Y, Xu W. Reaction Time Induced a Two-Step Dissolution and Recrystallization Structural Transformation with Three Eu Metal-Organic Frameworks: Crystal Structures and Multiresponsive Fluorescence Detection. Inorg Chem 2024; 63:18058-18072. [PMID: 39287663 DOI: 10.1021/acs.inorgchem.4c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Under solvothermal conditions, three 3D lanthanide metal-organic frameworks (Ln-MOFs): [Eu(H2DHTA)1.5(DMF)2]·DMF (1), [Eu(H2DHTA)0.5(DHTA)0.5(DMF)(H2O)]·2H2O (2), and Eu(HCOO)3 (3) (H4DHTA = 2,5-dihydroxyterephthalic acid) have been synthesized by different reaction times. Interestingly, induced by reaction time, compounds 1-3 underwent a two-step dissolution and recrystallization structural transformation (DRST) reaction. Investigations on the DRST processes were carried out, and the transformation pathway was deduced, which was verified by XRD analyses. Notably, compound 2 demonstrates pronounced luminescence as well as high stability in water and other organic solvents. The fluorescent detection of furan antibiotics can serve as turn-off effects, and glutamic acid (Glu), aspartic acid (Asp), and riboflavin (VB2) can serve as the turn-on effect. To explain the enhancing and quenching mechanisms, XRD, UV-visible absorption spectroscopy, electrochemistry, IR spectra, theoretical calculation, fluorescence lifetimes, and XPS were discussed. Additionally, MOF-coated test strips were utilized to detect these analytes, exhibiting excellent agreement with fluorescence spectroscopy. This work provides an example for more effective designs to employ Ln-MOFs as multiresponsive fluorescent sensors for detection of environmental pollutants in aqueous solution.
Collapse
Affiliation(s)
- Huan Dai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Department of Pharmaceutical Engineering and Biotechnology, Zhejiang Pharmaceutical University, Ningbo 315199, China
| | - Ya Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xiaoping Jin
- Department of Pharmaceutical Engineering and Biotechnology, Zhejiang Pharmaceutical University, Ningbo 315199, China
| | - Wensu Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Department of Pharmaceutical Engineering and Biotechnology, Zhejiang Pharmaceutical University, Ningbo 315199, China
| | - Yunjie Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ke Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yu Fu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Zhang X, Li Z, Zhang Y, Jiao C, Zheng H, Zhu Y, Sun Z. Ultrastable Lanthanide Metal-Organic Frameworks for Smartphone-Assisted Ratiometric Fluorescent Sensing of Toluenediamines and Tunable Luminescence. Inorg Chem 2024; 63:16418-16428. [PMID: 39163490 DOI: 10.1021/acs.inorgchem.4c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Lanthanide metal-organic frameworks (Ln-MOFs) have excellent optical properties and structural diversity, providing a unique platform for the development of fluorescent sensing and optical materials. In the work described herein, a series of isostructural 3D Ln-MOFs [Ln(L)(H2O)]·2H2O (Ln = Eu (1), Gd (2), Tb (3), H3L = 3,3',3″-[1,3,5-benzenetriyltris(carbonylimino)]tris-benzoate) are fabricated under solvothermal conditions. The good thermal, water, and acid-base stabilities of 3 are prerequisites for fluorescent sensing applications. 3 can be used as a ratiometric broad-spectrum fluorescent sensor for toluenediamines (TDAs) in real urine with the advantages of visualization, ultrasensitivity, and selectivity. Interestingly, a smartphone-assisted intelligent sensing platform manifests promising results for the detection of TDAs, providing a chance for further development of portable diagnostic tools. In addition, by tuning the ratios of Eu3+/Tb3+ and Eu3+/Gd3+/Tb3+, nine bimetallic-doped EuxTb1-x (x = 0.10-0.90, 4-12) and one trimetallic-doped Gd0.95Tb0.015Eu0.035 (13) were obtained. 4-12 exhibit a gradient of luminescent colors from yellow-green to pink with different ratios of Eu3+ and Tb3+ ions. Meanwhile, the trimetallic-doped Gd0.95Tb0.015Eu0.035 (13) shows near-white-light emission with a quantum yield of 8.76%. Interestingly, the inks made with 1-13 are invisible under ambient light but show visual color-tunable luminescence under a 254 nm UV lamp, which may facilitate their anti-counterfeiting applications.
Collapse
Affiliation(s)
- Xu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zheng Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yana Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Chengqi Jiao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Hanwen Zheng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yanyu Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zhengang Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| |
Collapse
|
6
|
Zhang W, Zhao Y, Sun J, Peng D, Li X, Lv Y, Li J, Su Z. Fluorescent Sensors Based on Lanthanide-Based Metal-Organic Frameworks via Devices and pH Response. Inorg Chem 2024; 63:15527-15536. [PMID: 39105732 DOI: 10.1021/acs.inorgchem.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In light of the escalating industrial and environmental pollution, there is a pressing need for the development of novel materials capable of swiftly detecting pollutants. Here, we report the synthesis of five lanthanide metal-organic frameworks sharing a common structure, prepared via a hydrothermal method and denoted as [Ln2(H2DHBDC)2(phen)(H2O)6]n (where CUST-888 corresponds to Tb, CUST-889 corresponds to Eu, CUST-890 corresponds to Gd, CUST-891 corresponds to Dy, and CUST-892 corresponds to Nd). Notably, CUST-888 and CUST-889 exhibit discernible visual alterations in response to acidic and alkaline conditions. To assess their practical utility, luminescent test strips and light-emitting diode lights based on CUST-888 and CUST-889 were devised, enabling the visual detection of luminescence color changes induced by Hg2+, Cr2O72-, tetracycline, and 2,4,6-trinitrophenol. Furthermore, highlighters derived from CUST-888 and CUST-889 were designed, showcasing robust stability, adjustable color, and substantial potential for application in the realm of anticounterfeiting.
Collapse
Affiliation(s)
- Wenxi Zhang
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Yihe Zhao
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Jing Sun
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Dianxiang Peng
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Xiao Li
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Yanjie Lv
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Jiao Li
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zhongmin Su
- School of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| |
Collapse
|
7
|
Yi J, Han X, Jian J, Lai Y, Lu J, Peng L, Liu Z, Xue J, Zhou H, Li X. Dual-mode detection of 2,6-pyridinedicarboxylic acid based on the enhanced peroxidase-like activity and fluorescence property of novel Eu-MOFs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2606-2613. [PMID: 38618990 DOI: 10.1039/d4ay00331d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
2,6-Pyridinedicarboxylic acid (DPA) is a significant biomarker of anthrax, which is a deadly infectious disease for human beings. However, the development of a convenient anthrax detection method is still a challenge. Herein, we report a novel europium metal-organic framework (Eu-MOF) with an enhanced peroxidase-like activity and fluorescence property for DPA detection. The Eu-MOF was one-step synthesized using Eu3+ ions and 2-methylimidazole. In the presence of DPA, the intrinsic fluorescence of Eu3+ ions is sensitized, the fluorescence intensity linearly increases with an increase in DPA concentration, and the fluorescence color changes from blue to purple. Simultaneously, the peroxide-like activity of the Eu-MOF is enhanced by DPA, which can promote the oxidation of TMB to oxTMB. The absorbance values increase linearly with DPA concentrations, and the colorimetric images change from colorless to blue. The dual-mode detection of DPA has good sensitivity with a colorimetric detection limit of 0.67 μM and a fluorescent detection limit of 16.67 nM. Moreover, a simple detection method for DPA was developed using a smartphone with the RGB analysis system. A portable kit with standard color cards was developed using paper test strips. The proposed methods have good practicability for DPA detection in real samples. In conclusion, the developed Eu-MOF biosensor offers a valuable and general platform for anthrax diagnosis.
Collapse
Affiliation(s)
- Jintao Yi
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Xianqin Han
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Jiahao Jian
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Yayan Lai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Jun Lu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Lei Peng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Zhongkai Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Jun Xue
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Hui Zhou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, P. R. China
| | - Xun Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| |
Collapse
|
8
|
Xia YF, Yuan HQ, Qiao C, Li W, Wang R, Chen P, Li YX, Bao GM. Multifunctional Eu 3+-MOF for simultaneous quantification of malachite green and leuco-malachite green and efficient adsorption of malachite green. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133386. [PMID: 38160559 DOI: 10.1016/j.jhazmat.2023.133386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Multi-target detection combined with in-situ removal of contaminants is a challenging issue difficult to overcome. Herein, a dual-emissive Eu3+-metal organic framework (Eu3+-MOF) was constructed by pre-functionalization with a blue-emissive ligand and post-functionalization with red-emissive Eu3+ ions using a UiO-66 precursor. The fluorescence of the synthesized Eu3+-MOF is highly selective and sensitive toward malachite green (MG) and its metabolite leuco-malachite green (LMG), which are environmentally persistent and highly toxic to humans. The limit of detection of MG and LMG are 34.20 and 1.98 nM, respectively. Interestingly, the fluorescence of this Eu3+-MOF showed ratiometric but different responsive modes toward MG and LMG, which enabled the simultaneous quantification of MG and LMG. Furthermore, a paper-based sensor combined with the smartphone was fabricated, which facilitated not only the dual-channel detection of MG, but also its portable, visual, rapid, and intelligent determination. Furthermore, the high surface area of MOFs, together with the coordinate bonding interaction, π-π stacking, and electrostatic interaction sites, endows Eu3+-MOF with the efficient ability toward MG removal. This multifunctional Eu3+-MOF can be successfully used for trace detection, simultaneous determination of MG and LMG, as well as efficient removal of MG. Thus, it exhibits bright prospects for widespread applications in the field of food and environmental analysis.
Collapse
Affiliation(s)
- Yi-Fan Xia
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hou-Qun Yuan
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Chen Qiao
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Wei Li
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ran Wang
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Peiyao Chen
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yan-Xia Li
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guang-Ming Bao
- National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
9
|
Dang J, Li M, Fang W, Wu Y, Xin S, Cao Y, Zhao H. Amorphous amEu-NH 2BDC and amTb-NH 2BDC as ratio fluorescence probes for smartphone-integrated naked eye detection of bacillus anthracis biomarker. Talanta 2024; 267:125164. [PMID: 37734290 DOI: 10.1016/j.talanta.2023.125164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Abstract
The abnormal concentration of anthrax spore biomarker 2,6-pyridinedicarboxylic acid (2,6-DPA) will seriously affect public health. Therefore, a sensitive and rapid assay for 2,6-DPA monitoring is of vital importance. In this work, novel nano-sized amorphous Eu-NH2BDC (amEu-NH2BDC) and amorphous Tb-NH2BDC (amTb-NH2BDC) metal organic frameworks are prepared by adjusting the ratio of metal and ligand, respectively. Both of them exhibit highly sensitive and selective ratiometric fluorescence detection for 2,6-DPA with wider linear range and lower detection limit in aqueous solutions and human serum. Attributed to the coordination effect of 2,6-DPA in triggering the characteristic fluorescence emissions of Eu3+or Tb3+ by replacing coordinated solvent molecules, as evidenced by ultraviolet-visible spectroscopy, the fluorescence lifetimes analysis, thermal gravimetric analysis, Fourier-transform infrared spectroscopy, density functional theory (DFT) simulations and X-ray photoelectron spectroscopy. In addition, the amEu-NH2BDC or amTb-NH2BDC loaded paper-based microsensors are constructed for real-time and sensitive detection of 2,6-DPA and coupled with a smartphone-assisted visual portable device.
Collapse
Affiliation(s)
- Jiaqi Dang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Min Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Wenhui Fang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Ying Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Shixian Xin
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Yutao Cao
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Hong Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, 256606, Shandong Province, PR China.
| |
Collapse
|
10
|
Zhang C, Wu Y, Hong X, Lei W, Xia M, Wang F. Double-emitting lanthanide metal-organic frameworks composed of Eu/Tb doping and ratiometric fluorescence detection of nitrofurazone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123326. [PMID: 37683436 DOI: 10.1016/j.saa.2023.123326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/06/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Lanthanide metal-organic frameworks (LnMOFs) have substantial potential in luminescence due to their unique antenna effect. Nevertheless, the single emission is susceptible to pseudo-signals caused by external environmental conditions, which significantly threaten the accurate measurement of the concentration. In this case, we prepared a dual-emission fluorescent probe {EuxTb1-x(NH2-BDC)3(DMF)4·2DMF}∞ (NH2-BDC = Diaminoterephthalic acid, DMF = N,N-dimethylformamide). The stable dual-emission signal provides a superior signal output for detecting nitrofurazone (NFZ), which is detected by the probe with excellent fluorescence for 0-10 μM NFZ. In the investigation of the detection mechanism, it is speculated that NFZ incorporates with probe to generate a novel complex. Furthermore, The UV absorption curves of the novel complexes and NFZ overlap extensively with those of the probe. The addition of NFZ attenuates the characteristic luminescence of Eu and Tb by competing for the absorption of the excitation light of the probe. The probe has exhibits rapid response, excellent sensitivity, visual detection and a meagre detection limit (LOD = 0.013 μM) for the detection of NFZ. This work not only broadens the application of LnMOFs in the field of ratiometric detection but also provides a favorable fluorescent probe for the quantitative detection of NFZ.
Collapse
Affiliation(s)
- Ciyang Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yi Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xianyong Hong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
11
|
He W, Chen Z, Yu C, Shen Y, Wu D, Liu N, Zhang X, Wu F, Chen J, Zhang T, Lan J. Unlabelled LRET biosensor based on double-stranded DNA for the detection of anthraquinone anticancer drugs. Mikrochim Acta 2023; 191:15. [PMID: 38087000 DOI: 10.1007/s00604-023-06076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
Based on upconversion nanoparticles (UCNPs) as energy donor and herring sperm DNA (hsDNA) as molecular recognition element, an unlabelled upconversion luminescence (UCL) affinity biosensor was constructed for the detection of anthraquinone (AQ) anticancer drugs in biological fluids. AQ anticancer drugs can insert into the double helix structure of hsDNA on the surface of UCNPs, thereby shortening the distance from UCNPs. Therefore, the luminescence resonance energy transfer (LRET) phenomenon is effectively triggered between UCNPs and AQ anticancer drugs. Hence, AQ anticancer drugs can be quantitatively detected according to the UCL quenching rate. The biosensor showed good sensitivity and stability for the detection of daunorubicin (DNR) and doxorubicin (ADM). For the detection of DNR, the linear range is 1-100 μg·mL-1 with a limit of detection (LOD) of 0.60 μg·mL-1, and for ADM, the linear range is 0.5-100 μg·mL-1 with a LOD of 0.38 μg·mL-1. The proposed biosensor provides a convenient method for monitoring AQ anticancer drugs in clinical biological fluids in the future.
Collapse
Affiliation(s)
- Wenhui He
- Department of Orthopaedics Institute, Fuzhou Second Hospital, Fuzhou, Fujian, 350007, People's Republic of China
| | - Zhiwei Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Chunxiao Yu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Yiping Shen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Dongzhi Wu
- Department of Orthopaedics Institute, Fuzhou Second Hospital, Fuzhou, Fujian, 350007, People's Republic of China
| | - Nannan Liu
- Department of Orthopaedics Institute, Fuzhou Second Hospital, Fuzhou, Fujian, 350007, People's Republic of China
| | - Xi Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Fang Wu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Jinghua Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Tao Zhang
- Department of Orthopaedics Institute, Fuzhou Second Hospital, Fuzhou, Fujian, 350007, People's Republic of China.
| | - Jianming Lan
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| |
Collapse
|
12
|
Wang M, Guan J, Liu S, Chen K, Gao Z, Liu Q, Chen X. Dual-ligand lanthanide metal-organic framework probe for ratiometric fluorescence detection of mercury ions in wastewater. Mikrochim Acta 2023; 190:359. [PMID: 37605047 DOI: 10.1007/s00604-023-05944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
By serving dipyridylic acid (DPA) and 2,5-dihydroxyterephthalic acid (DHTA) as the biligands, a novel lanthanide (Eu3+) metal-organic framework (MOF) namely Eu-DHTA/DPA was prepared for specific Hg2+ fluorescence determination. The dual-ligand approach can endows the resulting luminescent MOF with dual emission of ratiometric fluorescence and uniform size. Eu3+ produces intense red fluorescence when activated by the ligand DPA, while the other ligand DHTA produces yellow fluorescence. Under 273 nm excitation, the presence of Hg2+ in the monitoring environment causes an increase in the intensity of the DHTA fluorescence peak at 559 nm and a decrease in the intensity of the Eu3+ fluorescence peak at 616 nm. Hg2+ effectively quenches the fluorescence emission of the central metal Eu3+ in Eu-DHTA/DPA at 616 nm through a dynamic quenching effect. This recognition process occurs due to the coordination of Hg2+ with ligands such as benzene rings, carboxyl groups, and pyridine N in three-dimensional space. Hg2+ was detected by measuring the ratio between two fluorescence peaks (I559 nm/I616 nm) within the range 2-20 μM, achieving a remarkably low detection limit of 40 nM. The established ratiometric fluorescence method has been successfully applied to the determination of Hg2+ in industrial wastewater of complex composition. The method plays a crucial role in the rapid and sensitive monitoring of Hg2+ in real environmental samples. The recoveries ranged from 92.82% to 112.67% (n = 3) with relative standard deviations (RSD) below 4.8%. This study offers a convenient and effective method for constructing probes for Hg2+ monitoring, with practical applications in environmental monitoring.
Collapse
Affiliation(s)
- Meng Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Jianping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Shenghong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Kecen Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Ziyi Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China
| |
Collapse
|
13
|
Deng D, Xu J, Li T, Tan D, Ji Y, Li R. Dual-mode strategy for 2,6-dipicolinic acid detection based on the fluorescence property and peroxidase-like activity inhibition of Fe-MIL-88NH 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122363. [PMID: 36702084 DOI: 10.1016/j.saa.2023.122363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
This work designed a fluorometric/colorimetric dual-mode sensor for detecting 2,6-dipicolinic acid (DPA) based on the blue emission property and peroxidase-like activity of Fe-MIL-88NH2. The fluorescence of Fe-MIL-88NH2 was obviously turned off by Cu2+, but DPA was able to bring it back because it has a strong chelate bond with Cu2+. Fe-MIL-88NH2 also displayed high peroxidase-like activity, which accelerated the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to the blue oxidation product (oxTMB) when H2O2 was present. When DPA was added, it efficiently inhibited the peroxidase-like activity of Fe-MIL-88NH2, causing less oxTMB and less absorbance at 652 nm. The fluorescence recovery of Fe-MIL-88NH2 and the change in absorbance at 652 nm were used as analytical signals for dual-mode detection of DPA. The linear responses in the range of 10-60 μM and 60-160 μM were achieved for the fluorometric mode, and the limit of detection (LOD) was 1.46 μM. The respective values of linear range and LOD for the colorimetric mode were 5-25 μM and 3.00 μM, respectively. In summary, the dual-mode testing strategy successfully detected DPA in aqueous environmental samples, suggesting great potential in disease prevention and environmental analysis.
Collapse
Affiliation(s)
- Donglian Deng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Jingyuan Xu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Tingting Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Dongdong Tan
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.
| |
Collapse
|
14
|
Bodylska W, Fandzloch M, Szukiewicz R, Lukowiak A. Cation-Exchange in Metal-Organic Framework as a Strategy to Obtain New Material for Ascorbic Acid Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4480. [PMID: 36558333 PMCID: PMC9786631 DOI: 10.3390/nano12244480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Ascorbic acid (AA) is an important biomolecule, the deficiency or maladjustment of which is associated with the symptoms of many diseases (e.g., cardiovascular disease or cancer). Therefore, there is a need to develop a fluorescent probe capable of detecting AA in aqueous media. Here, we report the synthesis, structural, and spectroscopic characterization (by means of, e.g., XRD, XPS, IR and Raman spectroscopy, TG, SEM, and EDS analyses), as well as the photoluminescent properties of a metal-organic framework (MOF) based on Cu2+ and Eu3+ ions. The ion-exchange process of the extraframework cation in anionic Cu-based MOF is proposed as an appropriate strategy to obtain a new material with a nondisturbed structure and a sensitivity to interaction with AA. Accordingly, a novel Eu[Cu3(μ3-OH)(μ3-4-carboxypyrazolato)3] compound for the selective optical detection of AA with a short detection time of 5 min is described.
Collapse
Affiliation(s)
- Weronika Bodylska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - Marzena Fandzloch
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - Rafał Szukiewicz
- Faculty of Physics and Astronomy, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław, Poland
| | - Anna Lukowiak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| |
Collapse
|
15
|
Liu W, Wang F, Chen X, Zhi W, Wang X, Xu B, Yang B. Design of "turn-off" luminescent Ln-MOFs for sensitive detection of cyanide anions. Dalton Trans 2022; 51:15741-15749. [PMID: 36178037 DOI: 10.1039/d2dt01844f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel 2D lanthanide metal-organic frameworks (Ln-MOFs), namely {[Eu2(DBTA)3(DMF)2]·DMF}n (1) and {[Tb2(DBTA)3(DMF)2]·DMF}n (2) (H2DBTA = 2,5-dibromoterephthalic acid), have been successfully synthesized by the solvothermal method. Single-crystal X-ray diffraction results proved that the complexes possess the same topological structure of a (42·6)2(42·84)(47·63)2-connected net. The recognition of CN- from interfering anions with a low detection limit by "turn-off" luminescence makes them promising candidates for the highly selective and sensitive detection of the cyanide ion. The Ln-MOFs 1 and 2 exhibit excellent chemical sensing properties for CN- with efficiency, selectivity, and excellent performance in various mixed anions. The evaluation parameters, including the quenching constant and detection limit, have been investigated to obtain the detection performance for CN-.
Collapse
Affiliation(s)
- Weisai Liu
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China. .,Key Laboratory of Vacuum Metallurgy for Nonferrous Metal of Yunnan Province, Kunming 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Fei Wang
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China. .,Key Laboratory of Vacuum Metallurgy for Nonferrous Metal of Yunnan Province, Kunming 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiaoyi Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Wenke Zhi
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xuquan Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Baoqiang Xu
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China.
| | - Bin Yang
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China.
| |
Collapse
|
16
|
Sun Y, Dramou P, Song Z, Zheng L, Zhang X, Ni X, He H. Lanthanide Metal Doped Organic Gel as Ratiometric Fluorescence Probe for Selective Monitoring of Ciprofloxacin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Stimulus response of HNT-CDs-Eu nano-sensor: Toward visual point-of-care monitoring of a bacterial spore biomarker with hypersensitive multi-color agarose gel based analytical device. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Sun YX, Guo G, Ding W, Han W, Li J, Deng ZP. A Highly Stable Eu−MOF Multifunctional Luminescent Sensor for the Effective Detection of Fe3+, Cr2O72−/CrO42− and Aspartic Acid in Aqueous Systems. CrystEngComm 2022. [DOI: 10.1039/d1ce01432c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heavy metal ions were common pollutants in water pollution. Amino acids, as important substances in organisms, participate in many life activities. The detection of heavy metal ions and amino acids...
Collapse
|
19
|
Zhang ZJ, Li PW, Liu LP, Ru LH, Tang HX, Feng WS. Amine-functionalized UiO-66 as a fluorescent sensor for highly selective detecting volatile organic compound biomarker of lung cancer. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Zhang MY, Yi FY, Liu LJ, Yan GP, Liu H, Guo JF. An europium(III) metal-organic framework as a multi-responsive luminescent sensor for highly sensitive and selective detection of 4-nitrophenol and I - and Fe 3+ ions in water. Dalton Trans 2021; 50:15593-15601. [PMID: 34668507 DOI: 10.1039/d1dt02312h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A luminescence sensor based on an europium(III)-based lanthanide-organic framework, [Eu(BCB)(DMF)]·(DMF)1.5(H2O)2 (1), was synthesized via a solvothermal method using 4,4',4''-benzenetricarbonyltribenzoic acid (H3BCB) as a bridging ligand. Single-crystal X-ray diffraction indicates that Eu centers are eight-coordinated with a trigonal dodecahedron and a square antiprismatic configuration, and adjacent Eu atoms are bridged by BCB organic linkers to form a 3D rod-packing structure. Photoluminescence studies show that compound 1 emits bright red luminescence and behaves as a multi-responsive luminescent sensor toward 4-nitrophenol (4-NP) and I- and Fe3+ ions in water with high sensitivity, selectivity and low detection limits. Furthermore, the possible luminescence sensing mechanisms were also investigated by PXRD analysis, UV-vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The recognition mechanism for 4-NP and I- ions can be attributed to the competition absorption and that for Fe3+ ions is considered to be a multi-quenching mechanism dominated by competition absorption. This study demonstrates that the lanthanide-based MOF might be a promising candidate for the detection of 4-NP and I- and Fe3+ ions in aqueous medium.
Collapse
Affiliation(s)
- Meng-Yao Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Feng-Ying Yi
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Lan-Jun Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China. .,School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Guo-Ping Yan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Hui Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Jun-Fang Guo
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
21
|
Zhao XY, Wang J, Yang QS. Highly sensitive and selective sensing of ascorbic acid in water with a three-dimensional terbium(III)-based coordination polymer. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
A recycled Tb-MOF fluorescent sensing material for highly sensitive and selective detection of tetracycline in milk. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Zhao XY, Wang J, Yang QS, Fu DL, Jiang DK. A hydrostable samarium(III)-MOF sensor for the sensitive and selective detection of tryptophan based on a "dual antenna effect". ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3994-4000. [PMID: 34528942 DOI: 10.1039/d1ay01050f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tryptophan (Trp) is one of the essential amino acids, which plays important roles in biological systems and the normal growth of human beings, and it is of great significance to be able to detect Trp in a rapid, efficient, and sensitive way. Herein, a 3D network metal-organic framework ([Sm2(BTEC)1.5(H2O)8]·6H2O) with excellent thermal and water stability was synthesized by a hydrothermal method. Interestingly, it could discriminate Trp from other natural amino acids in aqueous solution through a significant fluorescence enhancement effect, and showed high detection sensitivity (LOD = 330 nM) and outstanding anti-interference ability. The sensor system was successfully applied to the detection of Trp in practical samples, so it was expected to be a sensitive and efficient Trp sensor. In addition, the sensing mechanism was explained in detail by a series of characterization methods combined with density functional theory (DFT). There were many coordination water molecules in the crystal structure of the complex. Based on the small steric hindrance and molecular structure of water molecules, it provided the possibility for coordination interaction between Trp and Sm3+. On the other hand, the triplet energy level (T1) of Trp matched with the 4G5/2 vibrational energy level of Sm3+, so Trp could be used as the second "antenna molecule" besides 1,2,4,5-benzenetetracarboxylic acid (H4BTEC). Therefore, it effectively broadened the way for Sm-MOF to absorb excitation light.
Collapse
Affiliation(s)
- Xiao-Yang Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China.
| | - Jia Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China.
| | - Qi-Shan Yang
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China.
| | - Dong-Lei Fu
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China.
| | - Dao-Kuan Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China.
| |
Collapse
|