1
|
Hou W, Zhu YQ, Yang YJ, Yu QW. Loofah sponge-based solid-phase extraction in combination with high-performance liquid chromatography-fluorescence detection (HPLC-FLD) for analysis of bisphenols in environmental water. J Chromatogr A 2025; 1756:466055. [PMID: 40408786 DOI: 10.1016/j.chroma.2025.466055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/04/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
Loofah sponges (LS) were simply treated by alkaline solution and then used as solid-phase extraction (SPE) adsorbent to extract bisphenols from environmental water samples for the first time. As natural material, LS exhibited excellent adsorption performance for bisphenol compounds due to their particular functional groups such as hydroxyl, carboxyl, amino, and other active groups. Key extraction conditions were optimized, including adsorbent amount, washing solvent volume, sample pH, ionic strength, sample loading flow rate, eluent type, and elution solvent volume. Under the optimal extraction conditions (200 mg adsorbent amount and 5.0 mL eluent volume), a method was developed for analyzing five bisphenols in environmental waters by combining LS-based SPE with high-performance liquid chromatography-fluorescence detection (HPLC-FLD). This analytical method showed excellent linearity within BP concentration range of 0.5-500 ng/mL and low detection limits (0.077-0.225 ng/mL). The recoveries of five bisphenols ranged from 78.6 % to 112 % with inter-day and inter-day precision less than 5.1 %. This method was successfully applied to the analysis of bisphenols in water samples with various water sources including river, lake, tap water, bottled water, and barrelled water. The proposed analytical method is low-cost, efficient, and sensitive, offering an alternative strategy for monitoring bisphenols in enviromental water.
Collapse
Affiliation(s)
- Wen Hou
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Ya-Qi Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yue-Jiao Yang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qiong-Wei Yu
- Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Su X, Wu L, Chen G, Zheng C, Shan B, Tian Y, Ma J, Gu C. Organic conjugated polymer nanoparticles enhanced tyrosinase electrochemical biosensor for selective, sensitive and rapid detection of bisphenol A. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175765. [PMID: 39209166 DOI: 10.1016/j.scitotenv.2024.175765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Bisphenol A (BPA) has been widely used in the production of polycarbonate (PC) plastics, flame retardants and epoxy resins, which is one of the most important endocrine disrupting chemicals and can cause damage to the estrogen system of human. In this work, organic conjugated polymer nanoparticles (CPNPs) were synthesized through nanoprecipitation method using liposome 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-mPEG2000) coated poly[(4,4'-bis(2-ethylhexyl)-dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-4,7-di(4-hexyl-2-thienyl)-5,6-difluoro-2,1,3-benzothiadiazole] (PDTS-hDTBT) and poly[(4,4'-bis(2-ethylhexyl)-dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-4,7-di(4-(2-ethylhexyl)-2-thienyl)-5,6-difluoro-2,1,3-benzothiadiazole] (PDTS-ehDTBT). These two polymers have different side chains, which can affect the configuration of the polymers, thereby affecting the π-π interaction between BPA and CPNPs. The resultant two CPNPs were explored as extremely attractive matrix for tyrosinase immobilization to construct electrochemical biosensing platforms for sensitive and rapid detection of BPA in water environments. The electrochemical performance of these two biosensors was significantly enhanced, benefiting from the large specific surface area and excellent biocompatibility of CPNPs, as well as the strong π-π interaction between CPNPs and BPA. The current response of PDTS-ehDTBT-Tyr-Chi/GCE exhibited a good linear relationship with BPA concentration ranging from 0.02 to 3.0 μM with a low detection limit of 11.83 nM and a high sensitivity of 0.9724 μA μM-1 cm-2. The fabricated biosensor was further used for BPA detection in actual samples with a recovery rate of 92.0 %-99.4 %. With the remarkable advantages, CPNPs-based biosensor provides a highly sensitive detection tool for rapid detection of BPA in actual samples, which has broad application prospects.
Collapse
Affiliation(s)
- Xinze Su
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Lingxia Wu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Guangshuai Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Chunying Zheng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Bin Shan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yong Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jiping Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Chuantao Gu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University), Qingdao 266071, China.
| |
Collapse
|
3
|
Li Z, Xie Q, Chi J, Chen H, Chen Z, Lin X, Huang G. Monolithic 3D structural-substrate SERS sensing platform for ultrasensitive and highly-specific analysis of trace bisphenol A. Talanta 2024; 266:125081. [PMID: 37639869 DOI: 10.1016/j.talanta.2023.125081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Constructing advanced substrates with excellent features is promising for sensitive surface-enhanced Raman spectroscopy (SERS) detection. Here a novel capillary monolithic 3D structural-substrate SERS platform with Au@cDNA@Ag@Cyanine 3-aptamer nanoparticles (Au@cDNA@Ag@Cy3-Apt NPs) was fabricated for rapid, highly specific profiling of ultra-trace Bisphenol A (BPA). The proposed SERS platform combined both in-capillary SERS and aptamer-affinity recognition strategies, in which the superior SERS properties of Au-Ag NPs, aptamer selectivity, and the advantages of capillary monolith were integrated. A 3D hierarchically porous network was constructed in the monolithic column, which was endowed with rich hotspots for SERS, rapid sample permeation, and better analysis efficiency than most plane-shaped SERS modes. By varying the amount of Ag+ precursor, the Ag-shell thickness on SERS was finely tuned to guarantee Cy3 label in proximity to the plasmonic surface. Based on the biorecognition of aptamer, the selective identification of BPA occurred and exhibited a significant change in SERS intensity without obvious interference. As a result, the monolithic SERS platform featured facile operation, excellent specificity, and rapid analysis (10 min, much less than the solution-based or planar substrate SERS modes). Ultra-high sensitivity and robust reproducibility for BPA analysis was achieved with a low limit of detection (LOD) at 9.12 × 10-4 ng/L. The feasibility of this SERS platform for monitoring BPA in water and milk samples was also validated. This work lights a new access to capillary monolithic SERS-sensing platform for ultrasensitive and specific analysis of BPA.
Collapse
Affiliation(s)
- Zhixin Li
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, PR China
| | - Qian Xie
- Xiamen Key Laboratory of Food and Drug Safety, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, 361024, PR China
| | - Jinxin Chi
- Xiamen Key Laboratory of Food and Drug Safety, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, 361024, PR China
| | - Hui Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Zhuling Chen
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, PR China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, PR China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, Fuzhou University, Fuzhou, 350108, PR China.
| | - Guihua Huang
- Xiamen Key Laboratory of Food and Drug Safety, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, 361024, PR China.
| |
Collapse
|
4
|
Senolsun A, Akyilmaz E. A new non-enzymatic biosensor for the determination of bisphenol-A. Food Chem 2023; 426:136536. [PMID: 37302303 DOI: 10.1016/j.foodchem.2023.136536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
In this study, a new non-enzymatic carbon paste biosensor was developed for the determination of Bisphenol-A (BPA) based on Multiwalled Carbon Nanotube (MWCNT) modified Myoglobin (Mb). The measurement principle of the biosensor was developed based on the inhibition effect of BPA on the heme group of myoglobin in the presence of hydrogen peroxide. With the designed biosensor, measurements were taken in the potential range of (-0.15 V & +0.65 V) using the differential pulse voltammetry (DPV) method in the medium containing K4[Fe(CN)6]. The linear range for BPA was determined to be 100-1000 µM. Response time was calculated as 16 s. The limit of detection was set at 89 μM. As a result, it has been proven that MWCNT modified myoglobin based biosensor is an alternative method that can be used for BPA determination, giving very sensitive and fast results.
Collapse
Affiliation(s)
- Asude Senolsun
- Ege University, Faculty of Science Biochemistry Department, 35100 Bornova, Izmir, Turkey.
| | - Erol Akyilmaz
- Ege University, Faculty of Science Biochemistry Department, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
5
|
Liu S, Lu B, Peng Z, Liu C, Liu Y, Jiao H, Wu D, Li P, Zhao X, Song S. HPLC-CAD as a supplementary method for the quantification of related structure impurities for the purity assessment of organic CRMs. Anal Bioanal Chem 2023:10.1007/s00216-023-04719-2. [PMID: 37154936 DOI: 10.1007/s00216-023-04719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In organic purity assessment, chromatography separation with a suitable detector is required. Diode array detection (DAD) has been a widely used technique for high-performance liquid chromatography (HPLC) analyses, but its application is limited to compounds with sufficient UV chromophores. Charged aerosol detector (CAD), as a mass-dependent detector, is advantageous for providing a nearly uniform response for analytes, regardless of their structures. In this study, 11 non-volatile compounds with/without UV chromophores were analyzed by CAD using continuous direct injection mode. The RSDs of CAD responses were within 17%. For saccharides and bisphenols, especially, the RSDs were lower (2.12% and 8.14%, respectively). Since bisphenols exist in UV chromophores, their HPLC-DAD responses were studied and compared with CAD responses, with CAD showing a more uniform response. Besides, the key parameters of HPLC-CAD were optimized and the developed method was verified using a Certified Reference Material (CRM, dulcitol, GBW06144). The area normalization result of dulcitol measured by HPLC-CAD was 99.89% ± 0.02% (n = 6), consistent with the certified value of 99.8% ± 0.2% (k = 2). The result of this work indicated that the HPLC-CAD method could be a good complementary tool to traditional techniques for the purity assessment of organic compounds, especially for compounds lacking UV chromophores.
Collapse
Affiliation(s)
- Si Liu
- National Institute of Metrology, China, Beijing, 100029, China
- Tianjin University of Technology, Tianjin, 300384, China
| | - Boling Lu
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning, 530028, China
| | - Zijuan Peng
- National Institute of Metrology, China, Beijing, 100029, China
| | - Chunyu Liu
- Tianjin University of Technology, Tianjin, 300384, China
| | - Yuhui Liu
- National Institute of Metrology, China, Beijing, 100029, China
| | - Hui Jiao
- National Institute of Metrology, China, Beijing, 100029, China
| | - Dan Wu
- Tianjin Eco-Environmental Monitoring Center, Tianjin, 300191, China.
| | - Penghui Li
- Tianjin University of Technology, Tianjin, 300384, China
| | - Xingchen Zhao
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt Am Main, 60438, Germany
| | - Shanjun Song
- National Institute of Metrology, China, Beijing, 100029, China.
- Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
6
|
Wang J, Yu J, Yu Y, Luo Z, Li G, Lin X. Nanoporous electrode with stable polydimethylsiloxane coating for direct electrochemical analysis of bisphenol A in complex wine media. Food Chem 2023; 405:134806. [DOI: 10.1016/j.foodchem.2022.134806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
|
7
|
Amiri M, Akbari Javar H, Mahmoudi-Moghaddam H, Salavati-Niasari M. Green synthesis of perovskite-type nanocomposite using Crataegus for modification of bisphenol a sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Zhu A, Kan X. Three-dimensional ordered macroporous imprinted polymer for bisphenol A recognition. ANAL SCI 2022; 38:969-975. [PMID: 35610465 DOI: 10.1007/s44211-022-00120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/27/2022]
Abstract
A novel kind of three-dimensional ordered macroporous molecular imprinted polymer (3DOM MIP) was prepared and studied. Monodisperse silica microspheres were used to form silica crystal template via simple centrifuge. In the presence of template molecule, acrylamide and trimethylolpropane trimethacrylate were co-polymerized in the interstices of crystal template bisphenol A (BPA). Hydrofluoric acid were employed to etch silica crystal and the mixed solvent of methanol with acetic acid were employed to extract template molecule. The results of SEM and FTIR confirmed the successful synthesis of 3DOM MIP. The obtained 3DOM MIP exhibited a rapid adsorption kinetics and a specific adsorption capacities toward template molecule because of the small size of MIP wall, which possessed much more effective imprinted cavies. Meanwhile, 3DOM MIP could selective recognized BPA from its structural analogues.
Collapse
Affiliation(s)
- Anhong Zhu
- Department of Pharmacy, Nanjing University of Chinese Medicine Hanlin College, Taizhou, 225300, People's Republic of China. .,College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China. .,The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Anhui Key Laboratory of Functional Molecular Solids, Wuhu, People's Republic of China.
| | - Xianwen Kan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China. .,The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Anhui Key Laboratory of Functional Molecular Solids, Wuhu, People's Republic of China.
| |
Collapse
|
9
|
Chiappini FA, Alcaraz MR, Escandar GM, Goicoechea HC, Olivieri AC. Chromatographic Applications in the Multi-Way Calibration Field. Molecules 2021; 26:6357. [PMID: 34770766 PMCID: PMC8588563 DOI: 10.3390/molecules26216357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
In this review, recent advances and applications using multi-way calibration protocols based on the processing of multi-dimensional chromatographic data are discussed. We first describe the various modes in which multi-way chromatographic data sets can be generated, including some important characteristics that should be taken into account for the selection of an adequate data processing model. We then discuss the different manners in which the collected instrumental data can be arranged, and the most usually applied models and algorithms for the decomposition of the data arrays. The latter activity leads to the estimation of surrogate variables (scores), useful for analyte quantitation in the presence of uncalibrated interferences, achieving the second-order advantage. Recent experimental reports based on multi-way liquid and gas chromatographic data are then reviewed. Finally, analytical figures of merit that should always accompany quantitative calibration reports are described.
Collapse
Affiliation(s)
- Fabricio A. Chiappini
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe S3000ZAA, Argentina; (F.A.C.); (M.R.A.); (H.C.G.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz C1425FQB, Argentina;
| | - Mirta R. Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe S3000ZAA, Argentina; (F.A.C.); (M.R.A.); (H.C.G.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz C1425FQB, Argentina;
| | - Graciela M. Escandar
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz C1425FQB, Argentina;
- Departamento de Química Analítica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Instituto de Química de Rosario (IQUIR-CONICET), Suipacha 531, Rosario S2002LRK, Argentina
| | - Héctor C. Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe S3000ZAA, Argentina; (F.A.C.); (M.R.A.); (H.C.G.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz C1425FQB, Argentina;
| | - Alejandro C. Olivieri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz C1425FQB, Argentina;
- Departamento de Química Analítica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Instituto de Química de Rosario (IQUIR-CONICET), Suipacha 531, Rosario S2002LRK, Argentina
| |
Collapse
|