1
|
Cohen S, Chajanovsky I, Suckeveriene RY. Recent Developments in Enzyme-Free PANI-Based Electrochemical Nanosensors for Pollutant Detection in Aqueous Environments. Polymers (Basel) 2025; 17:1320. [PMID: 40430616 PMCID: PMC12114906 DOI: 10.3390/polym17101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Wastewater management has a direct impact on the supply of drinking water. New cutting-edge technologies are crucial to the ever-growing demand for tailored solutions for pollutant removal, but these pollutants first need to be detected. Traditional techniques are costly and are no longer competitive in the wastewater cleaning market. One sustainable and economically viable alternative is the fabrication of integrated nanosensors composed of conducting polymers. These include polyaniline doped with various types of nanomaterials such as nanocarbons (carbon nanotubes and graphene), metal oxide nanoparticles/nanostructures, and quantum dots. The synergistic properties of these components can endow sensing materials with enhanced surface reactivity, greater electrocatalytic activity, as well as tunable redox activity and electrical conductivity. This review covers key recent advances in the field of non-enzyme electrochemical conductive polymer nanosensors for pollutant detection in aqueous environments or simulated polluted samples. It provides an introduction to these sensors, their preparation, applications, the environmental and economic hurdles impeding the large-scale development of PANI-based nanomaterials in sensing applications, and future directions for research and real-world applications.
Collapse
Affiliation(s)
- Sarah Cohen
- Water Industry Engineering Department, Kinneret Academic College on the Sea of Galilee, Zemach 15132, Israel; (S.C.); (I.C.)
| | - Itamar Chajanovsky
- Water Industry Engineering Department, Kinneret Academic College on the Sea of Galilee, Zemach 15132, Israel; (S.C.); (I.C.)
| | - Ran Yosef Suckeveriene
- Faculty of Engineering, Kinneret Academic College on the Sea of Galilee, Zemach 15132, Israel
| |
Collapse
|
2
|
Atchudan R, Perumal S, Jebakumar Immanuel Edison TN, Aldawood S, Vinodh R, Sundramoorthy AK, Ghodake G, Lee YR. Facile synthesis of novel molybdenum disulfide decorated banana peel porous carbon electrode for hydrogen evolution reaction. CHEMOSPHERE 2022; 307:135712. [PMID: 35843438 DOI: 10.1016/j.chemosphere.2022.135712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen is one of the cleanest renewable and environmentally friendly energy resource that can be generated through water splitting. However, hydrogen evolution occurs at high overpotential, and efficient hydrogen evolution catalysts are desired to replace state-of-the-art catalysts such as platinum. In the present work, a novel molybdenum disulfide decorated banana peel porous carbon (MoS2@BPPC) catalyst has been developed using banana peel carbon and molybdenum disulfide (MoS2) for hydrogen evolution reaction (HER). Banana peel porous carbon (BPPC) was initially synthesized from the banana peel (biowaste) by a simple carbonization method. Subsequently, 20 wt% of bare MoS2 was distributed on the pristine BPPC matrix using the dry-impregnation method. The resulting MoS2@BPPC composites were systematically investigated to determine the morphology and structure. Finally, using a three-electrode cell system, pristine BPPC, bare MoS2, and MoS2@BPPC composite were used as HER electrocatalysts. The developed MoS2@BPPC composite showed greater HER activity and possessed excellent stability in the acid solution, including an overpotential of 150 mV at a current density of -10 mA cm-2, and a Tafel slope of 51 mV dec-1. This Tafel study suggests that the HER takes place by Volmer-Heyrovsky mechanism with a rate-determining Heyrovsky step. The excellent electrochemical performance of MoS2@BPPC composite for HER can be ascribed to its unique porous nanoarchitecture. Further, due to the synergetic effect between MoS2 and porous carbon. The HER activity using the MoS2@BPPC electrode advises that the prepared catalyst may hold great promise for practical applications.
Collapse
Affiliation(s)
- Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Suguna Perumal
- Department of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea
| | | | - S Aldawood
- Department of Physics and Astronomy, College of Science, P.O. BOX 2455, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rajangam Vinodh
- School of Electrical and Computer Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Ashok K Sundramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|