1
|
Cetinkaya A, Kaya SI, Ozcelikay G, Budak F, Ozkan SA. Carbon Nanomaterials-Based Novel Hybrid Platforms for Electrochemical Sensor Applications in Drug Analysis. Crit Rev Anal Chem 2024; 54:1227-1242. [PMID: 35943520 DOI: 10.1080/10408347.2022.2109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Nowadays, the rapid improvements in the medical and pharmaceutical fields increase the diversity and use of drugs. However, problems such as the use of multiple or combined drugs in the treatment of diseases and insensible use of over-the-counter drugs have caused concerns about the side-effect profiles and therapeutic ranges of drugs and environmental contamination and pollution problems due to pharmaceuticals waste. Therefore, the analysis of drugs in various media such as biological, pharmaceutical, and environmental samples is an important topic of discussion. Electrochemical methods are advantageous for sensor applications due to their easy application, low cost, versatility, high sensitivity, and environmentally-friendliness. Carbon nanomaterials such as diamond-like carbon thin films, carbon nanotubes, carbon nanofibers, graphene oxide, and nanodiamonds are used to enhance the performance of the electrochemical sensors with catalytic effects. To further improve this effect, it is aimed to create hybrid platforms by using different carbon nanomaterials together or with materials such as conductive polymers and ionic liquids. In this review, the most used carbon nanoforms will be evaluated in terms of electrochemical characterizations and physicochemical properties. Furthermore, the effect of hybrid platforms developed in the most recent studies on electrochemical sensors will be examined and evaluated in terms of drug analysis studies in the last five years.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Goksu Ozcelikay
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Fatma Budak
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Pradeepa E, Arthoba Nayaka Y, Sahana HR. Electrochemical investigation of an anticancer drug 5-Fluorouracil in the presence of Theophylline using low-cost and disposable poly(GLY) modified pencil graphite electrode. Anal Biochem 2024; 687:115451. [PMID: 38154624 DOI: 10.1016/j.ab.2023.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Herein this study, a facile, efficient and disposable electrochemical sensor has been prepared by electropolymerization of glycine (poly(GLY)) on the surface of pencil graphite electrode (PGE). The surface topology of the equipped poly(GLY) modified pencil graphite electrode (poly(GLY)/PGE) and bare pencil graphite electrode (BPGE) has been characterized by the scanning electron microscopy (SEM) combined with energy dispersive x-ray analysis (EDX) and charge transfer behaviour was measured by electron impedance spectroscopy (EIS) method. The voltammetric behaviour of anticancer, 5-fluorouracil (5-FU) in the presence of theophylline (THP) has been carried out in 0.1 M phosphate buffer solution (PBS) of physiological pH 7.0 using different techniques such as cyclic voltammetry (CV), linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV). The proposed poly(GLY)/PGE shows augmented peak current for 5-FU at lower potential side over the BPGE due to the electrocatalytic behaviour of modifier layers wrapped on the electrode surface. The kinetic behaviour of 5-FU at modified electrode surface was studied by varying different parameters such as pH, scan rate and concentration study in 0.1 M PBS used as a supporting electrolyte. The limit of detection (LOD) for 5-FU was attained using DPV method with different concentrations (1.0-13.0 μM) and it was found to be 0.012 μM. The possible electrochemical reaction of 5-FU was proposed and it was incorporated by two electrons and two protons mechanism at modified electrode surface. The voltammetric response of poly(GLY)/PGE towards the determination of 5-FU was unaffected in the presence of some excipients in addition to the remarkable stability and reproducibility. The applicability of the proposed sensor has been performed by real sample investigation of 5-FU with a substantial percentage of recovery results in all optimized conditions.
Collapse
Affiliation(s)
- E Pradeepa
- Department of Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, 577451, Shivamogga, Karnataka, India
| | - Y Arthoba Nayaka
- Department of Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, 577451, Shivamogga, Karnataka, India.
| | - H R Sahana
- Department of Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, 577451, Shivamogga, Karnataka, India
| |
Collapse
|
3
|
Xu X, Li W, Xin H, Tang L, Zhou X, Zhou T, Xuan C, Tian Q, Pan D. Engineering of CuMOF-SWCNTs@AuNPs-Based Electrochemical Sensors for Ultrasensitive and Selective Monitoring of Imatinib in Human Serum. ACS OMEGA 2024; 9:4744-4753. [PMID: 38313513 PMCID: PMC10831836 DOI: 10.1021/acsomega.3c08002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024]
Abstract
Imatinib (IMA) is a common chemotherapy drug for the treatment of leukemia and can potentially lead to drug resistance and toxicity during the course of treatment. Monitoring IMA concentrations in body fluids is necessary to optimize therapeutic schedules and avoid overdosage. In this paper, a novel ultrasensitive electrochemical sensor based on CuMOF and SWCNTs@AuNPs was developed to determine this antileukemic drug. Herein, AuNPs were supported on carboxylic single-walled carbon nanotubes (SWCNT-COOH), and then poly(diallyldimethylammonium chloride) (PDDA) was used as a dispersant to overcome the internal van der Waals interactions among the CNTs, further increasing the AuNP loading. Moreover, the morphology, structure, composition, and electrochemical properties of the CuMOF-SWCNTs@AuNPs composite film were characterized using SEM, TEM, FT-IR, UV-vis, XRD, XPS, CV, and EIS. Due to the advantage of the superior electrocatalytic and conductive properties of SWCNTs@AuNPs and their preferable adsorptivity and affinity to IMA of CuMOF, the fabricated glassy carbon electrode significantly improved the determination performance via their synergetic amplified effect. Under optimal conditions, a wide linear response was exhibited in the range from 0.05 to 20.0 μM and the low detection limit of 5.2 nM. In addition, our prepared sensor has been applied to the analysis of IMA in blood serum samples with acceptable results. Therefore, our CuMOF-SWCNTs@AuNPs-based electrochemical sensor possessed prominent sensing responses for IMA, which could be used as a prospective approach in clinical application.
Collapse
Affiliation(s)
- Xuanming Xu
- Department
of Clinical Laboratory, The Affiliated Hospital
of Qingdao University, No. 1677, Wutaishan Road, Qingdao, Shandong 266000, China
| | - Wei Li
- Clinical
Laboratory, Qingdao Women and Children’s Hospital Affiliated, Qingdao University, Qingdao 266034, China
| | - Hao Xin
- Department
of Clinical Laboratory, The Affiliated Hospital
of Qingdao University, No. 1677, Wutaishan Road, Qingdao, Shandong 266000, China
| | - Lian Tang
- Department
of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Xiaoyan Zhou
- Department
of Clinical Laboratory, The Affiliated Hospital
of Qingdao University, No. 1677, Wutaishan Road, Qingdao, Shandong 266000, China
| | - Tingting Zhou
- Department
of Clinical Laboratory, The Affiliated Hospital
of Qingdao University, No. 1677, Wutaishan Road, Qingdao, Shandong 266000, China
| | - Chao Xuan
- Department
of Clinical Laboratory, The Affiliated Hospital
of Qingdao University, No. 1677, Wutaishan Road, Qingdao, Shandong 266000, China
| | - Qingwu Tian
- Department
of Clinical Laboratory, The Affiliated Hospital
of Qingdao University, No. 1677, Wutaishan Road, Qingdao, Shandong 266000, China
| | - Deng Pan
- Department
of Clinical Laboratory, The Affiliated Hospital
of Qingdao University, No. 1677, Wutaishan Road, Qingdao, Shandong 266000, China
| |
Collapse
|
4
|
Traipop S, Jesadabundit W, Khamcharoen W, Pholsiri T, Naorungroj S, Jampasa S, Chailapakul O. Nanomaterial-based Electrochemical Sensors for Multiplex Medicinal Applications. Curr Top Med Chem 2024; 24:986-1009. [PMID: 38584544 DOI: 10.2174/0115680266304711240327072348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024]
Abstract
This review explores the advancements in nanomaterial-based electrochemical sensors for the multiplex detection of medicinal compounds. The growing demand for efficient and selective detection methods in the pharmaceutical field has prompted significant research into the development of electrochemical sensors employing nanomaterials. These materials, defined as functional materials with at least one dimension between 1 and 100 nanometers, encompass metal nanoparticles, polymers, carbon-based nanocomposites, and nano-bioprobes. These sensors are characterized by their enhanced sensitivity and selectivity, playing a crucial role in simultaneous detection and offering a comprehensive analysis of multiple medicinal complexes within a single sample. The review comprehensively examines the design, fabrication, and application of nanomaterial- based electrochemical sensors, focusing on their ability to achieve multiplex detection of various medicinal substances. Insights into the strategies and nanomaterials employed for enhancing sensor performance are discussed. Additionally, the review explores the challenges and future perspectives of this evolving field, highlighting the potential impact of nanomaterial-based electrochemical sensors on the advancement of medicinal detection technologies.
Collapse
Affiliation(s)
- Surinya Traipop
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Whitchuta Jesadabundit
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wisarut Khamcharoen
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Thailand
| | - Tavechai Pholsiri
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sarida Naorungroj
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sakda Jampasa
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
5
|
Nouri M, Rahimnejad M, Najafpour G, Moghadamnia AA. Fabrication of an ultra-sensitive electrochemical DNA biosensor based on CT-DNA/NiFe 2O 4NPs/Au/CPE for detecting rizatriptan benzoate. ENVIRONMENTAL RESEARCH 2023; 236:116801. [PMID: 37558112 DOI: 10.1016/j.envres.2023.116801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/11/2023]
Abstract
A novel and first electrochemical biosensor based on Deoxyribonucleic acid (DNA) as a biological component to measure an antimigraine drug, rizatriptan benzoate (RZB) for patients under treatment in biological samples was developed. A carbon paste electrode (CPE) was modified by calf thymus (CT) double-stranded (ds)-DNA, nickel ferrite magnetic nanoparticles (NiFe2O4NPs), and gold nanoparticles (AuNPs). The morphology of the CT-DNA/NiFe2O4NPs/AuNPs/CPE was characterized by Field emission scanning electron microscope (FESEM). The presence of NiFe2O4NPs and AuNPs was confirmed by energy-dispersive X-ray spectroscopy (EDS) image of the NiFe2O4NPs/AuNPs/CPE surface. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to determine the structure and electrochemical characteristics of the CT-DNA/NiFe2O4NPs/AuNPs/CPE. Differential pulse voltammetry (DPV) was used to investigate the electrochemical behavior of RZB. Chronoamperometry (CA) was applied to study the effect of CT-DNA immobilization time on the peak oxidation current of RZB accumulated on the surface of the CT-DNA/NiFe2O4NPs/AuNPs/CPE. The results showed that, under optimum conditions, the prepared electrode responded linearly to RZB concentrations between 0.01 and 2.0 μM, with a 0.0033 μM detection limit (LOD) and 0.01 μM limit of quantification (LOQ). The parameters influencing the biosensor performance (temperature, CT-DNA immobilization time, and RZB/CT-DNA accumulation time) were optimized. DPV showed the displacement of the peak potential towards positive values and the reduction of its current, indicating that the drug could intercalate between the guanine base pairs of CT-DNA. Our biosensor was successfully applied for RZB measurement in human urine, blood serum, plasma samples, and tablets. The presented biosensor was fast response, sensitive, selective, cost-effective, and easy-to-use for RZB determination in pharmaceutical formulations and biological samples.
Collapse
Affiliation(s)
- Maedeh Nouri
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Ghasem Najafpour
- Biotechnology Research Laboratory, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | | |
Collapse
|
6
|
Xu X, Li S, Luan X, Xuan C, Zhao P, Zhou T, Tian Q, Pan D. Sensitivity enhancement of a Cu (II) metal organic framework-acetylene black-based electrochemical sensor for ultrasensitive detection of imatinib in clinical samples. Front Chem 2023; 11:1191075. [PMID: 37284582 PMCID: PMC10239869 DOI: 10.3389/fchem.2023.1191075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
Imatinib (IMB), an anticancer drug, is extensively used for chemotherapy to improve the quality of life of cancer patients. The aim of therapeutic drug monitoring (TDM) is to guide and evaluate the medicinal therapy, and then optimize the clinical effect of individual dosing regimens. In this work, a highly sensitive and selective electrochemical sensor based on glassy carbon electrode (GCE) modified with acetylene black (AB) and a Cu (II) metal organic framework (CuMOF) was developed to measure the concentration of IMB. CuMOF with preferable adsorbability and AB with excellent electrical conductivity functioned cooperatively to enhance the analytical determination of IMB. The modified electrodes were characterized using X-rays diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FT-IR), ultraviolet and visible spectrophotometry (UV-vis), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), brunauer‒emmett‒teller (BET) and barrett‒joyner‒halenda (BJH) techniques. Analytical parameters such as the ratio of CuMOF to AB, dropping volumes, pH, scanning rate and accumulation time were investigated through cyclic voltammetry (CV). Under optimal conditions, the sensor exhibited an excellent electrocatalytic response for IMB detection, and two linear detection ranges were obatined of 2.5 nM-1.0 μM and 1.0-6.0 μM with a detection limit (DL) of 1.7 nM (S/N = 3). Finally, the good electroanalytical ability of CuMOF-AB/GCE sensor facilitated the successful determination of IMB in human serum samples. Due to its acceptable selectivity, repeatability and long-term stability, this sensor shows promising application prospects in the detection of IMB in clinical samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Tingting Zhou
- *Correspondence: Deng Pan, ; Qingwu Tian, ; Tingting Zhou,
| | - Qingwu Tian
- *Correspondence: Deng Pan, ; Qingwu Tian, ; Tingting Zhou,
| | - Deng Pan
- *Correspondence: Deng Pan, ; Qingwu Tian, ; Tingting Zhou,
| |
Collapse
|
7
|
Zhang QY, Chen M, Jia XM, Luo YH, Zhang DE. Metal-organic framework-derived molybdenum phosphide@mesoporous carbon composite for electrochemical acetaminophen detection. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Synthesis of a dual-functional terbium doped copper oxide nanoflowers for high-efficiently electrochemical sensing of ofloxacin, pefloxacin and gatifloxacin. Talanta 2023; 255:124216. [PMID: 36587425 DOI: 10.1016/j.talanta.2022.124216] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The current effort introduces a facile construction of peony-like CuO:Tb3+ nanostructure (P-L CuO:Tb3+ NS), whose characterization was determined via techniques of X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. We investigated ofloxacin, pefloxacin and gatifloxacin oxidation electrochemically on P-L CuO:Tb3+ NS-modified glassy carbon electrode (P-L CuO:Tb3+ NS/GCE), the results of which revealed the irreversible oxidation of drugs through a two-electron oxidation process. An admirable resolution was found for this modified electrode between voltammetric peaks of ofloxacin, pefloxacin and gatifloxacin, suggesting its appropriateness for simultaneous detection of these drugs in pharmaceutical media. In addition, our nanostructure synergistically influenced the electro-catalytic oxidations of these three compounds. Differential pulse voltammetric measurements of ofloxacin, pefloxacin and gatifloxacin through our sensor showed a limit of detection of 1.9, 2.3 and 1.2 nM a as well as a linear dynamic range between 0.01 and 800.0 μM in phosphate buffered solution (0.1 M, pH = 6.0), respectively. Moreover, as-fabricated sensor could successfully co-detect these drugs in real serum and tablets specimens. In addition, since we use animal foods such as milk it is very important to detect their fluoroquinolone residues. For this purpose, the proposed sensor was tested to determine the residues of ofloxacin, pefloxacin and gatifloxacin in milk.
Collapse
|
9
|
Three-Dimensional Hierarchical Co3O4/Carbon Composite: Hydrothermal Synthesis and Morphine Electrochemical Sensing Application. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
10
|
Ghasemi L, Jahani S, Ghazizadeh M, Foroughi MM. A novel and ultrasensitive electrochemical DNA biosensor for pralatrexate detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:631-638. [PMID: 36651313 DOI: 10.1039/d2ay01909d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An attempt was made to develop a new sensitive biosensor for pralatrexate, as an anticancer drug, based on its interaction with the guanine of fish sperm DNA anchored on a screen-printed electrode (SPE) modified with polypyrrole (PP)/octahedral Pd-doped Co3O4 composite (Oh-Pd-doped Co3O4 C). Electrochemical techniques like differential pulse voltammetry verified the mechanism of such an interaction on the dsDNA/PP/Oh-Pd-doped Co3O4 C/SPE surface. A reduction in the peak current of guanine oxidation elucidated the interaction in acetate buffer with pH = 4.8. The optimization of response was performed for the interaction method according to potential, accumulation time, reproducibility and drug content. The linear dynamic range was estimated at 1.0 nM to 150.0 μM as well as a limit of detection as low as 0.61 nM for the DNA and pralatrexate concentrations. The practical potential of the proposed sensor was verified by determining pralatrexate in its pharmaceutical matrices.
Collapse
Affiliation(s)
- Leila Ghasemi
- Department of Chemistry, Islamic Azad University, Kerman Branch, Kerman, Iran.
| | - Shohreh Jahani
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mahdiyeh Ghazizadeh
- Department of Chemistry, Islamic Azad University, Kerman Branch, Kerman, Iran.
| | | |
Collapse
|
11
|
Taherizadeh M, Jahani S, Moradalizadeh M, Foroughi MM. Carbon Paste Modified with Peony‐Like CuO : Tb
3+
Nanostructures for the Simultaneous Determination of Sumatriptan and Naproxen in Biological and Pharmaceutical Samples. ChemistrySelect 2023. [DOI: 10.1002/slct.202203152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Shohreh Jahani
- Noncommunicable Diseases Research Center Bam University of Medical Sciences Bam Iran
| | | | | |
Collapse
|
12
|
Abbasi M, Alsaikhan F, Obaid RF, Jahani S, Biroudian S, Oveisee M, Arab MR, Aramesh-Boroujeni Z, Foroughi MM. Development of the DNA-based voltammetric biosensor for detection of vincristine as anticancer drug. Front Chem 2023; 10:1060706. [PMID: 36700073 PMCID: PMC9870317 DOI: 10.3389/fchem.2022.1060706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
In the article presented herein, a deoxyribonucleic acid (DNA) biosensor is introduced for Vincristine determination in pharmaceutical preparations based on the modification of screen printed electrode (SPE) with double-stranded DNA (ds-DNA), polypyrrole (PP), peony-like CuO:Tb3+ nanostructure (P-L CuO:Tb3+ NS). The developed sensor indicated a wide linear response to Vincristine concentration ranged from 1.0 nM to 400.0 μM with a limit of detection as low as .21 nM. The intercalation of Vincristine with DNA guanine led to the response. The optimized parameters for the biosensor performance were ds-DNA/Vincristine interaction time, DNA concentration and type of buffer solution. The docking investigation confirm the minor groove interaction between guanine base at surface of or ds-DNA/PP/P-L CuO:Tb3+ NS/SPE and Vincristine. The proposed sensor could successfully determine Vincristine in Vincristine injections and biological fluids, with acceptable obtains.
Collapse
Affiliation(s)
- Mahmoud Abbasi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Shohreh Jahani
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran,*Correspondence: Shohreh Jahani,
| | - Saeed Biroudian
- Department of Medical Ethics, Medical School, Iran University of Medical Sciences, Tehran, Iran
| | - Maziar Oveisee
- Orthopedic Department, Bam University of Medical Sciences, Bam, Iran
| | | | | | | |
Collapse
|
13
|
Gold nanoparticles stabilized by sulfonated imidazolium salt for the manufacture of modified electrodes in order to electrochemical detection of indomethacin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Aqsa Batool Bukhari S, Nasir H, Sitara E, Akhtar T, Ramazan Oduncu M, Iram S, Pan L. Efficient electrochemical detection of dopamine with carbon nanocoils and copper tetra(p-methoxyphenyl)porphyrin nanocomposite. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
15
|
Zhong Z, Xie A, Pan J, Li M, Wang J, Jiang S, Lin J, Zhu S, Luo S. Well-matched core–shell NiO@LaMnO3/MWCNTs p-p homotype heterojunction for ascorbic acid detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Lanthanum doped zirconium oxide-nanocomposite as sensitive electrochemical platforms for Tenofovir detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Taha A, Albahadly WKY, Ahmed YM, Kareem ZH, Hasan MM, Al Kubaisy MMR, Al-Baghdady HFA, Hameed NM, Adhab AH, Abood ES, Ghafel ST. Electrochemical sensors of cardiovascular drug–plavix on hexagonal Ce3+/NiO nanodisks modified screen-printed electrode. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Li X, Luo B, Liao M, Mohamed A. Electrochemical sensing of fentanyl as an anesthesia drug on NiO nanodisks combined with the carbon nanotube-modified electrode. Front Chem 2022; 10:997662. [DOI: 10.3389/fchem.2022.997662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fentanyl was successfully determined in the current effort based on hexagonal NiO nanodisks (HG-NiO-NDs) fabricated by the hydrothermal protocol. The synergism of HG-NiO-NDs with multiwall carbon nanotubes (MWCNTs), large specific surface area, and active material enabled the electrochemical sensor to show potent electrochemical behavior. Admirable performance was found for the fentanyl measurement by the MWCNT and HG-NiO-ND-modified pencil graphite electrode (MWCNT/HG-NiO-ND/PGE). The correlation of oxidation currents with the pH value, concentration, and sweep rate of supporting electrolytes was determined for the optimization of conditions to detect fentanyl. The surfaces of modified and unmodified electrodes were characterized as well. The diffusion-control processes were confirmed on the basis of anodic peak findings. The results also revealed a two-electron transfer process. The linear range was obtained to be 0.01–800.0 μM for the fentanyl concentrations on the developed electrode, with the sensitivity of 0.1044 μA/mM/cm2. The limit of detection (S/N = 3) was 6.7 nM. The results indicated the ability of the modified electrode to fabricate non-enzymatic fentanyl sensor applications.
Collapse
|
19
|
Lei Z, Alwan M, Alamir HTA, Alkaaby HHC, Farhan SS, Awadh SA, Altimari US, Al-Baghdady HFA, Kadhim AA, Qasim MT, Adhab AH, Nekuei A. Detection of abemaciclib, an anti-breast cancer agent, using a new electrochemical DNA biosensor. Front Chem 2022; 10:980162. [PMID: 36339035 PMCID: PMC9635563 DOI: 10.3389/fchem.2022.980162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Detection of DNA molecules and possible chemotherapy-induced changes in its structure has been the goal of researchers using rapid, sensitive and inexpensive approaches. Therefore, the aim of this study was to fabricate a new electrochemical DNA biosensor using pencil graphite electrodes modified with polypyrrole/Ce doped hexagonal nickel oxide nanodisks or PP/Ce-doped H-NiO-ND composites for determination of Abemaciclib (AMC) and ds-DNA molecules. The DNA biosensor was prepared by immobilizing ds-DNA on the surface of PP/Ce-doped H-NiO-ND/PGE. Differential pulse voltammetry (DPV) was used to electrochemically detect AMC. The results elucidate the extremely high sensitivity of the ds-DNA/PP/Ce-doped H-NiO-ND/PGE biosensor to AMC, with a narrow detection limit of 2.7 nM and a lengthy linear range of 0.01–600.0 μM. The admirable performance of as-fabricated biosensor could be related to the active reaction sites and the unique electrochemical response related to the nanocomposites by enhancing ds-DNA stabilization and accelerating electron transfer on the surface of electrode.
Collapse
Affiliation(s)
- Zimeng Lei
- School of International Education, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Zimeng Lei, ; Abuzar Nekuei,
| | - Merim Alwan
- Medical Lab. Techniques Department, College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| | | | | | | | - Sura A. Awadh
- Department of Anesthesia, Al-mustaqbal University, Babylon, Iraq
| | | | | | - Athmar Ali Kadhim
- Medical Laboratories Teachniques, Hilla University College Babylon, Babylon, Iraq
| | - Maytham T. Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Ali Hussein Adhab
- Department of Medical Laboratory Technics, Al-Zahrawi University College, Karbala, Iraq
| | - Abuzar Nekuei
- Islamic Azad University of South Tehran Branch, Tehran, Iran
- *Correspondence: Zimeng Lei, ; Abuzar Nekuei,
| |
Collapse
|
20
|
Carbon nanotubes coated with hybrid nanocarbon layers for electrochemical sensing of psychoactive drug. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Magnetically Recoverable Biomass-Derived Carbon-Aerogel Supported ZnO (ZnO/MNC) Composites for the Photodegradation of Methylene Blue. Catalysts 2022. [DOI: 10.3390/catal12091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrothermally assisted magnetic ZnO/Carbon nanocomposites were prepared using the selective biowaste of pomelo orange. Initially, the carbon aerogel (CA) was prepared hydrothermally followed by a freeze-drying method. Furthermore, the iron oxide nanoparticles were deposited onto the surface of carbon using the co-precipitation method and we obtained magnetic carbon nanocomposite, i.e., Fe3O4/C (MNC). Moreover, the ZnO photocatalysts were incorporated onto the surface of MNC composites using a hydrothermal process, and we obtained ZnO/MNC composites. The ZnO/MNC (55%), ZnO/MNC (65%) and ZnO/MNC (75%) composites were prepared by a similar experimental method in order to change the weight ratio of ZnO NPs. Using a similar synthetic procedure, the standard ZnO and Fe3O4 nanoparticles were prepared without the addition of CA. The experimental results were derived from several analytical techniques, such as: X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and diffuse reflectance spectroscopy (DRS-UV). The synthesized carbon, ZnO, Fe3O4, ZnO/MNC (55%), ZnO/MNC (65%) and ZnO/MNC (75%) composites were examined through the photocatalytic degradation of methylene blue (MB) under visible-light irradiation (VLI). The obtained results revealed that the composites were more active than carbon, ZnO and Fe3O4. In particular, the ZnO/MNC (75%) composites showed more activity than the rest of the composites. Furthermore, the recycling abilities of the prepared ZnO/MNC (75%) composites were examined through the degradation of MB under identical conditions and the activity remained constant up to the fifth cycle. The synthetic procedure and practical applications proposed here can be used in chemical industries, biomedical fields and energy applications.
Collapse
|
22
|
Razlansari M, Ulucan-Karnak F, Kahrizi M, Mirinejad S, Sargazi S, Mishra S, Rahdar A, Díez-Pascual AM. Nanobiosensors for detection of opioids: A review of latest advancements. Eur J Pharm Biopharm 2022; 179:79-94. [PMID: 36067954 DOI: 10.1016/j.ejpb.2022.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/28/2022] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
Opioids are generally used as analgesics in pain treatment. Like many drugs, they have side effects when overdosing and causeaddiction problems.Illegal drug use and misuse are becoming a major concern for authorities worldwide; thus, it is critical to have precise procedures for detecting them in confiscated samples, biological fluids, and wastewaters. Routine blood and urine tests are insufficient for highly selective determinations and can cause cross-reactivities. For this purpose, nanomaterial-based biosensors are great tools to determine opioid intakes, continuously monitoring the drugs with high sensitivity and selectivity even at very low sample volumes.Nanobiosensors generally comprise a signal transducer nanostructure in which a biological recognition molecule is immobilized onto its surface. Lately, nanobiosensors have been extensively utilized for the molecular detection of opioids. The usage of novel nanomaterials in biosensing has impressed biosensing studies. Nanomaterials with a large surface area have been used to develop nanobiosensors with shorter reaction times and higher sensitivity than conventional biosensors. Colorimetric and fluorescence sensing methods are two kinds of optical sensor systems based on nanomaterials. Noble metal nanoparticles (NPs), such as silver and gold, are the most frequently applied nanomaterials in colorimetric techniques, owing to their unique optical feature of surface plasmon resonance. Despite the progress of an extensive spectrum of nanobiosensors over the last two decades, the future purpose of low-cost, high-throughput, multiplexed clinical diagnostic lab-on-a-chip instruments has yet to be fulfilled. In this review, a concise overview of opioids (such as tramadol and buprenorphine, oxycodone and fentanyl, methadone and morphine) is provided as well as information on their classification, mechanism of action, routine tests, and new opioid sensing technologies based on various NPs. In order to highlight the trend of nanostructure development in biosensor applications for opioids, recent literature examples with the nanomaterial type, target molecules, and limits of detection are discussed.
Collapse
Affiliation(s)
- Mahtab Razlansari
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran.
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir 35100, Turkey.
| | | | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
| | - Sachin Mishra
- NDAC Centre, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea; RFIC Lab, Department of Electronic Engineering, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
23
|
Electrochemical determination of dopamine and uric acid with covalent organic frameworks and Ox-MWCNT co-modified glassy carbon electrode. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Sun CL, Lai SY, Tsai KJ, Wang J, Zhou J, Chen HY. Application of nanoporous core–shell structured multi-walled carbon nanotube–graphene oxide nanoribbons in electrochemical biosensors. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Yence M, Cetinkaya A, Kaya SI, Ozkan SA. Recent Developments in the Sensitive Electrochemical Assay of Common Opioid Drugs. Crit Rev Anal Chem 2022; 54:882-895. [PMID: 35853096 DOI: 10.1080/10408347.2022.2099732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Opioids are a class of drugs used to treat moderate to severe pain and have short-term adverse effects. Nevertheless, they are considered necessary for pain management. However, well-known hazards are connected with an opioid prescription, such as overuse, addiction, and overdose deaths. For example, the death rate from opioid analgesic poisoning in the USA approximately doubled, owing to the overuse and addiction of opioid analgesics. Also, opioids are a very important group of analytes in forensic chemistry, so it is necessary to use reliable, fast, and sensitive analytical tools to determine opioid analgesics. This review focuses on the opioid overdose crisis, the properties of commonly used opioid drugs, their mechanism, effects, and some chromatographic and spectroscopic detection methods are explained briefly. Then most essentially recent developments covering the last ten years in the sensitive electrochemical methods of common opioid analgesics, their innovations and features, and future research directions are presented.
Collapse
Affiliation(s)
- Merve Yence
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
26
|
Development and characterization of La2O3 nanoparticles@snowflake-like Cu2S nanostructure composite modified electrode and application for simultaneous detection of catechol, hydroquinone and resorcinol as an electrochemical sensor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Baytak A, Aslanoglu M. Praseodymium doped dysprosium oxide‐carbon nanofibers based voltammetric platform for the simultaneous determination of sunset yellow and tartrazine. ELECTROANAL 2022. [DOI: 10.1002/elan.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Pan Z, Guo H, Sun L, Liu B, Chen Y, Zhang T, Wang M, Peng L, Yang W. A novel electrochemical platform based on COF/La2O3/MWCNTS for simultaneous detection of dopamine and uric acid. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Effect of positive In(III) doped in nickel oxide nanostructure at modified glassy carbon electrode for determination of allura red in soft drink powders. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02863-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|