1
|
Liu X, Zheng X. Microfluidic-Based Electrical Operation and Measurement Methods in Single-Cell Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:6359. [PMID: 39409403 PMCID: PMC11478560 DOI: 10.3390/s24196359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024]
Abstract
Cellular heterogeneity plays a significant role in understanding biological processes, such as cell cycle and disease progression. Microfluidics has emerged as a versatile tool for manipulating single cells and analyzing their heterogeneity with the merits of precise fluid control, small sample consumption, easy integration, and high throughput. Specifically, integrating microfluidics with electrical techniques provides a rapid, label-free, and non-invasive way to investigate cellular heterogeneity at the single-cell level. Here, we review the recent development of microfluidic-based electrical strategies for single-cell manipulation and analysis, including dielectrophoresis- and electroporation-based single-cell manipulation, impedance- and AC electrokinetic-based methods, and electrochemical-based single-cell detection methods. Finally, the challenges and future perspectives of the microfluidic-based electrical techniques for single-cell analysis are proposed.
Collapse
Affiliation(s)
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Aghajanloo B, Hadady H, Ejeian F, Inglis DW, Hughes MP, Tehrani AF, Nasr-Esfahani MH. Biomechanics of circulating cellular and subcellular bioparticles: beyond separation. Cell Commun Signal 2024; 22:331. [PMID: 38886776 PMCID: PMC11181607 DOI: 10.1186/s12964-024-01707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Biomechanical attributes have emerged as novel markers, providing a reliable means to characterize cellular and subcellular fractions. Numerous studies have identified correlations between these factors and patients' medical status. However, the absence of a thorough overview impedes their applicability in contemporary state-of-the-art therapeutic strategies. In this context, we provide a comprehensive analysis of the dimensions, configuration, rigidity, density, and electrical characteristics of normal and abnormal circulating cells. Subsequently, the discussion broadens to encompass subcellular bioparticles, such as extracellular vesicles (EVs) enriched either from blood cells or other tissues. Notably, cell sizes vary significantly, from 2 μm for platelets to 25 μm for circulating tumor cells (CTCs), enabling the development of size-based separation techniques, such as microfiltration, for specific diagnostic and therapeutic applications. Although cellular density is relatively constant among different circulating bioparticles, it allows for reliable density gradient centrifugation to isolate cells without altering their native state. Additionally, variations in EV surface charges (-6.3 to -45 mV) offer opportunities for electrophoretic and electrostatic separation methods. The distinctive mechanical properties of abnormal cells, compared to their normal counterparts, present an exceptional opportunity for diverse medical and biotechnological approaches. This review also aims to provide a holistic view of the current understanding of popular techniques in this domain that transcend conventional boundaries, focusing on early harvesting of malignant cells from body fluids, designing effective therapeutic options, cell targeting, and resonating with tissue and genetic engineering principles.
Collapse
Affiliation(s)
- Behrouz Aghajanloo
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Department of Science, Research and Technology (DISAT), Politecnico di Torino, Turin, Italy
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Hanieh Hadady
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - David W Inglis
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Michael Pycraft Hughes
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
3
|
Zhang K, Xiang W, Jia N, Yu M, Liu J, Xie Z. A portable microfluidic device for thermally controlled granular sample manipulation. LAB ON A CHIP 2024; 24:549-560. [PMID: 38168724 DOI: 10.1039/d3lc00888f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Effective granular sample manipulation with a portable and visualizable microfluidic device is significant for lots of applications, such as point-of-care testing and cargo delivery. Herein, we report a portable microfluidic device for controlled particle focusing, migration and double-emulsion droplet release via thermal fields. The device mainly contains a microfluidic chip, a microcontroller with a DC voltage control unit, a built-in microscope with a video transmission unit and a smartphone. Five microheaters located at the bottom of the microfluidic chip are used to unevenly heat fluids and then induce thermal buoyancy flow and a thermocapillary effect, and the experiments can be conveniently visualized through a smartphone, which provides convenient sample detection in outdoor environments. To demonstrate the feasibility and multifunctionality of this device, the focusing manipulation of multiple particles is first analyzed by using silica particles and yeast cells as experimental samples. We can directly observe the particle focusing states on the screen of a smartphone, and the particle focusing efficiency can be flexibly tuned by changing the control voltage of the microheater. Then the study focus is transferred to single-particle migration. By changing the voltage combinations applied on four strip microheaters, the single particle can migrate at predetermined trajectory and speed, showing attractiveness for those applications needing sample transportation. Finally, we manipulate the special three-phase flow system of double-emulsion drops in thermal fields. Under the combined effect of the thermocapillary effect and increased instability, the shell of double-emulsion droplets gradually thins and finally breaks, resulting in the release of samples in inner cores. The core release speed can also be flexibly adjusted by changing the control voltage of the microheater. These three experiments successfully demonstrate the effectiveness and multifunctionality of this thermally actuated microfluidic device on granular manipulation. Therefore, this portable microfluidic device will be promising for lots of applications, such as analytical detection, microrobot actuation and cargo release.
Collapse
Affiliation(s)
- Kailiang Zhang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Wei Xiang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Na Jia
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Mingyu Yu
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Jiuqing Liu
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Zhijie Xie
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| |
Collapse
|
4
|
Xiang N, Ni Z. Microfluidics for Biomedical Applications. BIOSENSORS 2023; 13:bios13020161. [PMID: 36831927 PMCID: PMC9953641 DOI: 10.3390/bios13020161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 06/12/2023]
Abstract
Microfluidics refers to a technique for controlling and analyzing the fluids or micro-/nano-bioparticles in microscale channels or structures [...].
Collapse
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
5
|
Ni C, Zhu Z, Zhou Z, Xiang N. High-Throughput Separation and Enrichment of Rare Malignant Tumor Cells from Large-Volume Effusions by Inertial Microfluidics. Methods Mol Biol 2023; 2679:193-206. [PMID: 37300617 DOI: 10.1007/978-1-0716-3271-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Detection of malignant tumor cells (MTCs) in pleural effusions is essential for determining the malignancy. However, the sensitivity of MTC detection is significantly decreased due to the existence of a massive number of background blood cells in large-volume samples. Herein, we provide a method for on-chip separation and enrichment of MTCs from malignant pleural effusions (MPEs) by integrating an inertial microfluidic sorter with an inertial microfluidic concentrator. The designed sorter and concentrator are capable of focusing cells toward the specified equilibrium positions by inducing intrinsic hydrodynamic forces, enabling the size-based sorting of cells and the removal of cell-free fluids for cell enrichment. A 99.9% removal of background cells and a nearly 1400-fold ultrahigh enrichment of MTCs from large-volume MPEs can be achieved by this method. The concentrated high-purity MTC solution can be used directly for cytological examination by immunofluorescence staining, enhancing the accurate identification of MPEs. The proposed method can also be employed for the detection and count of rare cells in various clinical samples.
Collapse
Affiliation(s)
- Chen Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, China
| | - Zhixian Zhu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, China
| | - Zheng Zhou
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, China
| | - Nan Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, China.
| |
Collapse
|
6
|
Xiang N, Ni Z. Inertial microfluidics: current status, challenges, and future opportunities. LAB ON A CHIP 2022; 22:4792-4804. [PMID: 36263793 DOI: 10.1039/d2lc00722c] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inertial microfluidics uses the hydrodynamic effects induced at finite Reynolds numbers to achieve passive manipulation of particles, cells, or fluids and offers the advantages of high-throughput processing, simple channel geometry, and label-free and external field-free operation. Since its proposal in 2007, inertial microfluidics has attracted increasing interest and is currently widely employed as an important sample preparation protocol for single-cell detection and analysis. Although great success has been achieved in the inertial microfluidics field, its performance and outcome can be further improved. From this perspective, herein, we reviewed the current status, challenges, and opportunities of inertial microfluidics concerning the underlying physical mechanisms, available simulation tools, channel innovation, multistage, multiplexing, or multifunction integration, rapid prototyping, and commercial instrument development. With an improved understanding of the physical mechanisms and the development of novel channels, integration strategies, and commercial instruments, improved inertial microfluidic platforms may represent a new foundation for advancing biomedical research and disease diagnosis.
Collapse
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
7
|
Flexible on-chip droplet generation, switching and splitting via controllable hydrodynamics. Anal Chim Acta 2022; 1229:340363. [PMID: 36156234 DOI: 10.1016/j.aca.2022.340363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/27/2022] [Accepted: 09/03/2022] [Indexed: 11/23/2022]
Abstract
Flexible droplet preparation and manipulation are significant for lots applications such as immunoreaction and monocellular culture. Herein, we present a novel method for effective on-chip droplet generation, splitting and switching via controllable hydrodynamics. The microchannel of the designed chip has 6 inlets and 3 three outlets. The water solution is injected from a specific inlet (inlet d), and the other 5 inlets are used to inject oil fluids. Under the shearing effect of immiscible oils, the water phase breaks into dispersed droplets first, and the generated droplets can be further split into daughter drops or switched into side outlets from the middle outlet. To investigate the hydrodynamic droplet manipulation behaviors, a two-dimensional simulation model based on phase-field method is established. Utilizing the computational model, we systematically analyze the influences of the flow rates of continuous and dispersed fluids and the manipulation modes on droplet generation, splitting and switching. The numerical results indicate that the droplets can be generated with controlled sizes. For instance, at Qd = 5 μL/min and Qc1,2 = 5 μL/min, the droplet diameter decreases from 89.2 μm to 49.2 μm as Qs1,2 gradually rises from 15 μL/min to 40 μL/min. Moreover, the prepared droplets can realize on-demand splitting and switching. When Qd, Qc1,2, and Qs1,2 are fixed at 5 μL/min, 5 μL/min and 25 μL/min, respectively, the generated droplet is split into different proportional daughter drops with the rising of Qs3 (or Qs4) at first, and finally it is switched into the side-outlets when Qs3 (or Qs4) is higher than 80 μL/min. Therefore, this proposed droplet manipulation approach will be promising for various applications, and the numerical simulations can provide useful guidelines on the design and operation of droplet-based microfluidic systems.
Collapse
|
8
|
Guo K, Chen Y, Zhou Z, Zhu S, Ni Z, Xiang N. A novel 3D Tesla valve micromixer for efficient mixing and chitosan nanoparticle production. Electrophoresis 2022; 43:2184-2194. [PMID: 35730399 DOI: 10.1002/elps.202200077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 06/14/2022] [Indexed: 01/21/2023]
Abstract
Current three-dimensional micromixers for continuous flow reactions and nanoparticle synthesis are complex in structure and difficult to fabricate. This paper investigates the design, fabrication, and characterization of a novel micromixer that uses a simple spatial Tesla valve design to achieve efficient mixing of multiple solutions. The flow characteristics and mixing efficiencies of our Tesla valve micromixer are investigated using a combination of numerical simulations and experiments. The results show that in a wide range of flow rates, viscoelastic solutions with different concentrations can be well mixed in our micromixer. Finally, experiments on the synthesis of chitosan nanoparticles are conducted to verify the practicability of our micromixer. Compared with nanoparticles prepared by conventional magnetic stirring, the size of nanoparticles prepared by micromixing is smaller and the distribution is more uniform. Therefore, our Tesla valve micromixer has significant advantages and implications for mixing chemical and biological reactions.
Collapse
Affiliation(s)
- Kefan Guo
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Yao Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Zheng Zhou
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Shu Zhu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|