1
|
Vaas APJP, Yu RB, Quirino JP. Stacking in electrophoresis by electroosmotic flow-assisted admicelle to solvent microextraction. Anal Bioanal Chem 2024; 416:6789-6798. [PMID: 39358467 DOI: 10.1007/s00216-024-05554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
An in-line sample concentration method for capillary electrophoresis called admicelle to solvent microextraction was proposed. In this technique, analytes were trapped in the cetyltrimethylammonium bromide admicelles formed in situ on the negatively charged capillary surface. A solvent plug was then partially injected hydrodynamically to collapse the admicelles, which liberated and focused the analytes at the solvent front. Voltage was applied across the capillary, completing the stacking process. Various solvents, namely, methanol, ethanol, and acetonitrile, were investigated. The optimal solvent for solvent to admicelle microextraction was 30% acetonitrile in 24 mM sodium tetraborate (pH 9.2). Sample injection time and solvent to sample injection ratio were also optimised. For this demonstration, the optimum sample injection time and solvent to sample injection ratio were 320 s and 1:2, respectively. Using the optimum conditions, UV detection sensitivity was enhanced 132-176-fold for the model anions. The LOQ, %intra-/inter-day (n = 6/n = 12, 2 days) repeatability, and linearity (R2) of admicelle to solvent microextraction were 0.08-2 µg/mL, 1.9-3.9%, 2.8-4.9%, and 0.992, respectively. Admicelle to solvent microextraction was applied to the analysis of various fortified water samples, with good repeatability (%RSD = 0.5-3.6%), and no matrix interferences.
Collapse
Affiliation(s)
- Andaravaas Patabadige Jude P Vaas
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, TAS, 7001, Australia
| | - Raymond B Yu
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, TAS, 7001, Australia.
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of the Philippines Manila, Manila, Philippines.
| | - Joselito P Quirino
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, TAS, 7001, Australia
| |
Collapse
|
2
|
Abdul Keyon AS, Ng N, Breadmore MC. Advancements in Multiple-Step On-Line Preconcentration Techniques for Enhanced Sensitivity in Capillary Electrophoresis. J Sep Sci 2024; 47:e202400519. [PMID: 39304608 DOI: 10.1002/jssc.202400519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Multiple-step on-line preconcentration, a combination of at least two stacking techniques has been developed to increase the sensitivity in capillary electrophoresis (CE) for analytes in various samples. It is usually conducted sequentially, or in some cases, synergistically, where different stacking modes occur simultaneously. Multiple-step techniques allow simultaneous preconcentration and separation of various kinds of analytes in different complex samples in a single CE run. This review aims to provide recent advances in multiple-step on-line preconcentration techniques in CE. We critically review technical papers published for the last 7 years up until July 2024, subsequently organized according to the combination of the main stacking techniques, that is, field amplification, large volume sample stacking, transient isotachophoresis, micelle to solvent or micelle to cyclodextrin stacking, and others. The procedures, fundamental mechanism, analytical figures of merits achieved, and their feasibility for complicated sample matrices are reviewed.
Collapse
Affiliation(s)
- Aemi Syazwani Abdul Keyon
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - NyukTing Ng
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - Michael Charles Breadmore
- Australian Centre for Research on Separation Science, School of Natural Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
3
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2021-mid-2023). Electrophoresis 2024; 45:165-198. [PMID: 37670208 DOI: 10.1002/elps.202300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
This review article brings a comprehensive survey of developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical characterization of peptides in the period from 2021 up to ca. the middle of 2023. Progress in the study of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, adsorption suppression, electroosmotic flow regulation, and detection, are presented. New developments in the particular capillary electromigration methods are demonstrated, and several types of their applications are reported. They cover qualitative and quantitative analysis of synthetic or isolated peptides and determination of peptides in complex biomatrices, peptide profiling of biofluids and tissues, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They include also amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical characterization of peptides and their interactions with other (bio)molecules by the above CE methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
5
|
Gao W, Qin Y, Zang Y, Zhu J, Chen W, Tong S, Zeng Y, Chu C. Miniaturized matrix solid-phase dispersion and solid-phase clear-up combined with capillary electrophoresis for efficient determination of trace bioactive components in complicated sample matrix: Take Wubi Shanyao Pill as an example. J Sep Sci 2023; 46:e2300164. [PMID: 37387568 DOI: 10.1002/jssc.202300164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/18/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Accurate quantitative analysis of trace analytes in a complicated matrix is a challenge in modern analytical chemistry. An appropriate analytical method is considered to be one of the most common gaps during the whole process. In this study, a green and efficient strategy based on miniaturized matrix solid-phase dispersion and solid-phase extraction combined with capillary electrophoresis was first proposed for extracting, purifying and determining target analytes from complicated matrix, using Wubi Shanyao Pill as an example. In detail, 60 mg of samples were dispersed on MCM-48 to obtain high yields of analytes, then the extract was purified with a solid-phase extraction cartridge. Finally, four analytes in the purified sample solution were determined by capillary electrophoresis. The parameters affecting the extraction efficiency of matrix solid-phase dispersion, purification efficiency of solid-phase extraction and separation effect of capillary electrophoresis were investigated. Under the optimized conditions, all analytes demonstrated satisfactory linearity (R2 >0.9983). What's more, the superior green potential of the developed method for the determination of complex samples was confirmed by the Analytical GREEnness Metric Approach. The established method was successfully applied in the accurate determination of target analytes in Wubi Shanyao Pill and thus provided reliable, sensitive, and efficient strategy support for its quality control.
Collapse
Affiliation(s)
- Wei Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yaxin Qin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yaping Zang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jiaming Zhu
- Institute of Traditional Chinese Medicine Modern Research, Hangzhou Huqingyutang Pharmaceutical Ltd., Hangzhou, P. R. China
| | - Wei Chen
- Institute of Traditional Chinese Medicine Modern Research, Hangzhou Huqingyutang Pharmaceutical Ltd., Hangzhou, P. R. China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yuqun Zeng
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, P. R. China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
6
|
Su M, Mi W, Zhang Y, Lv M, Shen W. Determination of illegal additive - ethyl maltol in edible oil by LC-MS/MS in China. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Yu YL, Jin HF, Shi Y, Cao J. Synchronous microextraction of active and toxic compounds from medicinal plant using nano-SiO2 assisted miniaturized matrix solid-phase dispersion. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|