1
|
Geng F, Huang M, Zhang X, Wang Y, Shao C, Xu M. Sensitive colorimetric sensing of dopamine and TYR based on enhanced HRP-like activity of CuNi/Fe LDHs nanozymes. Mikrochim Acta 2025; 192:197. [PMID: 40024977 DOI: 10.1007/s00604-025-07056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
CuNi/Fe LDHs with HRP-like activity (nanozyme) have been prepared. Contrary to the expected design, free dopamine (DA) was found to greatly enhance the catalytic performances of CuNi/Fe LDHs nanozyme. As far as we know, this is the first report that free DA boosts the catalytic performances of LDHs. Given the superior HRP-like enzyme activity of DA-CuNi/Fe LDHs, a colorimetric method for DA and tyrosinase (TYR) assay with high sensitivity and specificity was established, and it was successfully applied to quantify DA in artificial cerebrospinal fluid and TYR in newborn calf serum. The acquired insights in DA-CuNi/Fe LDHs will contribute to future rational design of other high-performance nanozymes. In addition, the novel DA and TYR assay pave a way for designing further nanozymes-based colorimetric chemo/biosensors.
Collapse
Affiliation(s)
- Fenghua Geng
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Min Huang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yongxiang Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, China.
| | - Congying Shao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| |
Collapse
|
2
|
Zhu P, Liu S, Feng L, Zhang X. Redox-mediated dsDNA-dye photooxidase mimic enable catalytic oxidation of 3,3',5,5'-tetramethylbenzidine by dissolved O 2 at neutral pH for improved biosensing. Biosens Bioelectron 2025; 268:116865. [PMID: 39515214 DOI: 10.1016/j.bios.2024.116865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Catalytic oxidation of 3,3',5,5'-Tetramethylbenzidine (TMB, an excellent chromogenic substrate) at neutral pH is critically important for amplified bioanalysis. Although some nanozymes exhibited the peroxidase activity at neutral pH, it is difficult to modulate their activity for homogeneous detection of biomolecules. In this work, we developed a redox-mediated dsDNA-dye photooxidase mimic that enables catalytic oxidation of TMB by dissolved O2 at neutral pH for improved biosensing. During illumination, the double-stranded DNA-SYBR Green I (dsDNA-SG) photogenerated singlet oxygen (1O2) can oxidized Mn2+ to Mn3+ that can efficiently oxidize TMB to produce a distinct blue within 4 min under neutral conditions. The catalytic oxidation of TMB can be readily modulated by the formation or dissociation of dsDNA during the sensing. After investigating a series of redox mediators, we found that only the Mn3+/Mn2+ redox mediator can lead to the oxidation of TMB at neutral pH. The maximum reaction rate of Mn2+-mediated dsDNA-SG photooxidase mimic under neutral conditions (pH 7.0) was 1.7 × 10-4 mM/s, even higher than that of horseradish peroxidase (HRP, 8.0 × 10-5 mM/s). The redox-mediated dsDNA-SG photooxidase mimic was used for detection of APE1 at pH 7.0 with over 130-fold higher sensitivity than that at 4.0, owing to the high enzymatic activity of APE1 at neutral pH. Meanwhile, we further extended this photooxidase mimic for the sensitive detection of DNA (LOD, 8 pM) and heavy metal ions at neutral pH. The redox-mediated dsDNA-dye photooxidase mimic with the ease of modulating its enzymatic activity and working at neutral pH is quite appealing for biosensing.
Collapse
Affiliation(s)
- Peng'an Zhu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Shuang Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Lijun Feng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Xinfeng Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
3
|
Süngü Akdoğan Ç, Akbay Çetin E, Onur MA, Önel S, Tuncel A. Copper(II) Oxide Spindle-like Nanomotors Decorated with Calcium Peroxide Nanoshell as a New Nanozyme with Photothermal and Chemodynamic Functions Providing ROS Self-Amplification, Glutathione Depletion, and Cu(I)/Cu(II) Recycling. ACS APPLIED MATERIALS & INTERFACES 2025; 17:632-649. [PMID: 39720911 PMCID: PMC11783533 DOI: 10.1021/acsami.4c17852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024]
Abstract
Uniform, mesoporous copper(II) oxide nanospindles (CuO NSs) were synthesized via a method based on templated hydrothermal oxidation of copper in the presence of monodisperse poly(glycerol dimethacrylate-co-methacrylic acid) nanoparticles (poly(GDMA-co-MAA) NPs). Subsequent decoration of CuO NSs with a CaO2 nanoshell (CuO@CaO2 NSs) yielded a nanozyme capable of Cu(I)/Cu(II) redox cycling. Activation of the Cu(I)/Cu(II) cycle by exogenously generated H2O2 from the CaO2 nanoshell significantly enhanced glutathione (GSH) depletion. CuO@CaO2 NSs exhibited a 2-fold higher GSH depletion rate compared to pristine CuO NSs. The generation of oxygen due to the catalase (CAT)-like decomposition of H2O2 by CuO@CaO2 NSs resulted in a self-propelled diffusion behavior, characteristic of a H2O2 fueled nanomotor. These nanostructures exhibited both peroxidase (POD)-like and CAT-like activities and were capable of self-production of H2O2 in aqueous media via a chemical reaction between the CaO2 nanoshell and water. Usage of the self-supplied H2O2 by the POD-like activity of CuO@CaO2 NSs amplified the generation of toxic hydroxyl (•OH) radicals, enhancing the chemodynamic effect within the tumor microenvironment (TME). The CAT-like activity provided a source of self-supplied O2 via decomposition of H2O2 to alleviate hypoxic conditions in the TME. Under near-infrared laser irradiation, CuO@CaO2 NSs exhibited photothermal conversion properties, with a temperature elevation of 25 °C. The combined GSH depletion and H2O2 generation led to a more effective production of •OH radicals in the cell culture medium. The chemodynamic function was further enhanced by an elevated temperature. To assess the therapeutic potential, CuO@CaO2 NSs loaded with the photosensitizer, chlorine e6 (Ce6), were evaluated against T98G glioblastoma cells. The synergistic combination of photodynamic, photohermal, and chemodynamic modalities using CuO@CaO2@Ce6 NSs resulted in cell death higher than 90% under in vitro conditions.
Collapse
Affiliation(s)
- Çağıl
Zeynep Süngü Akdoğan
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Graduate
School of Science & Engineering, Hacettepe
University, Ankara 06800, Turkey
| | - Esin Akbay Çetin
- Department
of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Mehmet Ali Onur
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Department
of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Selis Önel
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Chemical
Engineering Department, Hacettepe University, Ankara 06800, Turkey
| | - Ali Tuncel
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Chemical
Engineering Department, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
4
|
Guo Q, Wang D, Ma F, Fang M, Zhang L, Li P, Yu L. MOF-derived nanozyme CuOx@C and its application for cascade colorimetric detection of phytosterols. Mikrochim Acta 2024; 191:312. [PMID: 38717599 DOI: 10.1007/s00604-024-06389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Phytosterols (PSs), a class of naturally occurring bioactive lipid compounds, have been found to possess a significant cholesterol-lowering effect. In developing countries, the consumption of rapeseed oil is the primary pathway of PS intake for the general population. However, developing low-cost, real-time, and high-throughput screening techniques for PSs remains a challenge. Here, a Cu-based nanocomposite CuOx@C was synthesized via a simple method of the calcination of HKUST-1 and systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The CuOx@C demonstrated excellent peroxidase-like (POD-like) activity, functioning as a peroxidase mimic to facilitate the catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form (oxTMB), thereby initiating a discernible color response. On the basis of this discovery, a CuOx@C-based colorimetric method for detecting total sterols in rapeseed was successfully constructed via cascade reactions. After optimizing the conditions, the high-throughput screening of total sterols in rapeseed could be completed in only 21 min, which significantly facilitated the sensing of PSs. A linear range of 0.6-6 mg/g was achieved for the detection of total sterols in rapeseed samples, thereby satisfying the requirements for detection. In addition, due to the high stability of CuOx@C and the specificity of cholesterol oxidase, the developed method had excellent stability and selectivity toward PSs, indicating that this work has huge prospects for commercial application. This innovative work overcomes the limitation of the instrumental method and provides a portable and reliable tool for total sterols detection. It can also facilitate the development of oilseeds with a high content of PSs.
Collapse
Affiliation(s)
- Qi Guo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Du Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Mengxue Fang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Liangxiao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
- Zhejiang Xianghu Laboratory, Hangzhou, 311231, People's Republic of China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China.
| |
Collapse
|
5
|
Shome A, Ali S, Haydar MS, Sarkar K, Roy S, Adhikary P, Roy MN. Synthesis of Spherical Mn 2O 3 Nanozymes from Different Green Precursors for their Innovative Applications in Catalytic Properties and Bioactivity. ACS Biomater Sci Eng 2024; 10:1734-1742. [PMID: 38330433 DOI: 10.1021/acsbiomaterials.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Here, spherical Mn2O3 nanozymes were synthesized via a one-step green method using different green precursors, and their physicochemical properties and biological activities were monitored with various green precursors. Powder X-ray diffraction (PXRD) was performed to determine the crystalline properties and phases involved in the formation of cubic Mn2O3 nanozymes. The synthesized nanozymes were spherical and examined by SEM and FESEM studies. All of the samples synthesized using different green precursors exhibited different sizes but similar spherical shapes. Moreover, all green-synthesized nanozymes catalyzed the oxidation reaction of the chromogenic substrate 3,3'5,5' tetramethylbenzidine (TMB) in the absence of H2O2, and A2 (lemon-mediated Mn2O3 nanozymes), which the followed Michaelis-Menten kinetics, showed the best activity. Therefore, A2 (lemon-mediated nanozyme) showed oxidase-mimicking activity with distinct Km and Vmax values calculated by the Lineweaver-Burk plot. Furthermore, the current nanozymes demonstrated a significant ability to kill both Gram-negative and Gram-positive bacteria as well as effectively destroy biofilms under physiological conditions. Moreover, the green-mediated nanozymes also displayed ROS-scavenging activity. Our nanozymes exhibited scavenging activity toward OH and O2-• radicals and metal chelation activity, which were investigated colorimetrically. Therefore, these nanozymes might be used as effective antibacterial agents and also for the consumption of reactive oxygen species.
Collapse
Affiliation(s)
- Ankita Shome
- Department of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Md Salman Haydar
- Department of Botany, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Kushankur Sarkar
- Department of Botany, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Prakriti Adhikary
- Department of Physics, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| |
Collapse
|
6
|
Wang MP, Li HH, Wu T, Xiao SJ, Liu GZ, Zhang L. Photosensitized covalent organic framework as a light-induced oxidase mimic for colorimetric detection of uric acid. LUMINESCENCE 2024; 39:e4713. [PMID: 38515291 DOI: 10.1002/bio.4713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/26/2024] [Accepted: 02/16/2024] [Indexed: 03/23/2024]
Abstract
As large numbers of people are suffering from gout, an accurate, rapid, and sensitive method for the detection of gout biomarker, uric acid, is important for its effective control, diagnosis, and therapy. Although colorimetric detection methods based on uricase have been considered, they still have limitations as they produce toxic H2O2 and are expensive and not stable. Here, a novel uricase-free colorimetric method was developed for the sensitive and selective detection of uric acid based on the light-induced oxidase-mimicking activity of a new photosensitized covalent organic framework (COF) (2,4,6-trimethylpyridine-3,5-dicarbonitrile-4-[2-(4-formylphenyl)ethynyl]benzaldehyde COF [DCTP-EDA COF]). DCTP-EDA COF has a strong ability to harvest visible light, and it could catalyze the oxidation of 1,4-dioxane, 3,3',5,5'-tetramethylbenzidine under visible light irradiation to produce obvious color changes. With the addition of uric acid, however, the significant inhibition of the oxidase-mimicking activity of DCTP-EDA COF remarkably faded the color, and thus uric acid could be colorimetrically detected in the range of 2.0-150 μM with a limit of detection of 0.62 μM (3σ/K). Moreover, the present colorimetric method exhibited high selectivity; uric acid level in serum samples was successfully determined, and the recoveries ranged from 96.5% to 105.64%, suggesting the high accuracy of the present colorimetric method, which demonstrates great promise in clinical analysis.
Collapse
Affiliation(s)
- Meng Ping Wang
- School of Chemistry and Material Science, East China University of Technology, Nanchang, China
| | - Hui Han Li
- School of Chemistry and Material Science, East China University of Technology, Nanchang, China
| | - Ting Wu
- School of Chemistry and Material Science, East China University of Technology, Nanchang, China
| | - Sai Jin Xiao
- School of Chemistry and Material Science, East China University of Technology, Nanchang, China
| | - Guang Zhou Liu
- School of Chemistry and Material Science, East China University of Technology, Nanchang, China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Borah P, Baruah DJ, Mridha P, Baishya R, Bora HK, Das MR. Photoenhanced intrinsic peroxidase-like activity of a metal-free biocompatible borophene photonanozyme for colorimetric sensor assay of dopamine biomolecule. Chem Commun (Camb) 2024; 60:2417-2420. [PMID: 38323809 DOI: 10.1039/d3cc06326g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Photonanozymes are novel enzyme-mimicking nanomaterials with light-harvesting capacity and have widespread applications in many areas including biosensing, biomedicine, environmental applications, energy, etc. Herein, we introduce freestanding metal-free biocompitable borophene nanosheets (BNSs) exhibiting excellent photoresponsive peroxidase-like activity for biosensing applications. The photo-enhanced peroxidase-like activity of BNSs photonanozyme was indicated to be due to its band gap energy being comparable to the energy of visible light.
Collapse
Affiliation(s)
- Pulakesh Borah
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Diksha J Baruah
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Prosenjit Mridha
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Rinku Baishya
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Himangsu K Bora
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Manash R Das
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
8
|
Basak S, Haydar MS, Sikdar S, Ali S, Mondal M, Shome A, Sarkar K, Roy S, Roy MN. Phase variation of manganese oxide in the MnO@ZnO nanocomposite with calcination temperature and its effect on structural and biological activities. Sci Rep 2023; 13:21542. [PMID: 38057479 PMCID: PMC10700637 DOI: 10.1038/s41598-023-48695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Having powerful antibacterial and antioxidant effects, zinc oxide and manganese oxide nanomaterials are of great interest. Here we have synthesized manganese oxide decorated zinc oxide (MZO) nanocomposites by co-precipitation method, calcined at different temperatures (300-750 °C) and studied various properties. Here the crystalline structure of the nanocomposite and phase change of the manganese oxide are observed with calcination temperature. The average crystalline size increases and the dislocation density and microstrain decrease with the increase in calcined temperature for the same structural features. The formation of composites was confirmed by XRD pattern and SEM images. EDAX spectra proved the high purity of the composites. Here, different biological properties change with the calcination temperature for different shapes, sizes and structures of the nanocomposite. Nanomaterial calcined at 750 °C provides the best anti-microbial activity against Escherichia coli, Salmonella typhimurium, Shigella flexneri (gram-negative), Bacillus subtilis and Bacillus megaterium (gram-positive) bacterial strain at 300 µg/mL concentration. The nanomaterial with calcination temperatures of 300 °C and 450 °C provided better antioxidant properties.
Collapse
Affiliation(s)
- Shatarupa Basak
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Md Salman Haydar
- Department of Botany, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Suranjan Sikdar
- Department of Chemistry, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal, 732141, India
| | - Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Modhusudan Mondal
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Ankita Shome
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Kushankur Sarkar
- Department of Botany, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
9
|
Ali S, Sikdar S, Basak S, Haydar MS, Mallick K, Mondal M, Roy D, Ghosh S, Sahu S, Paul P, Roy MN. Label-Free Detection of Epinephrine Using Flower-like Biomimetic CuS Antioxidant Nanozymes. Inorg Chem 2023; 62:11291-11303. [PMID: 37432268 DOI: 10.1021/acs.inorgchem.3c00538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
A biosensor comprising crystalline CuS nanoparticles (NPs) was synthesized via a one-step simple coprecipitation route without involvement of a surfactant. The powder X-ray diffraction method has been used to evaluate the crystalline nature and different phases consist of the formation of CuS NPs. Mainly hexagonal unit cells consist of the formation of CuS NP unit cells. Most of the surfaces are covered with rhombohedral microparticles with a smooth exterior and surface clustering, examined by SEM images, and the shape of NPs was spherical, having an average size of 23 nm, as confirmed by TEM analysis. This study has focused on the peroxidase-mimicking activity, superoxide dismutase (SOD)-mimicking activity, and chemosensor-based colorimetric determination and detection of epinephrine (EP) neurotransmitters with excellent selectivity. The CuS NPs catalyzed the oxidation of the oxidase substrate 3, 3-5, 5 tetramethyl benzidine (TMB) with the help of supplementary H2O2 that followed Michaelis-Menten kinetics with excellent Km and Vmax values calculated by the Lineweaver-Burk plot. Taking advantage of the drop in absorbance upon introduction of EP for the CuS NPs-TMB/H2O2 system, a colorimetric route has been developed for selective and real-time detection of EP. The sensitivity of the new colorimetric probe was vibrant, having a linear range of 0-16 μM, and achieved a low limit of detection of 457 nM. Moreover, the present nanosystem exhibited appreciable SOD-mimicking activity which could effectively remove O2•- from commercial cigarette smoke, along with it acting as a potential radical scavenger as well. The new nanosystem effectively scavenged •OH, O2.-, and metal chelation which were investigated calorimetrically.
Collapse
Affiliation(s)
- Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Suranjan Sikdar
- Department of Chemistry, Government General Degree College at Kushmandi, Dakshin Dinajpur, Kushmandi 733121, India
| | - Shatarupa Basak
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Md Salman Haydar
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Kangkan Mallick
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Modhusudan Mondal
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Shibaji Ghosh
- CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Sanjay Sahu
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak 484886, Madhya Pradesh, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| |
Collapse
|
10
|
Green Synthesized Copper Assisted Iron Oxide Nanozyme for the Efficient Elimination of Industrial Pollutant via Peroxodisulfate Activation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Mondal M, Basak S, Ali S, Roy D, Haydar MS, Sarkar K, Ghosh NN, Roy K, Roy MN. Assembled Bisphenol A with cyclic oligosaccharide as the controlled release complex to reduce risky effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43300-43319. [PMID: 36656475 DOI: 10.1007/s11356-023-25217-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Herein, in order to improve the bioavailability of a non-biodegradable pollutant, inclusion complexation procedures had been used to develop better formulations of this pollutant, Bisphenol A (BPA). In our research, an inclusion complex (IC) of β-cyclodextrin (β-CD) with BPA was formed to investigate the effect of β-CD on the water solubility, anti-oxidant, anti-bacterial activity, toxicity, and thermal stability of BPA. UV-Vis and other spectrometric methods such as NMR, FTIR, and XRD indicated the molecular mechanism of interactions between β-CD and BPA, which was further hypothesized using molecular modeling to confirm preliminary results. Studies of TGA and DSC demonstrated that encapsulation boosted the thermal stability of BPA. This research also makes predictions about BPA's release behavior when CT-DNA is present. In vitro testing of the IC's antibacterial activities showed that it outperformed pure BPA. The in silico study was found to have a considerable decrease in toxicity level for IC compared to pure BPA. Therefore, β-CD-encapsulated BPA can lessen toxicity by raising antioxidant levels. Additionally, as its antibacterial activity increases, it may be employed therapeutically. Thus, this discovery of creating BPA formulations with controlled release and/or protective properties allows for a more logical application of BPA by reducing its hazardous effects through boosting its efficacy.
Collapse
Affiliation(s)
- Modhusudan Mondal
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Shatarupa Basak
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Md Salman Haydar
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Darjeeling, 734013, India
| | - Kushankur Sarkar
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Darjeeling, 734013, India
| | | | - Kanak Roy
- Department of Chemistry, Alipurduar University, Alipurduar, 736122, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India.
- Alipurduar University, Alipurduar, 736122, India.
| |
Collapse
|
12
|
Ghosh B, Roy N, Mandal S, Ali S, Bomzan P, Roy D, Salman Haydar M, Dakua VK, Upadhyay A, Biswas D, Paul KK, Roy MN. Host-Guest Encapsulation of RIBO with TSC4X: Synthesis, Characterization, and Its Application by Physicochemical and Computational Investigations. ACS OMEGA 2023; 8:6778-6790. [PMID: 36844564 PMCID: PMC9948204 DOI: 10.1021/acsomega.2c07396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In our present work, we synthesized a new encapsulated complex denoted as RIBO-TSC4X, which was derived from an important vitamin riboflavin (RIBO) and p-sulfonatothiacalix[4]arene(TSC4X). The synthesized complex RIBO-TSC4X was then characterized by utilizing several spectroscopic techniques such as 1H-NMR, FT-IR, PXRD, SEM, and TGA. Job's plot has been employed to show the encapsulation of RIBO (guest) with TSC4X (host) having a 1:1 molar ratio. The molecular association constant of the complex entity (RIBO-TSC4X) was found to be 3116.29 ± 0.17 M-1, suggesting the formation of a stable complex. The augment in aqueous solubility of the RIBO-TSC4X complex compared to pure RIBO was investigated by UV-vis spectroscopy, and it was viewed that the newly synthesized complex has almost 30 times enhanced solubility over pure RIBO. The enhancement of thermal stability upto 440 °C for the RIBO-TSC4X complex was examined by TG analysis. This research also forecasts RIBO's release behavior in the presence of CT-DNA, and at the same time, BSA binding study was also carried out. The synthesized RIBO-TSC4X complex exhibited comparatively better free radical scavenging activity, thereby minimizing oxidative injury of the cell as evident from a series of antioxidant and anti-lipid peroxidation assay. Furthermore, the RIBO-TSC4X complex showed peroxidase-like biomimetic activity, which is very useful for several enzyme catalyst reactions.
Collapse
Affiliation(s)
- Biswajit Ghosh
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Niloy Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Saikat Mandal
- Department
of Chemistry, National Institute of Technology, Durgapur 713209, India
| | - Salim Ali
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Pranish Bomzan
- Department
of Chemistry, Gorubathan Government College, Kalimpong 735231, India
| | - Debadrita Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Md Salman Haydar
- Department
of Botany, University of North Bengal, Darjeeling 734013, India
| | - Vikas Kumar Dakua
- Department
of Chemistry, Alipurduar University, Alipurduar 736122, West Bengal, India
| | - Anupam Upadhyay
- Department
of Chemistry, Alipurduar University, Alipurduar 736122, West Bengal, India
| | - Debabrata Biswas
- Department
of Chemistry, Alipurduar University, Alipurduar 736122, West Bengal, India
| | - Kausik Kumar Paul
- Department
of Chemistry, Alipurduar University, Alipurduar 736122, West Bengal, India
| | - Mahendra Nath Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| |
Collapse
|
13
|
Chen X, Liao J, Lin Y, Zhang J, Zheng C. Nanozyme's catalytic activity at neutral pH: reaction substrates and application in sensing. Anal Bioanal Chem 2023:10.1007/s00216-023-04525-w. [PMID: 36633622 DOI: 10.1007/s00216-023-04525-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Nanozymes exhibit their great potential as alternatives to natural enzymes. In addition to catalytic activity, nanozymes also need to have biologically relevant catalytic reactions at physiological pH to fit in the definition of an enzyme and to achieve efficient analytical applications. Previous reviews in the nanozyme field mainly focused on the catalytic mechanisms, activity regulation, and types of catalytic reactions. In this paper, we discuss efforts made on the substrate-dependent catalytic activity of nanozymes at neutral pH. First, the discrepant catalytic activities for different substrates are compared, where the key differences are the characteristics of substrates and the adsorption of substrates by nanozymes at different pH. We then reviewed efforts to enhance reaction activity for model chromogenic substrates and strategies to engineer nanomaterials to accelerate reaction rates for other substrates at physiological pH. Finally, we also discussed methods to achieve efficient sensing applications at neutral pH using nanozymes. We believe that the nanozyme is catching up with enzymes rapidly in terms of reaction rates and reaction conditions. Designing nanozymes with specific catalysis for efficient sensing remains a challenge.
Collapse
Affiliation(s)
- Xueshan Chen
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jing Liao
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China.,College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, Sichuan, China
| | - Yao Lin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jinyi Zhang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
14
|
Zhu W, Cheng Y, Yan S, Chen X, Wang C, Lu X. A general cation-exchange strategy for constructing hierarchical TiO2/CuInS2/CuS hybrid nanofibers to boost their peroxidase-like activity toward sensitive detection of dopamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Rajamohan R, Ashokkumar S, Lee YR. Environmental free synthesis of biologically active Cu2O nanoparticles for the cytotoxicity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|