1
|
Yu X, Li Y, Li Y, Liu Y, Wang Y. A highly sensitive fluorescent sensor for reversible visual detection of fluoride ion and trace water in food products. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125245. [PMID: 39388943 DOI: 10.1016/j.saa.2024.125245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
A simple diphenylimidazole-based fluorescent sensor (DIP) had been designed for reversible fluorescence sensing of F- and trace water. The sensor showed superior selectivity for F- compared to other anions with fluorescence "turn on" mode. After adding F- to CH3CN solution of DIP, the emission color of DIP changed markedly from weak blue to strong cyan, which could be facilely discerned by the naked eye. The various technical analysis, including spectroscopies, 1H NMR titration and DFT calculation, indicated that the deprotonation of imidazole -NH and -OH occurred in the presence of F-. The detection limit of DIP toward F- could reach as low as 72.3 nM. Moreover, F--induced deprotonation of DIP-F- system exhibited high sensitivity for water with the detection limit of 0.0015 vol%. The reversible switching characteristic of DIP prompted it suitable for the construction of molecular logic gate. In addition, DIP and DIP-F- were successfully applied to the determination of F- content in toothpaste and water content in table salt, sugar and tea, respectively. Moreover, DIP and DIP-F--coated filter paper strips could be used as fluorescent display materials for inkless writing with repeatability.
Collapse
Affiliation(s)
- Xiangzheng Yu
- College of Chemistry, Jilin Normal University, Siping 136000, China
| | - Yue Li
- College of Chemistry, Jilin Normal University, Siping 136000, China
| | - Yang Li
- College of Chemistry, Jilin Normal University, Siping 136000, China
| | - Yucun Liu
- College of Chemistry, Jilin Normal University, Siping 136000, China.
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Dai H, Xu Z, Yang K, Zhou J, Wang J, Zhang Y, Shen Y, Liu X, Jiang Y, Xu W. A Multifunctional Tb(III)-Based Metal-Organic Framework for Chemical Conversion of CO 2, Fluorescence Sensing of Trace Water and Metamitron. Inorg Chem 2024; 63:24351-24362. [PMID: 39643950 DOI: 10.1021/acs.inorgchem.4c04353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The utilization of metal-organic frameworks (MOFs) as fluorescent sensors for the detection of environmental and chemical reagent pollutants as well as heterogeneous catalysis for CO2 conversion represents a crucial avenue of research with significant implications for the protection of human health. In this work, a Tb(III)-based three-dimensional metal-organic framework, [Tb(L)·4DMF]n (Tb-MOF) (H3L = 5'-(4-carboxy-3-hydroxyphenyl)-3,3″-dihydroxy-[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid), has been structurally conformed by single-crystal X-ray crystallography. It possesses a 1D rhombus channel along the [010] direction, featuring a pore size of 6.02 × 9.13 Å. Tb-MOF was proved to be a multifunctional material for a fluorescent sensor and CO2 cycloaddition heterogeneous catalyst material. Fluorescence sensing studies revealed that Tb-MOF demonstrates high sensitivity, selectivity, and favorable regeneration properties, making it an effective chemosensor for detecting the metamitron (MMT) pesticide and trace water in organic solvents. The mechanism of fluorescence quenching by MMT and water was elucidated by a combination of XRD, UV-vis absorption spectra, IR spectra, theoretical calculations, and fluorescence lifetimes. The material was also utilized for the sensing of MMT and water in paper strips. Additionally, the open Tb3+ site as Lewis acidic centers makes Tb-MOF achieve efficiently catalytic conversion for CO2 and epoxides to cyclic carbonates. Moreover, a possible catalytic mechanism for the conversion of carbon dioxide to cyclic carbonates was proposed by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments. It also exhibited recyclability for up to five cycles without noticing an appreciable loss in sensing or catalytic efficiency.
Collapse
Affiliation(s)
- Huan Dai
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Zichen Xu
- Ningbo High School, Ningbo 315600, China
| | - Ke Yang
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Jianchao Zhou
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Jing Wang
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Ya Zhang
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Yudong Shen
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Xiaolan Liu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Yue Jiang
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Zou L, Li M, Wang X, Ye M, Chen L, Wang L, Song Y. A "turn-on" fluorescent sensor based on three-component covalent organic framework for trace water detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123978. [PMID: 38330759 DOI: 10.1016/j.saa.2024.123978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Trace amount of H2O is difficult to eliminate in laboratory environments and chemical industries as impurities. In some chemical reactions, trace amount of H2O can alter final reaction products, yield, and selectivity. So, the detection of trace H2O is very important. Herein, a series of TFPT[X]-BMTH- covalent organic frameworks (COFs) (X = 0, 33, 50, 67, 100 %) with intramolecular charge transfer effect (ICT) and aggregate-induced emission (AIE) characteristics were synthesized by amino-aldehyde condensation reaction between 2,5-bis(2-methoxyethoxy)terephthalohydrazide (BMTH)/ 1,3,5-tris(p-formylphenyl)benzene (TFPB) and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (TFPT). By changing TFPT' content in TFPT[X]-BMTH-COFs, the ICT and AIE of TFPT[X]-BMTH-COFs can be controlled, and accordingly the response to trace H2O can be adjusted. A H2O sensor based on TFPT[67]-BMTH-COF with a wide linear range from 0 wt% to 0.5 wt% was developed and the detection limit was 0.00007 wt%. In addition, a portable fluorescent test paper based on TFPT[67]-BMTH-COF for visual detection of trace H2O in honey samples and salt was constructed. This work has important guiding significance for the development of fluorescent probes for the visual detection of trace water.
Collapse
Affiliation(s)
- Liangmei Zou
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Mengyao Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Xinyi Wang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Meiling Ye
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Lili Chen
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Li Wang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Yonghai Song
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| |
Collapse
|
4
|
Ma X, Jin X, Bai H, Ma L, Li X, Fang X, Chen W, She M. Visual detection of water content in liquor with near-infrared fluorescence sensor assisted by smartphone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123791. [PMID: 38134656 DOI: 10.1016/j.saa.2023.123791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Water content was an essential indicator in organic solvents, and it was necessary to develop a facile, cheap and readily available tool for the real-time, specifical and sensitive detection of water content. In this work, two novel D-π-A type near-infrared fluorescence sensors (DCM-1 and DCM-2) were designed and synthesized for the detection of trace water in organic solvents. DCM-1 and DCM-2 with solvent-dependent effects and large Stokes shift (>120 nm) showed good linear "intensity-to-content" relationships in four commonly-used organic solvents, and accomplished the ultra-fast and high-accuracy detection of the trace water in organic solvents. More importantly, a portable, fast, and accurate smartphone-assisted visual assay was designed for visual quantitative detection of the water content in organic solvents with a detection limit as low as 1.028 % v/v (e.g. in ethanol) and a wide detection range (0-60 % v/v). The smartphone-based visual assay was further applied to estimate the water content in disinfection alcohol and commercial liquor, which furnished a new strategy and broad prospects to achieve the accurate onsite detection of water content.
Collapse
Affiliation(s)
- Xuehao Ma
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Xilang Jin
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China.
| | - Haiyan Bai
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Liyuan Ma
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Xiao Li
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Xingliang Fang
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Weixing Chen
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Mengyao She
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, The College of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China.
| |
Collapse
|
5
|
Jin F, Yan Y, Li X, Liu Y, Liu L. A reversible fluorescent sensor for continuous detection of fluoride ion and trace water in chemical reagents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124059. [PMID: 38422932 DOI: 10.1016/j.saa.2024.124059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Continuously monitorable fluorescence sensors can provide fast, immediate, in-field detection of analytes without tedious process. A simple fluorescent sensor (BN) constructed from naphthol Schiff base was developed for reversible monitoring of F- and trace water. Sensor BN showed specific selectivity toward F- over other anions giving rise to a fluorescence "turn-on" response. After added F-, the BN solution caused a dramatically observable color change from non-fluorescence to blue-green, and the limit of detection reached 78.5 nM. The Job's and 1H NMR analysis confirmed that the recognition mechanism could be concluded to F- caused deprotonation of sensor BN by hydrogen bonding interaction. Moreover, the deprotonated form BN∙F obtained by using F- was acted as excellent sensitivity sensor for trace water detection with instant response through reprotonation. After addition of trace water, the emission color and spectral signal of BN∙F reverted to the original BN sate with the limit of detection of 0.0011 %. The reversible detection characteristic was conducive to the development of an inkless writing and encryption device. And importantly, BN∙F was utilized as a promising fluorescent sensor in the quantitative determination of water content in routinely chemical reagents.
Collapse
Affiliation(s)
- Fengxiu Jin
- College of Chemistry, Jilin Normal University, Siping 136000, China
| | - Yan Yan
- College of Chemistry, Jilin Normal University, Siping 136000, China
| | - Xinci Li
- College of Chemistry, Jilin Normal University, Siping 136000, China
| | - Yucun Liu
- College of Chemistry, Jilin Normal University, Siping 136000, China.
| | - Lihui Liu
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, China.
| |
Collapse
|
6
|
Gao L, Baryshnikov GV, Ali A, Kuklin A, Qian C, Zhang X, Chen F, Yi T, Wu H. Hydrophilic Cocrystals with Water Switched Luminescence. Angew Chem Int Ed Engl 2024; 63:e202318497. [PMID: 38179852 DOI: 10.1002/anie.202318497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Utilizing water molecules to regulate the luminescence properties of solid materials is highly challenging. Herein, we develop a strategy to produce water-triggered luminescence-switching cocrystals by coassembling hydrophilic donors with electron-deficient acceptors, where 1,2,4,5-Tetracyanobenzene (TCNB) was used as the electron acceptor and pyridyl benzimidazole derivatives were used as the electron donors enabling multiple hydrogen-bonds. Two cocrystals, namely 2PYTC and 4PYTC were obtained and showed heat-activated emission, and such emission could be quenched or weakened by adding water molecules. The cocrystal structure exhibited the donor molecule that can form multiple hydro bonds with water and acceptor molecules due to the many nitrogen atoms of them. The analyses of the photophysical data, powder X-ray diffraction, and other data confirmed the reversible fluorescence "on-off" effects were caused by eliminating and adding water molecules in the crystal lattice. The density functional theory calculations indicate that the vibration of the O-H bond of water molecules in the cocrystal can absorb the excitation energy and suppress fluorescence. Furthermore, the obtained cocrystals also showed temperature, humidity, and H+ /NH4 + responsive emission behavior, which allows their applications as thermal and humidity sensors, and multiple information encryptions. This research paves the way for preparing intelligent hydrophilic organic cocrystal luminescent materials.
Collapse
Affiliation(s)
- Lei Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
- College of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou, 543000, P. R. China
| | - Glib V Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174, Norrköping, Sweden
- Department of Chemistry and Nanomaterials Science, Bohdan Khmelnytsky National University, 18031, Cherkasy, Ukraine
| | - Amjad Ali
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174, Norrköping, Sweden
| | - Artem Kuklin
- Division of X-ray Photon Science, Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden
| | - Cheng Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Xianrui Zhang
- College of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou, 543000, P. R. China
| | - Fengkun Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Hongwei Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
7
|
Zhang M, He H, Huang Y, Huang R, Wu Z, Liu X, Deng H. Machine learning integrated high quantum yield blue light carbon dots for real-time and on-site detection of Cr(VI) in groundwater and drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166822. [PMID: 37683863 DOI: 10.1016/j.scitotenv.2023.166822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
The safety of groundwater and drinking water is directly related to the well-being of human beings and ecosystems. On-site monitoring and timely response to heavy metals in these water sources are crucial for water supply security. Fluorescent probes combined with machine learning technology have been applied to on-site detection of heavy metals. However, they were primarily focused on industrial-level detection and lacked the sensitivity required for detecting Cr(VI) in groundwater and drinking water. In this study, we developed an machine learning-integrated approach using high-quantum-yield (QY) N-doped blue-light carbon dots (N-BCDs) for instant detection of Cr(VI) in groundwater and drinking water. N-BCDs were synthesized within 3 min using a household microwave oven with citric acid and 1,2-diaminobenzene, resulting in a QY of approximately 90 %. The fluorescence of N-BCDs was quenched via the internal filter effect (IFE), enabling the detection of Cr(VI) within 1 min, with a detection limit of 0.1574 μg L-1 for Cr(VI) concentrations ranging from 0 to 60 μg L-1. We employed machine learning methods to determine Cr(VI) concentrations from simple shots, based on the red-green-blue (RGB) feature and Kmeans feature extraction. These features were input into four models (Ridge, XGB, SVR, and Linear), achieving a fitness of 95.2 %. Furthermore, the accuracies for Cr(VI) concentration identification in actual groundwater and drinking water were as high as 95.71 % and 96.81 %, respectively. Our work successfully extended the detection range of Cr(VI) to the μg level, significantly improving the practical applicability of the method and providing a new approach for on-site detection of Cr(VI) in groundwater and drinking water.
Collapse
Affiliation(s)
- Mengyuan Zhang
- School of Environmental Science and Engineering South China University of Technology, Guangzhou 510006, China
| | - Haijun He
- Guangzhou Marine Geological Survey, Guangzhou 511458, China
| | - Yanquan Huang
- School of Environmental Science and Engineering South China University of Technology, Guangzhou 510006, China
| | - Renfeng Huang
- School of Environmental Science and Engineering South China University of Technology, Guangzhou 510006, China
| | - Zhen Wu
- School of Environmental Science and Engineering South China University of Technology, Guangzhou 510006, China
| | - Xueming Liu
- School of Environmental Science and Engineering South China University of Technology, Guangzhou 510006, China.
| | - Hong Deng
- School of Environmental Science and Engineering South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
8
|
Li NN, Gao YE, Zhang Q, Gu JX, Li ZY, Yang J, Liu YD, Zhang XG, Wen W. Fluorescence probe with AIE properties for ratiometric/turn off detecting of water in organic solvents and solid state. Supramol Chem 2023. [DOI: 10.1080/10610278.2023.2173073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Na-Na Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou, PR China
| | - Yong-E Gao
- Department of Chemistry, Xinzhou Normal University, Xinzhou, PR China
| | - Qian Zhang
- Department of Chemistry, Xinzhou Normal University, Xinzhou, PR China
| | - Jian-Xia Gu
- Department of Chemistry, Xinzhou Normal University, Xinzhou, PR China
| | - Zhi-Ying Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou, PR China
| | - Jie Yang
- Department of Chemistry, Xinzhou Normal University, Xinzhou, PR China
| | - Yan-Dong Liu
- Department of Chemistry, Xinzhou Normal University, Xinzhou, PR China
| | - Xin-Gao Zhang
- Department of Chemistry, Xinzhou Normal University, Xinzhou, PR China
| | - Wei Wen
- Department of Chemistry, Xinzhou Normal University, Xinzhou, PR China
| |
Collapse
|
9
|
Wei P, Xiao L, Gou Y, He F, Wang P, Yang X. A novel peptide-based relay fluorescent probe with a large Stokes shift for detection of Hg 2+ and S 2- in 100 % aqueous medium and living cells: Visual detection via test strips and smartphone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121836. [PMID: 36126620 DOI: 10.1016/j.saa.2022.121836] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Herein, a novel relay peptide-based fluorescent probe DGRK was synthesized via solid phase peptide synthesis (SPPS) technology. DGRK exhibited excellent water-solubility, good stability, remarkably large Stokes shift (230 nm) and high selectivity response to Hg2+ with a non-fluorescence complex DGRK-Hg2+ formation via a 1:1 binding mode. Further studies indicated that the DGRK-Hg2+ complex could act as a secondary probe for rapidly and sequentially detecting S2- based on fluorescent "off-on" response, and without interference from a range of anions. The limit of detection (LOD) for Hg2+ and S2- were calculated to be 33.6 nM and 60.9 nM, respectively. In addition, The reversibility of interaction of confirmed that the continuous and reversible recognition behavior of Hg2+ and S2- by the probe DGRK, and could be cycled more than 5 times. In addition, DGRK could be successfully applied to the fluorescence imaging of Hg2+ and S2- in two living cells based on excellent cells permeability and low cytotoxicity. Meanwhile, DGRK was successfully used to create the low-cost and portable test strips for visual detection and rapid analysis under 365 nm UV lamp, and the test strips combined with a smartphone (RGB color) was successfully applied to the semi-quantitative analysis and monitoring of dynamic changes of Hg2+ levels.
Collapse
Affiliation(s)
- Ping Wei
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Lin Xiao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Yuting Gou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Fang He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China; Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, Sichuan University of Science & Engineering, Zigong 643000, PR China.
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| |
Collapse
|