1
|
Dorostkar H, Haghiralsadat BF, Hemati M, Safari F, Hassanpour A, Naghib SM, Roozbahani MH, Mozafari MR, Moradi A. Reduction of Doxorubicin-Induced Cardiotoxicity by Co-Administration of Smart Liposomal Doxorubicin and Free Quercetin: In Vitro and In Vivo Studies. Pharmaceutics 2023; 15:1920. [PMID: 37514106 PMCID: PMC10385381 DOI: 10.3390/pharmaceutics15071920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/30/2023] Open
Abstract
Doxorubicin is one of the most effective chemotherapeutic agents; however, it has various side effects, such as cardiotoxicity. Therefore, novel methods are needed to reduce its adverse effects. Quercetin is a natural flavonoid with many biological activities. Liposomes are lipid-based carriers widely used in medicine for drug delivery. In this study, liposomal doxorubicin with favorable characteristics was designed and synthesized by the thin-film method, and its physicochemical properties were investigated by different laboratory techniques. Then, the impact of the carrier, empty liposomes, free doxorubicin, liposomal doxorubicin, and quercetin were analyzed in animal models. To evaluate the interventions, measurements of cardiac enzymes, oxidative stress and antioxidant markers, and protein expression were performed, as well as histopathological studies. Additionally, cytotoxicity assay and cellular uptake were carried out on H9c2 cells. The mean size of the designed liposomes was 98.8 nm, and the encapsulation efficiency (EE%) was about 85%. The designed liposomes were anionic and pH-sensitive and had a controlled release pattern with excellent stability. Co-administration of liposomal doxorubicin with free quercetin to rats led to decreased weight loss, creatine kinase (CK-MB), lactate dehydrogenase (LDH), and malondialdehyde (MDA), while it increased the activity of glutathione peroxidase, catalase, and superoxide dismutase enzymes in their left ventricles. Additionally, it changed the expression of NOX1, Rac1, Rac1-GTP, SIRT3, and Bcl-2 proteins, and caused tissue injury and cell cytotoxicity. Our data showed that interventions can increase antioxidant capacity, reduce oxidative stress and apoptosis in heart tissue, and lead to fewer complications. Overall, the use of liposomal doxorubicin alone or the co-administration of free doxorubicin with free quercetin showed promising results.
Collapse
Affiliation(s)
- Hamidreza Dorostkar
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Bibi Fatemeh Haghiralsadat
- Department of Advanced Medical Sciences and Technologies, Faculty of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Mahdie Hemati
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
- Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Azam Hassanpour
- Department of Anatomical Sciences, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology and Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, IUST, ACECR, Tehran 1684613114, Iran
| | | | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Ali Moradi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 8916877391, Iran
| |
Collapse
|
2
|
Dwiastuti R, Radifar M, Putri DCA, Riswanto FDO, Hariono M. In silico modeling and empirical study of 4- n-Butylresorcinol nanoliposome formulation. J Biomol Struct Dyn 2022; 40:10603-10613. [PMID: 34238124 DOI: 10.1080/07391102.2021.1946430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A study to incorporate in silico modeling with an empirical experiment has been carried out to formulate nanoliposome containing 4-n-butylresorcinol as the active ingredient. The in silico modeling was performed using molecular dynamics simulation followed by radius of gyration observation to provide insight into the mechanisms of 4-n-butylresorcinol stabilization by liposome due to their nano-size. The empirical experiment was conducted by formulating the nanoliposome using soy lecithin phospholipid formula as suggested by the in silico modeling followed by determining its particle size as well as its shape. From their incorporation, it was found that 3200 phospholipid molecules were selected in formulating nanoliposome containing 4-n-butylresorcinol. The results of the nanoliposomes size observation in the modeling of 3200 lipid molecules was 87.01 (± 0.59) nm, whereas the size from the empirical study was 87.57 (± 0.06) nm. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rini Dwiastuti
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| | - Muhammad Radifar
- Medical Laboratory Technology, Guna Bangsa Institute of Health Science, Yogyakarta, Indonesia
| | - Dina Christin Ayuning Putri
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| | - Florentinus Dika Octa Riswanto
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| | - Maywan Hariono
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
| |
Collapse
|
3
|
Clove Oil-Nanostructured Lipid Carriers: A Platform of Herbal Anesthetics in Whiteleg Shrimp (Penaeus vannamei). Foods 2022. [DOI: 10.3390/foods11203162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Whiteleg shrimp (Penaeus vannamei) have been vulnerable to the stress induced by different aquaculture operations such as capture, handling, and transportation. In this study, we developed a novel clove oil-nanostructured lipid carrier (CO-NLC) to enhance the water-soluble capability and improve its anesthetic potential in whiteleg shrimp. The physicochemical characteristics, stability, and drug release capacity were assessed in vitro. The anesthetic effect and biodistribution were fully investigated in the shrimp body as well as the acute multiple-dose toxicity study. The average particle size, polydispersity index, and zeta potential value of the CO-NLCs were 175 nm, 0.12, and −48.37 mV, respectively, with a spherical shape that was stable for up to 3 months of storage. The average encapsulation efficiency of the CO-NLCs was 88.55%. In addition, the CO-NLCs were able to release 20% of eugenol after 2 h, which was lower than the standard (STD)-CO. The CO-NLC at 50 ppm observed the lowest anesthesia (2.2 min), the fastest recovery time (3.3 min), and the most rapid clearance (30 min) in shrimp body biodistribution. The results suggest that the CO-NLC could be a potent alternative nanodelivery platform for increasing the anesthetic activity of clove oil in whiteleg shrimp (P. vannamei).
Collapse
|
4
|
Beg S, Almalki WH, Khatoon F, Alharbi KS, Alghamdi S, Akhter MH, Khalilullah H, Baothman AA, Hafeez A, Rahman M, Akhter S, Choudhry H. Lipid/polymer-based nanocomplexes in nucleic acid delivery as cancer vaccines. Drug Discov Today 2021; 26:1891-1903. [PMID: 33610757 DOI: 10.1016/j.drudis.2021.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/13/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022]
Abstract
Cancer vaccines consist of nucleic acid derivatives such as plasmid DNA, small interfering RNA and mRNA, and can be customized according to the patient's needs. Nanomedicines have proven to be exceptionally good as miniaturized drug carriers, and thus they offer great advantages for delivering cancer vaccines. This review provides an overview of the literature on cancer vaccines, from their inception to current developments in the field.
Collapse
Affiliation(s)
- Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahmida Khatoon
- Department of Biochemistry, College of Medicine, University of Hail, Saudi Arabia
| | - Khalid S Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - Abdullah A Baothman
- Ministry of National Guard-Health Affairs, King Saud Bin Abdulaziz University for Health Science (KSAU-HS), King Abdullah International Medical Research Center (KAIMARC), Saudi Arabia
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Sahranpur, Uttar Pradesh, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, SIHAS, Faculty of Health Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India.
| | - Sohail Akhter
- New Product Development, Global R&D, Sterile ops, TEVA Pharmaceutical Industries Ltd., Aston Ln N, Halton, Preston Brook, Runcorn WA7 3FA, UK; Centre de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Gabr H, El Ghamrawy MK, Almaeen AH, Abdelhafiz AS, Hassan AOS, El Sissy MH. CRISPR-mediated gene modification of hematopoietic stem cells with beta-thalassemia IVS-1-110 mutation. Stem Cell Res Ther 2020; 11:390. [PMID: 32912325 PMCID: PMC7488347 DOI: 10.1186/s13287-020-01876-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 08/05/2020] [Indexed: 11/24/2022] Open
Abstract
Background β-Thalassemias represent a group of genetic disorders caused by human hemoglobin beta (HBB) gene mutations. The radical curative approach is to correct the mutations causing the disease. CRISPR-CAS9 is a novel gene-editing technology that can be used auspiciously for the treatment of these disorders. The study aimed to investigate the utility of CRISPR-CAS9 for gene modification of hematopoietic stem cells in β-thalassemia with IVS-1-110 mutation. Methods and results We successfully isolated CD34+ cells from peripheral blood of β-thalassemia patients with IVS-1-110 mutation. The cells were transfected with Cas9 endonuclease together with guide RNA to create double-strand breaks and knock out the mutation. The mutation-corrected CD34+ cells were subjected to erythroid differentiation by culturing in complete media containing erythropoietin. Conclusion CRISPR/Cas-9 is an effective tool for gene therapy that will broaden the spectrum of therapy and potentially improve the outcomes of β-thalassemia.
Collapse
Affiliation(s)
- Hala Gabr
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | - Aya Osama Saad Hassan
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha Hamdi El Sissy
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
6
|
Danaei M, Kalantari M, Raji M, Samareh Fekri H, Saber R, Asnani G, Mortazavi S, Mozafari M, Rasti B, Taheriazam A. Probing nanoliposomes using single particle analytical techniques: effect of excipients, solvents, phase transition and zeta potential. Heliyon 2018; 4:e01088. [PMID: 30603716 PMCID: PMC6307095 DOI: 10.1016/j.heliyon.2018.e01088] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/05/2018] [Accepted: 12/20/2018] [Indexed: 01/02/2023] Open
Abstract
There has been a steady increase in the interest towards employing nanoliposomes as colloidal drug delivery systems, particularly in the last few years. Their biocompatibility nature along with the possibility of encapsulation of lipid-soluble, water-soluble and amphipathic molecules and compounds are among the advantages of employing these lipidic nanocarriers. A challenge in the successful formulation of nanoliposomal systems is to control the critical physicochemical properties, which impact their in vivo performance, and validating analytical techniques that can adequately characterize these nanostructures. Of particular interest are the chemical composition of nanoliposomes, their phase transition temperature, state of the encapsulated material, encapsulation efficiency, particle size distribution, morphology, internal structure, lamellarity, surface charge, and drug release pattern. These attributes are highly important in revealing the supramolecular arrangement of nanoliposomes and incorporated drugs and ensuring the stability of the formulation as well as consistent drug delivery to target tissues. In this article, we present characterization of nanoliposomal formulations as an example to illustrate identification of key in vitro characteristics of a typical nanotherapeutic agent. Corresponding analytical techniques are discussed within the context of nanoliposome assessment, single particle analysis and ensuring uniform manufacture of therapeutic formulations with batch-to-batch consistency.
Collapse
Affiliation(s)
- M. Danaei
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - M. Kalantari
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - M. Raji
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - H. Samareh Fekri
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - R. Saber
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - G.P. Asnani
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy, Kondhwa, Pune 411 048, (Savitribai Phule Pune University), Maharashtra, India
| | - S.M. Mortazavi
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - M.R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
| | - B. Rasti
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, 3168 Victoria, Australia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - A. Taheriazam
- Department of Orthopaedics, Tehran Medical Sciences Branch IAU, Azad University, 19168 93813 Tehran, Iran
| |
Collapse
|
7
|
Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018; 10:E57. [PMID: 29783687 PMCID: PMC6027495 DOI: 10.3390/pharmaceutics10020057] [Citation(s) in RCA: 2281] [Impact Index Per Article: 325.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
Lipid-based drug delivery systems, or lipidic carriers, are being extensively employed to enhance the bioavailability of poorly-soluble drugs. They have the ability to incorporate both lipophilic and hydrophilic molecules and protecting them against degradation in vitro and in vivo. There is a number of physical attributes of lipid-based nanocarriers that determine their safety, stability, efficacy, as well as their in vitro and in vivo behaviour. These include average particle size/diameter and the polydispersity index (PDI), which is an indication of their quality with respect to the size distribution. The suitability of nanocarrier formulations for a particular route of drug administration depends on their average diameter, PDI and size stability, among other parameters. Controlling and validating these parameters are of key importance for the effective clinical applications of nanocarrier formulations. This review highlights the significance of size and PDI in the successful design, formulation and development of nanosystems for pharmaceutical, nutraceutical and other applications. Liposomes, nanoliposomes, vesicular phospholipid gels, solid lipid nanoparticles, transfersomes and tocosomes are presented as frequently-used lipidic drug carriers. The advantages and limitations of a range of available analytical techniques used to characterize lipidic nanocarrier formulations are also covered.
Collapse
Affiliation(s)
- M Danaei
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - M Dehghankhold
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - S Ataei
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - F Hasanzadeh Davarani
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - R Javanmard
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - A Dokhani
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - S Khorasani
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia.
| |
Collapse
|
8
|
Leng Q, Chou ST, Scaria PV, Woodle MC, Mixson AJ. Increased tumor distribution and expression of histidine-rich plasmid polyplexes. J Gene Med 2015; 16:317-28. [PMID: 25303767 PMCID: PMC4242722 DOI: 10.1002/jgm.2807] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/10/2014] [Indexed: 12/12/2022] Open
Abstract
Background Selecting nonviral carriers for in vivo gene delivery is often dependent on determining the optimal carriers from transfection assays in vitro. The rationale behind this in vitro strategy is to cast a net sufficiently wide to identify the few effective carriers of plasmids for in vivo studies. Nevertheless, many effective in vivo carriers may be overlooked by this strategy because of the marked differences between in vitro and in vivo assays. Methods After solid-phase synthesis of linear and branched histidine/lysine (HK) peptides, the two peptide carriers were compared for their ability to transfect MDA-MB-435 tumor cells in vitro and then in vivo. Results By contrast to their transfection activity in vitro, the linear H2K carrier of plasmids was far more effective in vivo compared to the branch H2K4b. Surprisingly, negatively-charged polyplexes formed by the linear H2K peptide gave higher transfection in vivo than did those with a positive surface charge. To examine the distribution of plasmid expression within the tumor from H2K polyplexes, we found widespread expression by immunohistochemical staining. With a fluorescent tdTomato expressing-plasmid, we confirmed a pervasive distribution and gene expression within the tumor mediated by the H2K polyplex. Conclusions Although mechanisms underlying the efficiency of gene expression are probably multifactorial, unpacking of the H2K polyplex within the tumor appears to have a significant role. Further development of these H2K polyplexes represents an attractive approach for plasmid-based therapies of cancer. © 2014 The Authors. The Journal of Gene Medicine published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
9
|
Martín-Molina A, Luque-Caballero G, Faraudo J, Quesada-Pérez M, Maldonado-Valderrama J. Adsorption of DNA onto anionic lipid surfaces. Adv Colloid Interface Sci 2014; 206:172-85. [PMID: 24359695 DOI: 10.1016/j.cis.2013.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/16/2013] [Accepted: 11/11/2013] [Indexed: 01/05/2023]
Abstract
Currently self-assembled DNA delivery systems composed of DNA multivalent cations and anionic lipids are considered to be promising tools for gene therapy. These systems become an alternative to traditional cationic lipid-DNA complexes because of their low cytotoxicity lipids. However, currently these nonviral gene delivery methods exhibit low transfection efficiencies. This feature is in large part due to the poorly understood DNA complexation mechanisms at the molecular level. It is well-known that the adsorption of DNA onto like charged lipid surfaces requires the presence of multivalent cations that act as bridges between DNA and anionic lipids. Unfortunately, the molecular mechanisms behind such adsorption phenomenon still remain unclear. Accordingly a historical background of experimental evidence related to adsorption and complexation of DNA onto anionic lipid surfaces mediated by different multivalent cations is firstly reviewed. Next, recent experiments aimed to characterise the interfacial adsorption of DNA onto a model anionic phospholipid monolayer mediated by Ca(2+) (including AFM images) are discussed. Afterwards, modelling studies of DNA adsorption onto charged surfaces are summarised before presenting preliminary results obtained from both CG and all-atomic MD computer simulations. Our results allow us to establish the optimal conditions for cation-mediated adsorption of DNA onto negatively charged surfaces. Moreover, atomistic simulations provide an excellent framework to understand the interaction between DNA and anionic lipids in the presence of divalent cations. Accordingly,our simulation results in conjunction go beyond the macroscopic picture in which DNA is stuck to anionic membranes by using multivalent cations that form glue layers between them. Structural aspects of the DNA adsorption and molecular binding between the different charged groups from DNA and lipids in the presence of divalent cations are reported in the last part of the study. Although this research work is far from biomedical applications, we truly believe that scientific advances in this line will assist, at least in part, in the rational design and development of optimal carrier systems for genes and applicable to other drugs.
Collapse
|
10
|
Zhuo H, Peng Y, Yao Q, Zhou N, Zhou S, He J, Fang Y, Li X, Jin H, Lu X, Zhao Y. Tumor imaging and interferon-γ-inducible protein-10 gene transfer using a highly efficient transferrin-conjugated liposome system in mice. Clin Cancer Res 2013; 19:4206-17. [PMID: 23759675 DOI: 10.1158/1078-0432.ccr-12-3451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We have developed a PEGylated transferrin-conjugated liposomes (PTf-Ls) system for the combined tumor imaging and targeted delivery of the IFN-γ-inducible protein-10 (IP-10) gene in a single macromolecular construct. Here, we characterize and analyze the use of this system in a mouse model of breast cancer. EXPERIMENTAL DESIGN The biophysical and cell transfection properties of PTf-Ls were determined through a series of in vitro experiments. A nude mouse/breast cancer cell line xenograft model (mouse xenograft model) was used to image the tumor internalization of fluorescently labeled PTf-Ls. The clinical use of the system was tested by treating tumor-bearing mice with PTf-Ls loaded with IP-10 plasmid DNA or fluorescent lipoplexes. RESULTS The resulting 165-nm liposomes (zeta potential = -10.6 mV) displayed serum resistance, low cytotoxicity (<5%), and high transfection efficiency (≤82.8%) in cultured cells. Systemic intravenous administration of fluorescent PTf-Ls in the mouse xenograft model resulted in nanoparticle circulation for 72 hours, as well as selective and efficient internalization in tumor cells, according to in vivo fluorescence and bioluminescence analyses. Tumor fluorescence increased gradually up to 26 hours, whereas background fluorescence decreased to near-baseline levels. Treatment of mice with PTf-Ls entrapped pcDNA3.1-IP-10 suppressed tumor growth in mice by 79% on day 50 and increased the mean survival time of mice. Fluorescent pcDNA-IP-10-entrapped PTf-Ls showed good properties for simultaneous tumor-targeted imaging and gene-specific delivery in an animal tumor model. CONCLUSIONS Our developed transferrin-conjugated liposome system possesses promising characteristics for tumor-targeting, imaging, and gene therapy applications.
Collapse
Affiliation(s)
- Huiqin Zhuo
- Central Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Gene therapy has long been regarded a promising treatment for many diseases, whether acquired (such as AIDS or cancer) or inherited through a genetic disorder. A drug based on a nucleic acid, however, must be delivered to the interior of the target cell while surviving an array of biological defenses honed by evolution. Successful gene therapy is thus dependent on the development of an efficient delivery vector. Researchers have pursued two major vehicles for gene delivery: viral and nonviral (synthetic) vectors. Although viral vectors currently offer greater efficiency, nonviral vectors, which are typically based on cationic lipids or polymers, are preferred because of safety concerns with viral vectors. So far, nonviral vectors can readily transfect cells in culture, but efficient nanomedicines remain far removed from the clinic. Overcoming the obstacles associated with nonviral vectors to improve the delivery efficiency and therapeutic effect of nucleic acids is thus an active area of current research. The difficulties are manifold, including the strong interaction of cationic delivery vehicles with blood components, uptake by the reticuloendothelial system (RES), toxicity, and managing the targeting ability of the carriers with respect to the cells of interest. Modifying the surface with poly(ethylene glycol), that is, PEGylation, is the predominant method used to reduce the binding of plasma proteins to nonviral vectors and minimize clearance by the RES after intravenous administration. Nanoparticles that are not rapidly cleared from the circulation accumulate in the tumors because of the enhanced permeability and retention effect, and the targeting ligands attached to the distal end of the PEGylated components allow binding to the receptors on the target cell surface. Neutral and anionic liposomes have been also developed for systemic delivery of nucleic acids in experimental animal models. Other approaches include (i) designing and synthesizing novel cationic lipids and polymers, (ii) chemically coupling the nucleic acid to peptides, targeting ligands, polymers, or environmentally sensitive moieties, and (iii) utilizing inorganic nanoparticles in nucleic acid delivery. Recently, the different classes of nonviral vectors appear to be converging, and the ability to combine features of different classes of nonviral vectors in a single strategy has emerged. With the strengths of several approaches working in concert, more hurdles associated with efficient nucleic acid delivery might therefore be overcome. In this Account, we focus on these novel nonviral vectors, which are classified as multifunctional hybrid nucleic acid vectors, novel membrane/core nanoparticles for nucleic acid delivery, and ultrasound-responsive nucleic acid vectors. We highlight systemic delivery studies and consider the future prospects for nucleic acid delivery. A better understanding of the fate of the nanoparticles inside the cell and of the interactions between the parts of hybrid particles should lead to a delivery system suitable for clinical use. We also underscore the value of sustained release of a nucleic acid in this endeavor; making vectors targeted to cells with sustained release in vivo should provide an interesting research challenge.
Collapse
Affiliation(s)
- Xia Guo
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Leaf Huang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Manosroi J, Lohcharoenkal W, Götz F, Werner RG, Manosroi W, Manosroi A. Transdermal Absorption Enhancement of N-Terminal Tat–GFP Fusion Protein (TG) Loaded in Novel Low-Toxic Elastic Anionic Niosomes. J Pharm Sci 2011; 100:1525-34. [DOI: 10.1002/jps.22355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/13/2010] [Accepted: 08/25/2010] [Indexed: 11/10/2022]
|
13
|
|
14
|
Mohammadabadi MR, El-Tamimy M, Gianello R, Mozafari MR. Supramolecular assemblies of zwitterionic nanoliposome-polynucleotide complexes as gene transfer vectors: Nanolipoplex formulation and in vitro characterisation. J Liposome Res 2010; 19:105-15. [PMID: 19242855 DOI: 10.1080/08982100802547326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Synthetic gene transfer vectors based on zwitterionic nanoliposome-DNA assemblies (nanolipoplexes), formed by the mediation of magnesium ions, were prepared by a scalable method without employing volatile solvents, high-shear force treatments or extrusion. The zwitterionic nanolipoplexes (NLP) were formulated with PC (phosphatidylcholine) and DPPC (a natural lung surfactant) incorporating different amounts of cholesterol (CHOL). The resulting structures were characterised in terms of their morphology, size and DNA content. In addition, the toxicity and transfection efficiency of the nanolipoplexes were evaluated in cultured Chinese hamster ovary-K1 (CHO-K1) cells. The effects of the multivalent cation Mg(2+) on nanoliposome-DNA transfection potency were evaluated. Formulations containing 10% CHOL showed maximum transfection efficiency and the optimum amount of Mg(2+) ions for transfection with minimum cytotoxicity was ca. 20 mM. The zwitterionic formulations showed significantly less cytotoxicity compared to a commercially available cationic liposome reagent or polyethylenimine (PEI) while they were superior in terms of gene transfer potency. The zwitterionic vectors formulated in this study avoid the use of toxic cationic lipids as well as toxic solvents and may have potential application in gene therapy. The new method will enable scale-up and manufacture of safe and efficacious transfection vehicles required for preclinical and clinical studies. Based on the advantages and superiority of the formulated nanolipoplexes, this method allows for the acceleration of nanolipoplex formulation, enabling the rapid development and evaluation of novel carrier systems for genes and other drugs.
Collapse
Affiliation(s)
- M R Mohammadabadi
- Department of Animal Sciences, Faculty of Agriculture, Kerman Shahid Bahonar University, Kerman, Iran
| | | | | | | |
Collapse
|
15
|
Abstract
Nanoliposome, or submicron bilayer lipid vesicle, is a new technology for the encapsulation and delivery of bioactive agents. The list of bioactive material that can be incorporated to nanoliposomes is immense, ranging from pharmaceuticals to cosmetics and nutraceuticals. Because of their biocompatibility and biodegradability, along with their nanosize, nanoliposomes have potential applications in a vast range of fields, including nanotherapy (e.g. diagnosis, cancer therapy, gene delivery), cosmetics, food technology and agriculture. Nanoliposomes are able to enhance the performance of bioactive agents by improving their solubility and bioavailability, in vitro and in vivo stability, as well as preventing their unwanted interactions with other molecules. Another advantage of nanoliposomes is cell-specific targeting, which is a prerequisite to attain drug concentrations required for optimum therapeutic efficacy in the target site while minimising adverse effects on healthy cells and tissues. This chapter covers nanoliposomes, particularly with respect to their properties, preparation methods and analysis.
Collapse
Affiliation(s)
- M R Mozafari
- Phosphagenics R&D Laboratory, Clayton, VIC, Australia
| |
Collapse
|
16
|
Sun P, Zhong M, Shi X, Li Z. Anionic LPD complexes for gene delivery to macrophage: preparation, characterization and transfection in vitro. J Drug Target 2009; 16:668-78. [PMID: 18982515 DOI: 10.1080/10611860802201381] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the present study, anionic lipid/peptide/DNA (LPD) complexes consisting of pH-sensitive liposome and protamine were introduced as the carriers targeting RAW 264.7 cell line, which had been reported to be difficult for transfection. The LPD complexes were physically characterized. The pH sensitivities and sizes of liposomes were investigated. The zeta potentials of LPD complexes altered significantly with the addition of protamine sulfate and anionic liposomes. It was demonstrated that the carriers produced an increase in the stability of plasmid DNA against DNase I. The TEM showed that the size distribution of LPD complexes was irregular. In the in vitro transfection, the efficiency of LPD complexes was higher than that of Lipofectamine 2000 and protamine/DNA complexes, but lower than that of electroporation. A possible mechanism for the internalization of plasmid DNA mediated by the anionic LPD complexes was also proposed. With a high safety certificated by MTT assay, LPD complexes prepared in this study might be potentially employed as a macrophage gene therapy.
Collapse
Affiliation(s)
- Peinan Sun
- Huashan Hospital, Fudan University, Shanghai, P.R. China.
| | | | | | | |
Collapse
|
17
|
Ghosh PS, Kim CK, Han G, Forbes NS, Rotello VM. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS NANO 2008; 2:2213-8. [PMID: 19206385 PMCID: PMC2643365 DOI: 10.1021/nn800507t] [Citation(s) in RCA: 327] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Gold colloids functionalized with amino acids provide a scaffold for effective DNA binding with subsequent condensation. Particles with lysine and lysine dendron functionality formed particularly compact complexes and provided highly efficient gene delivery without any observed cytotoxicity. Nanoparticles functionalized with first generation lysine dendrons (NP-LysG1) were approximately 28-fold superior to polylysine in reporter gene expression. These amino acid-based nanoparticles were responsive to intracellular glutathione levels, providing a tool for controlled release and concomitant expression of DNA.
Collapse
Affiliation(s)
- Partha S. Ghosh
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Chae-Kyu Kim
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Gang Han
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|