1
|
Relocation is the key to successful correlative fluorescence and scanning electron microscopy. Methods Cell Biol 2017; 140:215-244. [PMID: 28528635 DOI: 10.1016/bs.mcb.2017.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this chapter the authors report on an automated hardware and software solution enabling swift correlative sample array mapping of fluorescently stained molecules within cells and tissues across length scales. Samples are first observed utilizing wide-field optical and fluorescence microscopy, followed by scanning electron microscopy, using calibration points on a dedicated sample-relocation holder. We investigated HeLa cells in vitro, fluorescently labeled for monosialoganglioside one (GM-1), across both imaging platforms within tens of minutes of initial sample preparation. This resulted in a high-throughput and high spatially resolved correlative fluorescence and electron microscopy analysis and allowed us to collect complementary nanoscopic information on the molecular and structural composition of two differently distinct HeLa cell populations expressing different levels of GM-1. Furthermore, using the small zebrafish animal model Danio rerio, we showed the versatility and relocation accuracy of the sample-relocation holder to locate fluo-tagged macromolecular complexes within large volumes using long ribbons of serial tissue sections. The subsequent electron microscopy imaging of the tissue arrays of interest enabled the generation of correlated information on the fine distribution of albumin within hepatic and kidney tissue. Our approach underpins the merits that an automated sample-relocation holder solution brings in support of results-driven research, where relevant biological questions can be answered, and high-throughput data can be generated in a rigorous statistical manner.
Collapse
|
2
|
Kobayashi K, Cheng D, Huynh M, Ratinac KR, Thordarson P, Braet F. Imaging fluorescently labeled complexes by means of multidimensional correlative light and transmission electron microscopy: practical considerations. Methods Cell Biol 2012; 111:1-20. [PMID: 22857920 DOI: 10.1016/b978-0-12-416026-2.00001-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
These days the common ground between structural biology and molecular biology continues to grow thanks to the biomolecular insights offered by correlative microscopy, even though the vision of combining insights from different imaging tools has been around for nearly four decades. The use of correlative imaging methods to dissect the cell's internal structure is progressing faster than ever as shown by the boom in the number of methodological approaches available for correlative microscopy studies, each designed to address a specific scientific question. In this chapter, we will present a relatively straightforward approach to combining information from fluorescence microscopy and electron microscopy at the supramolecular level. The method combines live-cell and/or confocal laser microscopy with classical sample preparation for transmission electron microscopy (TEM), thereby allowing the integration of dynamic details of subcellular processes with insights about the organelles and molecular machinery involved. We illustrate the applicability of this multidimensional correlative microscopy approach on cultured Caco-2 colorectal cancer cells exposed to fluorescently labeled cisplatin, and discuss how these methods can deepen our understanding of key cellular processes, such as drug uptake and cell fate.
Collapse
Affiliation(s)
- K Kobayashi
- Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
3
|
Jahn KA, Barton DA, Kobayashi K, Ratinac KR, Overall RL, Braet F. Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 2011; 43:565-82. [PMID: 22244153 DOI: 10.1016/j.micron.2011.12.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 12/16/2022]
Abstract
Correlative microscopy is the application of two or more distinct microscopy techniques to the same region of a sample, generating complementary morphological, structural and chemical information that exceeds what is possible with any single technique. As a variety of complementary microscopy approaches rather than a specific type of instrument, correlative microscopy has blossomed in recent years as researchers have recognised that it is particularly suited to address the intricate questions of the modern biological sciences. Specialised technical developments in sample preparation, imaging methods, visualisation and data analysis have also accelerated the uptake of correlative approaches. In light of these advances, this critical review takes the reader on a journey through recent developments in, and applications of, correlative microscopy, examining its impact in biomedical research and in the field of plant science. This twin emphasis gives a unique perspective into use of correlative microscopy in fields that often advance independently, and highlights the lessons that can be learned from both fields for the future of this important area of research.
Collapse
Affiliation(s)
- K A Jahn
- Australian Centre for Microscopy & Microanalysis and The School of Biological Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
4
|
Riquelme G, Vallejos C, de Gregorio N, Morales B, Godoy V, Berrios M, Bastías N, Rodríguez C. Lipid rafts and cytoskeletal proteins in placental microvilli membranes from preeclamptic and IUGR pregnancies. J Membr Biol 2011; 241:127-40. [PMID: 21573936 DOI: 10.1007/s00232-011-9369-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/27/2011] [Indexed: 12/17/2022]
Abstract
Intrauterine growth restriction (IUGR) and preeclampsia (PE) are leading causes of perinatal and maternal morbidity and mortality. Previously we reported the expression of lipid rafts in classical microvillous membrane (MVM) and light microvillous membrane (LMVM), two subdomains in apical membrane from the human placental syncytiotrophoblast (hSTB), which constitute the epithelium responsible for maternal-fetal transport. Here the aim was to study the raft and cytoskeletal proteins from PE and IUGR. Microdomains from MVM and LMVM were tested with raft markers (placental alkaline phosphatase, lipid ganglioside, and annexin 2) and a nonraft marker (hTf-R). No changes were detected with those markers in whole purified apical membranes in normal, PE, and IUGR pregnancies; however, their patterns of distribution in lipid rafts were different in PE and IUGR. Cholesterol depletion modified their segregation, confirming their presence in lipid rafts, although unlike normal placenta, in these pathologies there is only one type of microdomain. Additionally, the cytoskeleton proteins actin, ezrin, and cytokeratin-7 showed clear differences between normal and pathological membranes. Cytokeratin-7 expression decreased to 50% in PE, and the distribution between LMVM and MVM (~43 and 57%, respectively) changed in both PE and IUGR, in contrast with the asymmetrical enrichment obtained in normal LMVM (~62%). In conclusion, lipid rafts from IUGR and PE have different features compared to rafts from normal placentae, and this is associated with alterations in the expression and distribution of cytoskeletal proteins.
Collapse
Affiliation(s)
- Gloria Riquelme
- Depto. de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Casilla 70005, Santiago 7, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Jahn KA, Su Y, Braet F. Multifaceted nature of membrane microdomains in colorectal cancer. World J Gastroenterol 2011; 17:681-90. [PMID: 21390137 PMCID: PMC3042645 DOI: 10.3748/wjg.v17.i6.681] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/23/2010] [Accepted: 11/30/2010] [Indexed: 02/06/2023] Open
Abstract
Membrane microdomains or lipid rafts are known to be highly dynamic and to act as selective signal transduction mediators that facilitate interactions between the cell’s external and internal environments. Lipid rafts play an important mediating role in the biology of cancer: they have been found in almost all existing experimental cancer models, including colorectal cancer (CRC), and play key regulatory roles in cell migration, metastasis, cell survival and tumor progression. This paper explores the current state of knowledge in this field by highlighting some of the pioneering and recent lipid raft studies performed on different CRC cell lines and human tissue samples. From this literature review, it becomes clear that membrane microdomains appear to be implicated in all key intracellular signaling pathways for lipid metabolism, drug resistance, cell adhesion, cell death, cell proliferation and many other processes in CRC. All signal transduction pathways seem to originate directly from those peculiar lipid islands, thereby orchestrating the colon cancer cells’ state and fate. As confirmed by recent animal and preclinical studies in different CRC models, continuing to unravel the structure and function of lipid rafts - including their associated complex signaling pathways - will likely bring us one step closer to better monitoring and treating of colon cancer patients.
Collapse
|
6
|
Su Y, Nykanen M, Jahn KA, Whan R, Cantrill L, Soon LL, Ratinac KR, Braet F. Multi-dimensional correlative imaging of subcellular events: combining the strengths of light and electron microscopy. Biophys Rev 2010; 2:121-135. [PMID: 28510069 DOI: 10.1007/s12551-010-0035-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 07/02/2010] [Indexed: 01/26/2023] Open
Abstract
To genuinely understand how complex biological structures function, we must integrate knowledge of their dynamic behavior and of their molecular machinery. The combined use of light or laser microscopy and electron microscopy has become increasingly important to our understanding of the structure and function of cells and tissues at the molecular level. Such a combination of two or more different microscopy techniques, preferably with different spatial- and temporal-resolution limits, is often referred to as 'correlative microscopy'. Correlative imaging allows researchers to gain additional novel structure-function information, and such information provides a greater degree of confidence about the structures of interest because observations from one method can be compared to those from the other method(s). This is the strength of correlative (or 'combined') microscopy, especially when it is combined with combinatorial or non-combinatorial labeling approaches. In this topical review, we provide a brief historical perspective of correlative microscopy and an in-depth overview of correlative sample-preparation and imaging methods presently available, including future perspectives on the trend towards integrative microscopy and microanalysis.
Collapse
Affiliation(s)
- Yingying Su
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Madsen Building F09, Sydney, NSW, 2006, Australia
| | - Marko Nykanen
- Kids Research Institute, Children's Hospital Westmead, Westmead, Locked Bag 4001, NSW, 2145, Australia
| | - Kristina A Jahn
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Madsen Building F09, Sydney, NSW, 2006, Australia
| | - Renee Whan
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Madsen Building F09, Sydney, NSW, 2006, Australia
| | - Laurence Cantrill
- Kids Research Institute, Children's Hospital Westmead, Westmead, Locked Bag 4001, NSW, 2145, Australia
| | - Lilian L Soon
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Madsen Building F09, Sydney, NSW, 2006, Australia
| | - Kyle R Ratinac
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Madsen Building F09, Sydney, NSW, 2006, Australia
| | - Filip Braet
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Madsen Building F09, Sydney, NSW, 2006, Australia.
| |
Collapse
|
7
|
Current Opinion in Clinical Nutrition and Metabolic Care. Current world literature. Curr Opin Clin Nutr Metab Care 2010; 13:215-21. [PMID: 20145440 DOI: 10.1097/mco.0b013e32833643b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Jahn KA, Barton DA, Su Y, Riches J, Kable EPW, Soon LL, Braet F. Correlative fluorescence and transmission electron microscopy: an elegant tool to study the actin cytoskeleton of whole-mount (breast) cancer cells. J Microsc 2009; 235:282-92. [PMID: 19754723 DOI: 10.1111/j.1365-2818.2009.03223.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Elucidating the structure and dynamics of lamellipodia and filopodia in response to different stimuli is a topic of continuing interest in cancer cells as these structures may be attractive targets for therapeutic purposes. Interestingly, a close functional relationship between these actin-rich protrusions and specialized membrane domains has been recently demonstrated. The aim of this study was therefore to investigate the fine organization of these actin-rich structures and examine how they structurally may relate to detergent-resistant membrane (DRM) domains in the MTLn3 EGF/serum starvation model. For this reason, we designed a straightforward and alternative method to study cytoskeleton arrays and their associated structures by means of correlative fluorescence (/laser)- and electron microscopy (CFEM). CFEM on whole mounted breast cancer cells revealed that a lamellipodium is composed of an intricate filamentous actin web organized in various patterns after different treatments. Both actin dots and DRM's were resolved, and were closely interconnected with the surrounding cytoskeleton. Long actin filaments were repeatedly observed extending beyond the leading edge and their density and length varied after different treatments. Furthermore, CFEM also allowed us to demonstrate the close structural association of DRMs with the cytoskeleton in general and the filamentous/dot-like structural complexes in particular, suggesting that they are all functionally linked and consequently may regulate the cell's fingertip dynamics. Finally, electron tomographic modelling on the same CFEM samples confirmed that these extensions are clearly embedded within the cytoskeletal matrix of the lamellipodium.
Collapse
Affiliation(s)
- K A Jahn
- Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, NSW, Australia.
| | | | | | | | | | | | | |
Collapse
|