1
|
Żelazowska M, Kujawa R. Microscopic study of the primary growth ovarian follicles of the pike-perch Sander lucioperca (Linnaeus 1758) (Actinopterygii, Perciformes). Micron 2022; 160:103318. [PMID: 35759902 DOI: 10.1016/j.micron.2022.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
The ovaries of Sander lucioperca (Actinopterygii, Perciformes) are made up of the germinal epithelium and ovarian follicles, in which primary oocytes grow. Each follicle is composed of an oocyte surrounded by flattened follicular cells, the basal lamina, and thecal cells. The early stages of oocyte development (primary growth = previtellogenesis) are not fully explained in this species. The results of research with the use of stereoscopic, light, fluorescence, and transmission electron microscopes on ovarian follicles containing developing primary oocytes of S. lucioperca are presented. The polarization and ultrastructure of oocytes are described and discussed. The deposition of egg envelopes during the primary growth and the ultrastructure of the eggshell in maturing follicles of S. lucioperca are also presented. Nuclei in primary oocytes comprise lampbrush chromosomes, nuclear bodies, and nucleoli. Numerous additional nucleoli arise in the nucleoplasm during primary growth and locate close to the nuclear envelope. The Balbiani body in the cytoplasm of oocytes (ooplasm) is composed of nuage aggregations of nuclear origin and mitochondria, endoplasmic reticulum (ER), and Golgi apparatus. The presence of the Balbiani body was reported in oocytes of numerous species of Actinopterygii; however, its ultrastructure was investigated in a limited number of species. In primary oocytes of S. lucioperca, the Balbiani body is initially located in the perinuclear ooplasm on one side of the nucleus. Next, it surrounds the nucleus, expands toward the plasma membrane of oocytes (oolemma), and becomes fragmented. Within the Balbiani body, the granular nuage condenses in the form of threads, locates near the oolemma, at the vegetal oocyte pole, and then dissolves. Mitochondria and cisternae of the rough endoplasmic reticulum (RER) are present between the threads. During primary growth micropylar cells differentiate in the follicular epithelium. They contain cisternae and vesicles of the RER and Golgi apparatus as well as numerous dense vesicles suggesting high synthetic and secretory activity. During the final step of primary growth several follicular cells delaminate from the follicular epithelium, migrate toward the oocyte and submerge in the most external egg envelope. In the ooplasm, three regions are distinguished: perinuclear, endoplasm, and periplasm. Cortical alveoli arise in the perinuclear ooplasm and in the endoplasm as a result of the fusion of RER vesicles with Golgi ones. They are evenly distributed. Lamellar bodies in the periplasm store the plasma membrane and release it into a space between the follicular cells and the oocyte. The developing eggshell in this space is made up of two egg envelopes (the internal one and the external) that are pierced by canals formed around the microvilli of oocytes and the processes of follicular cells. In the deposition of egg envelopes the oocyte itself and follicular cells are engaged. In maturing ovarian follicles the eggshell is solid and the internal egg envelope is covered with protuberances.
Collapse
Affiliation(s)
- Monika Żelazowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland.
| | - Roman Kujawa
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719 Olsztyn, Poland
| |
Collapse
|
2
|
Liu H, Wang J, Zhang L, Zhang Y, Wu L, Wang L, Dong C, Nie G, Li X. Transcriptome analysis of common carp (Cyprinus carpio) provides insights into the ovarian maturation related genes and pathways in response to LHRH-A and dopamine inhibitors induction. Gen Comp Endocrinol 2021; 301:113668. [PMID: 33221312 DOI: 10.1016/j.ygcen.2020.113668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/15/2020] [Accepted: 11/13/2020] [Indexed: 11/20/2022]
Abstract
Luteinizing hormone-releasing hormone analog (LHRH-A) and dopamine inhibitors have been widely used to induce oocyte maturation and ovulation in domesticated fishes. Although this approach represents a reliable method for regulating fish reproduction, the underlying molecular mechanisms mediating LH action are largely unexplored. The objective of this study was to determine the transcriptional profile of gene programming in hormone-treated common carp. In the present study, female common carp were intraperitoneally injected with LHRH-A together with dopamine inhibitors, and control fish were injected with saline. Ovarian morphological changes were analysed by both light microscopy and scanning electron microscopy. Furthermore, gene expression profiling of the brain and ovarian tissues was performed by Illumina sequencing. Compared to the control carp, hormone treatment resulted in morphological changes including disappearance of nuclear membrane, breakdown of germinal vesicle (GVBD), and fusion of yolk globules, reflecting that hormones significantly promoted oocyte maturation. In comparison to control, we have identified 867 and 9,053 differentially expressed genes in the hormone-treated female brain and ovary, respectively. In the brain, most of the identified genes were significantly enriched in 18 KEGG pathways. In the ovarian tissue, the identified genes were significantly involved in 9 pathways. In the hormone-treated carp, genes were involved in calcium signalling pathway, cAMP signalling pathway, insulin secretion, and oxidative phosphorylation pathway, which showed obvious associations with ovarian maturation. The present study provides transcriptomic information for hormone-treated carp, which might be useful for studying the endocrine regulation and mechanisms of ovarian maturation in domesticated fishes.
Collapse
Affiliation(s)
- Huifen Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Jing Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Limin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Yuru Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Lei Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Chuanju Dong
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
3
|
Viana IKS, Gonçalves LAB, Ferreira MAP, Mendes YA, Rocha RM. Oocyte growth, follicular complex formation and extracellular-matrix remodeling in ovarian maturation of the imperial zebra pleco fish Hypancistrus zebra. Sci Rep 2018; 8:13760. [PMID: 30213994 PMCID: PMC6137070 DOI: 10.1038/s41598-018-32117-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/16/2018] [Indexed: 01/29/2023] Open
Abstract
This contribution describes the growth of oocytes, addressing the formation of structures that compose the follicular complex, as well as the remodeling of the extracellular matrix, specifically laminin, fibronectin and type IV collagen during gonadal maturation. Thirty-seven females of the Acari zebra fish, Hypancistrus zebra were captured and the ovaries were submitted to histological processing for light and electron microscopy and immunohistochemistry techniques. Oogonia and four stages (I – IV) of oocytes were distinguished, and structures such as the postovulatory follicle and atretic oocytes (initial and advanced atresia) were observed. The follicular complex consists of the mature oocyte, zona radiata (Zr1, Zr2 and Zr3), follicular cells, basement membrane and theca. During oocyte growth, proteins of the extracellular matrix showed different intensities of staining. Based on these observations, a model of oocyte growth is proposed to define specific characteristics of the oocyte and the remodeling of the extracellular matrix in the ovary of H. zebra. This model of oocyte growth can be extended to other species of ornamental fishes. This study contributes data for induced fertilization and eventual conservation of this species.
Collapse
Affiliation(s)
- Ivana Kerly S Viana
- Institute of Biological Sciences, Universidade Federal do Pará, Belém, Pará, Brazil.
| | | | | | - Yanne A Mendes
- Institute of Biological Sciences, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Rossineide M Rocha
- Institute of Biological Sciences, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
4
|
Huang W, Yang P, Lv Z, Wu C, Gui J, Lou B. Cloning, expression pattern and promoter functional analysis of cyp19a1a gene in miiuy croaker. Gene 2017; 627:271-277. [DOI: 10.1016/j.gene.2017.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/07/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
|
5
|
Im J, Kong D, Ghil S. Effects of Water Temperature on Gonad Development in the Cold-Water Fish, Kumgang Fat Minnow Rhynchocypris kumgangensis. CYTOLOGIA 2016. [DOI: 10.1508/cytologia.81.311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jisu Im
- Department of Life Science, Kyonggi University
| | | | - Sungho Ghil
- Department of Life Science, Kyonggi University
| |
Collapse
|