1
|
Alves MMDM, de Almeida Passos VHA, de Souza Leal PPM, Neta PPL, Dos Anjos BS, Acha BT, Tavares Neto JM, Almeida JOCSD, Sousa LDR, Arcanjo DDR, Rodrigues KADF, Carvalho FADA, Baneth G. Yellow mealworm beetle (Tenebrio molitor) larvae as an alternative model for antileishmanial drug evaluation. Vet Parasitol 2025; 337:110468. [PMID: 40273552 DOI: 10.1016/j.vetpar.2025.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Leishmaniasis is zoonotic disease caused by parasites of the genus Leishmania. Available treatments are limited and are associated with a range of adverse effects. The search for potential new drugs involves both in vitro and in vivo assays. Rodents are primarily employed as experimental models for in vivo assays. However, this practice raises ethical concerns, including issues related to environmental impact and animal welfare. Therefore, various alternative methods have emerged to avoid or reduce the use of mammals in laboratories for preclinical trials. The aim of this study was to evaluate Leishmania amazonensis infection in yellow mealworm (Tenebrio molitor) larvae. T. molitor larvae were infected with promastigotes (1 ×10⁵; 1 ×10⁶; and 1 ×10⁷) and assessed through survival curves, degree of melanization, parasitic load, cell proliferation, and oxidative stress levels measured by reduced Glutathione (GSH) and nitrite levels. Leishmania promastigotes which invaded T. motilor plasmatocytes transformed into intracellular amastigotes. Ten percent of larval death was observed after 24 hours in larvae that received 1 × 105 and 1 × 106 promastigotes and 20 % mortality was found for those that received 1 × 107. The parasitic load revealed approximately 1750 parasites/larva infected with the highest concentration. Furthermore, the larvae showed a cellular response pattern similar to that seen in vertebrate host infections, with increased cell proliferation, activation of plasmatocytes, and elevated GSH and nitrite levels. This is the first study to establish T. molitor larvae as an alternative model for investigating Leishmania pathogenesis in invertebrates, proposing its use in preclinical trials for exploring potential new drugs to combat leishmaniasis.
Collapse
Affiliation(s)
- Michel Muálem de Moraes Alves
- Graduate Program in Technologies Applied to Animals of Regional Interest, Federal University of Piauí, Teresina, PI, Brazil; BioLeish-Advanced Research in Leishmania and Alternative Models, Medicinal Plants research Center, Federal University of Piauí, Teresina, PI, Brazil.
| | - Victoria Hannah Araújo de Almeida Passos
- Graduate Program in Technologies Applied to Animals of Regional Interest, Federal University of Piauí, Teresina, PI, Brazil; BioLeish-Advanced Research in Leishmania and Alternative Models, Medicinal Plants research Center, Federal University of Piauí, Teresina, PI, Brazil
| | - Paulline Paiva Mendes de Souza Leal
- Graduate Program in Technologies Applied to Animals of Regional Interest, Federal University of Piauí, Teresina, PI, Brazil; BioLeish-Advanced Research in Leishmania and Alternative Models, Medicinal Plants research Center, Federal University of Piauí, Teresina, PI, Brazil
| | - Pastora Pereira Lima Neta
- Graduate Program in Technologies Applied to Animals of Regional Interest, Federal University of Piauí, Teresina, PI, Brazil; BioLeish-Advanced Research in Leishmania and Alternative Models, Medicinal Plants research Center, Federal University of Piauí, Teresina, PI, Brazil
| | - Bianca Soriano Dos Anjos
- BioLeish-Advanced Research in Leishmania and Alternative Models, Medicinal Plants research Center, Federal University of Piauí, Teresina, PI, Brazil
| | - Boris Timah Acha
- LAFMOL-Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piauí. Teresina, PI, Brazil
| | - Jose Moreira Tavares Neto
- LAFMOL-Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piauí. Teresina, PI, Brazil
| | - José Otávio Carvalho Sena de Almeida
- LAFMOL-Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piauí. Teresina, PI, Brazil
| | - Leonardo da Rocha Sousa
- LAFMOL-Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piauí. Teresina, PI, Brazil
| | - Daniel Dias Rufino Arcanjo
- LAFMOL-Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piauí. Teresina, PI, Brazil
| | | | - Fernando Aécio de Amorim Carvalho
- BioLeish-Advanced Research in Leishmania and Alternative Models, Medicinal Plants research Center, Federal University of Piauí, Teresina, PI, Brazil
| | - Gad Baneth
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Gong W, Lubawy J, Marciniak P, Smagghe G, Słocińska M, Liu D, Liu T, Gui S. Transcriptome and Neuroendocrinome Responses to Environmental Stress in the Model and Pest Insect Spodoptera frugiperda. Int J Mol Sci 2025; 26:691. [PMID: 39859404 PMCID: PMC11766081 DOI: 10.3390/ijms26020691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The fall armyworm, Spodoptera frugiperda, is one of the most notorious pest insects, causing damage to more than 350 plant species, and is feared worldwide as an invasive pest species since it exhibits high adaptivity against environmental stress. Here, we therefore investigated its transcriptome responses to four different types of stresses, namely cold, heat, no water and no food. We used brain samples as our interest was in the neuroendocrine responses, while previous studies used whole bodies of larvae or moths. In general, the responses were complex and encompassed a vast array of neuropeptides (NPs) and biogenic amines (BAs). The NPs were mainly involved in ion homeostasis regulation (ITP and ITPL) and metabolic pathways (AKH, ILP), and this was accompanied by changes in BA (DA, OA) biosynthesis. Cold and no-water stress changed the NP gene expression with the same patterns of expression but clearly separated from each other, and the most divergent pattern of expression was shown after no-food stress. In conclusion, our data provide a foundation in an important model and pest insect with candidate NPs and BAs and other marker candidate genes in response to environmental stress, and also potential new targets to manage pest insects.
Collapse
Affiliation(s)
- Wei Gong
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China; (W.G.); (D.L.); (T.L.)
| | - Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, 61-0614 Poznań, Poland; (J.L.); (P.M.); (M.S.)
| | - Paweł Marciniak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, 61-0614 Poznań, Poland; (J.L.); (P.M.); (M.S.)
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China; (W.G.); (D.L.); (T.L.)
- Cellular and Molecular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, 61-0614 Poznań, Poland; (J.L.); (P.M.); (M.S.)
| | - Dongdong Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China; (W.G.); (D.L.); (T.L.)
| | - Tongxian Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China; (W.G.); (D.L.); (T.L.)
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| | - Shunhua Gui
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China; (W.G.); (D.L.); (T.L.)
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Wang S, Miao S, Li Y, Wang J, Li C, Lu Y, Li B. Morphological and functional characterization of circulating hemocytes in Tribolium castaneum larvae. INSECT SCIENCE 2024. [PMID: 39361781 DOI: 10.1111/1744-7917.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 10/05/2024]
Abstract
Hemocytes are pivotal in the immune response of insects against invasive pathogens. However, our knowledge of hemocyte types and their specific function in Tribolium castaneum, an increasingly important Coleoptera model insect in various research fields, remains limited. Presently, a combination of morphological criteria and dye-staining properties were used to characterize hemocyte types from T. castaneum larvae, and 4 distinct types were identified: granulocytes, oenocytoids, plasmatocytes and prohemocytes. Following different immune challenges, the total hemocyte counts declined rapidly in the initial phase (at 2 h), then increased over time (at 4 and 6 h) and eventually returned to the naive state by 24 h post-injection. Notably, the morphology of granulocytes underwent dramatic changes, characterized by an expansion of the surface area and an increased production of pseudopods, and with the number of granulocytes rising significantly through mitotic division. Granulocytes and plasmatocytes, the main hemocyte types in T. castaneum larvae, can phagocytose bacteria or latex beads injected into the larval hemolymph in vivo. Furthermore, these hemocytes participate in the encapsulation and melanization processes in vitro, forming capsules to encapsulate and melanize nickel-nitrilotriacetic acid (Ni-NTA) beads. This study provides the first comprehensive characterization of circulating hemocytes in T. castaneum larvae, offering valuable insights into cell-mediated immunity in response to bacterial infection and the injection of latex beads. These results deepen our understanding of the cellular response mechanisms in T. castaneum larvae and lay a solid foundation for subsequent investigations of the involvement of T. castaneum hemocytes in combating pathogens.
Collapse
Affiliation(s)
- Suisui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shiyuan Miao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- College of Environmental and Life Science, Murdoch University, Murdoch, WA, Australia
| | - Yusi Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jianhui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yujie Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Crosland A, Rigaud T, Develay C, Moret Y. Growth and longevity modulation through larval environment mediate immunosenescence and immune strategy of Tenebrio molitor. Immun Ageing 2024; 21:7. [PMID: 38212729 PMCID: PMC10785379 DOI: 10.1186/s12979-023-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND The Disposable Soma Theory of aging suggests a trade-off between energy allocation for growth, reproduction and somatic maintenance, including immunity. While trade-offs between reproduction and immunity are well documented, those involving growth remain under-explored. Rapid growth might deplete resources, reducing investment in maintenance, potentially leading to earlier or faster senescence and a shorter lifespan. However, rapid growth could limit exposure to parasitism before reaching adulthood, decreasing immunity needs. The insect immunity's components (cellular, enzymatic, and antibacterial) vary in cost, effectiveness, and duration. Despite overall immunity decline (immunosenescence), its components seem to age differently. We hypothesize that investment in these immune components is adjusted based on the resource cost of growth, longevity, and the associated risk of parasitism. RESULTS We tested this hypothesis using the mealworm beetle, Tenebrio molitor as our experimental subject. By manipulating the larval environment, including three different temperatures and three relative humidity levels, we achieved a wide range of growth durations and longevities. Our main focus was on the relationship between growth duration, longevity, and specific immune components: hemocyte count, phenoloxidase activity, and antibacterial activity. We measured these immune parameters both before and after exposing the individuals to a standard bacterial immune challenge, enabling us to assess immune responses. These measurements were taken in both young and older adult beetles. Upon altering growth duration and longevity by modifying larval temperature, we observed a more pronounced investment in cellular and antibacterial defenses among individuals with slow growth and extended lifespans. Intriguingly, slower-growing and long-lived beetles exhibited reduced enzymatic activity. Similar results were found when manipulating larval growth duration and adult longevity through variations in relative humidity, with a particular focus on antibacterial activity. CONCLUSION The impact of growth manipulation on immune senescence varies by the specific immune parameter under consideration. Yet, in slow-growing T. molitor, a clear decline in cellular and antibacterial immune responses with age was observed. This decline can be linked to their initially stronger immune response in early life. Furthermore, our study suggests an immune strategy favoring enhanced antibacterial activity among slow-growing and long-lived T. molitor individuals.
Collapse
Affiliation(s)
- Agathe Crosland
- Biogéosciences (UMR-CNRS 6282), Université de Bourgogne, Dijon, France.
| | - Thierry Rigaud
- Biogéosciences (UMR-CNRS 6282), Université de Bourgogne, Dijon, France
| | - Charlène Develay
- Biogéosciences (UMR-CNRS 6282), Université de Bourgogne, Dijon, France
| | - Yannick Moret
- Biogéosciences (UMR-CNRS 6282), Université de Bourgogne, Dijon, France
| |
Collapse
|
5
|
Urbański A, Konopińska N, Walkowiak-Nowicka K, Roizman D, Lubawy J, Radziej M, Rolff J. Functional homology of tachykinin signalling: The influence of human substance P on the immune system of the mealworm beetle, Tenebrio molitor L. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104669. [PMID: 36791872 DOI: 10.1016/j.dci.2023.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Tachykinin-related peptides (TRPs) are one of the most prominent families of neuropeptides in the animal kingdom. Insect TRPs display strong structural and functional homology to vertebrate tachykinins (TKs). To study functional homologies between these two neuropeptide families, the influence of human substance P (SP, one of the essential vertebrate TKs) on the immune system of the mealworm beetle, Tenebrio molitor L., was analysed. Human SP influences the phagocytic abilities of T. molitor haemocytes. Peptide injection leads to an increase in the number of haemocytes participating in the phagocytosis of latex beads. In contrast, incubation of haemocytes from non-injected beetles in a solution of physiological saline and SP causes a decrease in phagocytic activity. Treatment with human SP also led to increased adhesion of haemocytes, but no changes in the arrangement of the F-actin cytoskeleton were observed. Interestingly, 6 h after human SP injection, increased DNA integrity in T. molitor haemocytes was reported. The opposite effects were observed 24 h after SP injection. Human SP caused the upregulation of humoral immune responses, such as phenoloxidase (PO) activity in the T. molitor haemolymph, and the downregulation of immune-related genes encoding coleoptericin A, tenecin 3 and Toll receptor. However, genes encoding attacin 2 and cecropin were upregulated. Despite these differences, the antimicrobial activity of T. molitor haemolymph was significantly lower in beetles injected with SP than in control beetles. Moreover, an analysis of the direct influence of SP on lysozyme activity was performed. Our results suggest that SP at a concentration of 10-6 M can directly inhibit lysozyme activity. However, an opposite effect was reported after the application of SP at a concentration of 10-4 M. The presented results suggest structural and functional homology between TK signalling in vertebrates and insects. Primarily, this was visible in the context of the humoral response and general antimicrobial activity of T. molitor haemolymph. However, some of the results related to haemocyte function may also indicate the importance of the TK and TRP sequences for evoking immunological effects.
Collapse
Affiliation(s)
- A Urbański
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland.
| | - N Konopińska
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland
| | - K Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland
| | - D Roizman
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany
| | - J Lubawy
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland
| | - M Radziej
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland
| | - J Rolff
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Königin-Luise-Str. 2-4, 14195, Berlin, Germany
| |
Collapse
|
6
|
Urbański A, Konopińska N, Bylewska N, Gmyrek R, Spochacz-Santoro M, Bufo SA, Adamski Z. Solanum nigrum Fruit Extract Modulates Immune System Activity of Mealworm Beetle, Tenebrio molitor L. Toxins (Basel) 2023; 15:68. [PMID: 36668887 PMCID: PMC9861574 DOI: 10.3390/toxins15010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Here, we report the first evidence concerning the modulation of insect immune system activity after applying Solanum nigrum fruit extract (EXT). We focused on two main issues: (1) is EXT cytotoxic for Tenebrio molitor haemocytes? and (2) how EXT affects the basic immune mechanisms of T. molitor. The results indicate cytotoxic action of 0.01 and 0.1% EXT on beetle haemocytes. Both the injection of EXT and incubating haemocytes with the EXT solution on microscopic slides significantly increased the number of apoptotic cells. However, 24 h after injection of 0.1% EXT cytotoxic effect of the tested extract probably was masked by the increased number of circulating haemocytes. Application of 0.01 and 0.1% EXT led to impairment of the activity of basic immune mechanisms such as phenoloxidase activity and the lysozyme-like antimicrobial activity of T. molitor haemolymph. Moreover, the EXT elicited significant changes in the expression level of selected immune genes. However, some of the immunomodulatory effects of EXT were different in beetles with and without an activated immune system. The obtained results are an essential step toward a complete understanding of the EXT mode of action on the T. molitor physiology and its potential usage in pest control.
Collapse
Affiliation(s)
- Arkadiusz Urbański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Natalia Konopińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Natalia Bylewska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Radosław Gmyrek
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Marta Spochacz-Santoro
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | | | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| |
Collapse
|
7
|
Jehan C, Sabarly C, Rigaud T, Moret Y. Senescence of the immune defences and reproductive trade-offs in females of the mealworm beetle, Tenebrio molitor. Sci Rep 2022; 12:19747. [PMID: 36396809 PMCID: PMC9671880 DOI: 10.1038/s41598-022-24334-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
In the theory of ageing, it has been assumed that ageing is associated with a decline in somatic defences, including the immune system, as a consequence of a trade-off with reproduction. While overall immunity suffers from age-related deterioration (immune senescence), the different components of the immune response appear to age differently. It is also likely that investment among the many arms of the immune system and reproduction with age is finely adjusted to the organisms' reproductive strategy. We investigated this possibility in females of Tenebrio molitor, a species of long-lived insect with reproductive strategies similar to those of long-lived mammals. We specifically tested the effects of immunological challenges imposed early or late in adult life on immune pathway activation as well as fertility early and late in life. We found complex patterns of changes in immune defences with age and age-specific immune challenges with contrasted relationships with female reproduction. While cellular and enzymatic defences showed signs of ageing, they did not trade-off with reproduction. By contrast, the induced antibacterial immune response was found to be unaffected by age and to be highly connected to female fecundity. These findings suggest that these immunological pathways have different functions with regard to female ageing in this insect species.
Collapse
Affiliation(s)
- Charly Jehan
- Laboratoire BioGéoSciences, UMR CNRS 6282, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Camille Sabarly
- Laboratoire BioGéoSciences, UMR CNRS 6282, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Thierry Rigaud
- Laboratoire BioGéoSciences, UMR CNRS 6282, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Yannick Moret
- Laboratoire BioGéoSciences, UMR CNRS 6282, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, 6 Boulevard Gabriel, 21000, Dijon, France.
| |
Collapse
|
8
|
Abstract
INTRODUCTION Grasshoppers and locusts are widely distributed worldwide, causing significant losses in agriculture. The origin and functions of their haemocytes are not entirely understood. OBJECTIVES Insect haemocytes arbitrate cellular defence and participate in humoral defences. Due to their importance, the haemocytes of 35 species of grasshoppers and locusts from China were morphologically examined in this study. We aim to highlight a simple method for the morphological examination of insect haemocytes. METHODS The haemocytes were observed, counted and compared under a light microscope after Wright-Giemsa staining. RESULTS High complexity in form and shape were observed in the haemocytes. These include prohaemocytes, plasmatocytes, granulocytes, vermicytes, podocytes and megakaryocytes. No clear relationship was seen between the haemocyte type and their phylogenetic relationship among the three families examined. The high abundance of plasmatocytes and granulocytes suggests their importance in the immunity of grasshoppers and locusts. The minor haemocyte populations including prohaemocytes, vermicytes and podocytes may not be always present in individuals. CONCLUSION All examined species shared similarities in their haemocyte types. Wright-Giemsa staining is a simple and efficient method for evaluating haemocytes.
Collapse
Affiliation(s)
- Keshi Zhang
- College of Life Science, Shanxi University, China
| | | |
Collapse
|
9
|
Sanchez-Hernandez JC. A toxicological perspective of plastic biodegradation by insect larvae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109117. [PMID: 34186180 DOI: 10.1016/j.cbpc.2021.109117] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022]
Abstract
Larvae of some insect species (Coleoptera and Lepidoptera) can consume and biodegrade synthetic polymers, including polyethylene, polystyrene, polyvinyl chloride, and polypropylene. Multiple chemical (polymer mass loss and shift of the molecular weight, alterations in chemical functionality, formation of biodegraded intermediates, CO2 production), physical (surface hydrophobicity, thermal analysis), and biological approaches (antibiotic treatment, gut dysbiosis, isolation of plastic microbial degraders) have provided evidence for polymer biodegradation in the larva digestive tract. However, the extent and rate of biodegradation largely depend on the physicochemical structure of the polymer as well as the presence of additives. Additionally, toxicology associated with plastic biodegradation has not been investigated. This knowledge gap is critical to understand the gut symbiont-host interaction in the biodegradation process, its viability in the long term, the effects of plastic additives and their metabolites, and the phenotypic traits linked to a plastic-rich diet might be transferred in successive generations. Likewise, plastic-eating larvae represent a unique case study for elucidating the mechanisms of toxic action by micro- and nanoplastics because of the high concentration of plastics these organisms may be intentionally exposed to. This perspective review graphically summarizes the current knowledge on plastic biodegradation by insect larvae and describes the physiological processes (digestive and immune systems) that may be disrupted by micro- and nanoplastics. It also provides an outlook to advance current knowledge on the toxicity assessment of plastic-rich diets and the environmental risks of plastic-containing by-products (e.g., insect manure used as fertilizer).
Collapse
Affiliation(s)
- Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Faculty of Environmental Science and Biochemistry, University of Castilla-La Mancha, 45071 Toledo, Spain.
| |
Collapse
|
10
|
Urbański A, Konopińska N, Lubawy J, Walkowiak-Nowicka K, Marciniak P, Rolff J. A possible role of tachykinin-related peptide on an immune system activity of mealworm beetle, Tenebrio molitor L. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104065. [PMID: 33705792 DOI: 10.1016/j.dci.2021.104065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Tachykinin-related peptides (TRPs) are important neuropeptides. Here we show that they affect the insect immune system, especially the cellular response. We also identify and predict the sequence and structure of the tachykinin-related peptide receptor (TRPR) and confirm the presence of expression of gene encoding TRPR on Tenebrio molitor haemocytes. After application of the Tenmo-TRP-7 in T. molitor the number of circulating haemocytes increased and the number of haemocytes participating in phagocytosis of latex beads decreased in a dose- and time-dependent fashion. Also, Tenmo-TRP-7 affects the adhesion ability of haemocytes. Six hours after injection of Tenmo-TRP-7, a decrease of haemocyte surface area was observed under both tested Tenmo-TRP-7 concentrations (10-7 and 10-5 M). The opposite effect was reported 24 h after injection, which indicates that the influence of Tenmo-TRP-7 on modulation of haemocyte behaviour differs at different stages of stress response. Tenmo-TRP-7 application also resulted in increased phenoloxidase activity 6 and 24 h after injection. The assessment of DNA integrity of haemocytes showed that the injection of Tenmo-TRP-7 at 10-7 M led to a decrease in DNA damage compared to control individuals. This effect was only visible 6 h after Tenmo-TRP-7 application. After 24 h, Tenmo-TRP-7 injection increased DNA damage. We also confirmed the expression of immune-related genes in nervous tissue of T. molitor. Transcripts for genes encoding receptors participating in pathogen recognition processes and antimicrobial peptides were detected in T. molitor brain, retrocerebral complex and ventral nerve cord. These results may indicate a role of the insect nervous system in pathogen recognition and modulation of immune response similar to vertebrates. Taken together, our results support the notion that tachykinin-related peptides probably play an important role in the regulation of the insect immune system. Moreover, some resemblances with action of tachykinin-related peptides and substance P showed that insects can be potential model organisms for analysis of hormonal regulation of conserved innate immune mechanisms.
Collapse
Affiliation(s)
- A Urbański
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland; HiProMine S.A, Poznańska Str. 8, 62-023, Robakowo, Poland.
| | - N Konopińska
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland
| | - J Lubawy
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland
| | - K Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland
| | - P Marciniak
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego Str. 6, 61-614, Poznań, Poland
| | - J Rolff
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Königin-Luise-Str. 2-4, 14195, Berlin, Germany
| |
Collapse
|
11
|
Urbański A, Walkowiak-Nowicka K, Nowicki G, Chowański S, Rosiński G. Effect of Short-Term Desiccation, Recovery Time, and CAPA-PVK Neuropeptide on the Immune System of the Burying Beetle Nicrophorus vespilloides. Front Physiol 2021; 12:671463. [PMID: 34234689 PMCID: PMC8255627 DOI: 10.3389/fphys.2021.671463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Environmental conditions, especially related to winter, are crucial for shaping activity of insect immune system. However, our previous research clearly indicates differences in the immune system functioning when the cold stress was induced in the laboratory conditions and when the beetles were collected from natural environment during winter. This is probably related to the multiplication of observed effects by simultaneous presence of different stress factors characteristic of winter, including desiccation. For these reasons, our next step was analysis of the effects of short-term desiccation and recovery time on the functioning of immune system of burying beetle Nicrophorus vespilloides. Also, the effect of Tenmo–PVK-2 (tenebrionid periviscerokinin), member of the CAPA–PVK neuropeptide family, was investigated to better understand observed changes. Short-term desiccation decreases the phagocytic activity of burying beetle haemocytes, which is correlated with a reduction in their adhesive ability. On the other hand, there was a significant increase in phenoloxidase (PO) activity and the level of proPO expression, which may suggest sealing the cuticula by melanin deposition and prevention of water loss. Additionally, the elevated level of defensin expression may be associated with the cross-talk between mechanisms, which participate in insect response to environmental stress, including pathogen infection. After 1 h of recovery time, the activity of tested cellular and humoral mechanisms was mostly back to the control level. However, inhibition of the activity of PO and down-regulation of proPO were noted. These results also indicate importance of melanin deposition during water loss. Moreover, it suggests that some changes in immune system functioning during stress conditions do not have an immune function. Interestingly, part of the effects characteristic of recovery time were also observed after the application of Tenmo–PVK-2, mainly related to haemocyte morphology. These results indicate that CAPA–PVK neuropeptides may also influence on activity of burying beetle immune system. It should be also highlighted that, because of the study of the effects of CAPA–PVK neuropeptides, homologs of vertebrate neuromedin U, the results may be interesting for search evolutionary similarities in the functioning of the neuroendocrine system of insects and vertebrates.
Collapse
Affiliation(s)
- Arkadiusz Urbański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland.,HiProMine S.A., Robakowo, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Grzegorz Nowicki
- Molecular Virology Research Unit, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland.,genXone S.A., Złotniki, Poland
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
12
|
Vommaro ML, Kurtz J, Giglio A. Morphological Characterisation of Haemocytes in the Mealworm Beetle Tenebrio molitor (Coleoptera, Tenebrionidae). INSECTS 2021; 12:insects12050423. [PMID: 34066849 PMCID: PMC8151185 DOI: 10.3390/insects12050423] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
The immunocompetence of the mealworm beetle Tenebrio molitor has been well investigated at molecular and physiological levels, but information on morphological and functional characteristics of its immune cells (haemocytes) is still scarce and fragmentary. This study provides an updated overview of the morphology of circulating immune cells from mealworm beetle adults, using light and transmission electron microscopy. Based on their affinities for May-Grünwald Giemsa stain, haemocytes were defined as either eosinophilic, basophilic or neutral. Ultrastructural descriptions allowed to detect four main cell types in the haemolymph: prohaemocytes, plasmatocytes, granular cells and oenocytoids. The morphological plasticity of haemocytes and the evidence of mitotic circulating cells, intermediate cell stages, as well as autophagic activities suggest haemocyte proliferation, turnover and transdifferentiation as constantly active processes in the haemolymph. Cytochemical tests revealed differences in the distribution of carbohydrates among cell types underling the great plasticity of the immune response and the direct involvement of circulating immune cells in the resource allocation. In addition, our results provide a detailed morphological description of vesicle trafficking, macro- and microautophagy, apoptotic and necrotic processes, confirming the suitability of T. molitor haemocytes as a model for studying evolutionarily conserved cellular mechanisms.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy;
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy;
- Correspondence: ; Tel.: +39-098-449-2982; Fax: +39-098-449-2986
| |
Collapse
|
13
|
Jehan C, Sabarly C, Rigaud T, Moret Y. Late-life reproduction in an insect: Terminal investment, reproductive restraint or senescence. J Anim Ecol 2020; 90:282-297. [PMID: 33051872 DOI: 10.1111/1365-2656.13367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/09/2020] [Indexed: 01/28/2023]
Abstract
The terminal investment, reproductive restraint or senescence theories may explain individual late-life patterns of reproduction. The terminal investment hypothesis predicts that individuals increase reproductive allocation late in life as prospects for future survival decrease. The other two hypotheses predict reduced reproduction late in life, but for different reasons. Under the Reproductive Restraint hypothesis, individuals restrain their reproductive effort to sustain future survival and gain more time for reproducing, whereas under the Senescence process, reproduction is constrained because of somatic deterioration. While these hypotheses imply that reproduction is costly, they should have contrasted implications in terms of survival after late reproduction and somatic maintenance. Testing these hypotheses requires proper consideration of the effects of age-dependent reproductive effort on post-reproduction survival and age-related somatic functions. We experimentally tested these three hypotheses in females of the mealworm beetle, Tenebrio molitor, an iteroparous and income breeder insect. We manipulated their age-specific allocation into reproduction and observed the effects of this manipulation on their late-life fecundity, post-reproduction survival and immunocompetence as a measurement of somatic protection. We found that females exhibit age-related decline in fecundity and that this reproductive senescence is accelerated by a cost of early reproduction. The cost of reproduction had no significant effect on female longevity and their ability to survive a bacterial infection, despite that some immune cells were depleted by reproduction. We found that female post-infection survival deteriorated with age, which could be partly explained by a decline in some immune parameters. Importantly, females did not increase their reproductive effort late in life at the expense of their late-life post-reproduction survival. Late-life reproduction in T. molitor females is senescing and not consistent with a terminal investment strategy. Rather, our results suggest that females allocate resources according to a priority scheme favouring longevity at the expense of reproduction, which is in line with the reproductive restraint hypothesis. Such a priority scheme also shows that a relatively short-lived insect can evolve life-history strategies hitherto known only in long-lived animals. This puts in perspective the role of longevity in the evolution of life-history strategies.
Collapse
Affiliation(s)
- Charly Jehan
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Camille Sabarly
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Thierry Rigaud
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
14
|
Torres M, de Cock H, Celis Ramírez AM. In Vitro or In Vivo Models, the Next Frontier for Unraveling Interactions between Malassezia spp. and Hosts. How Much Do We Know? J Fungi (Basel) 2020; 6:jof6030155. [PMID: 32872112 PMCID: PMC7558575 DOI: 10.3390/jof6030155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Malassezia is a lipid-dependent genus of yeasts known for being an important part of the skin mycobiota. These yeasts have been associated with the development of skin disorders and cataloged as a causal agent of systemic infections under specific conditions, making them opportunistic pathogens. Little is known about the host-microbe interactions of Malassezia spp., and unraveling this implies the implementation of infection models. In this mini review, we present different models that have been implemented in fungal infections studies with greater attention to Malassezia spp. infections. These models range from in vitro (cell cultures and ex vivo tissue), to in vivo (murine models, rabbits, guinea pigs, insects, nematodes, and amoebas). We additionally highlight the alternative models that reduce the use of mammals as model organisms, which have been gaining importance in the study of fungal host-microbe interactions. This is due to the fact that these systems have been shown to have reliable results, which correlate with those obtained from mammalian models. Examples of alternative models are Caenorhabditis elegans, Drosophila melanogaster, Tenebrio molitor, and Galleria mellonella. These are invertebrates that have been implemented in the study of Malassezia spp. infections in order to identify differences in virulence between Malassezia species.
Collapse
Affiliation(s)
- Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 N° 18A—12, Bogotá, Bogotá D.C. 11711, Colombia;
| | - Hans de Cock
- Microbiology, Department of Biology, Faculty of Science, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 N° 18A—12, Bogotá, Bogotá D.C. 11711, Colombia;
- Correspondence:
| |
Collapse
|
15
|
Lubawy J, Słocińska M. Characterization of Gromphadorhina coquereliana hemolymph under cold stress. Sci Rep 2020; 10:12076. [PMID: 32694601 PMCID: PMC7374602 DOI: 10.1038/s41598-020-68941-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Low temperatures in nature occur together with desiccation conditions, causing changes in metabolic pathways and cellular dehydration, affecting hemolymph volume, water content and ion homeostasis. Although some research has been conducted on the effect of low temperature on Gromphadorhina coquereliana, showing that it can survive exposures to cold or even freezing, no one has studied the effect of cold on the hemolymph volume and the immune response of this cockroach. Here, we investigated the effect of low temperature (4 °C) on the abovementioned parameters, hemocyte morphology and total number. Cold stress affected hemocytes and the immune response, but not hemolymph volume. After stress, the number of circulating hemocytes decreased by 44.7%, but the ratio of apoptotic cells did not differ significantly between stressed and control individuals: 8.06% and 7.18%, respectively. The number of phagocyting hemocytes decreased by 16.66%, the hemocyte morphology drastically changed, and the F-actin cytoskeleton differed substantially in cold-stressed insects compared to control insects. Moreover, the surface area of the cells increased from 393.69 µm2 in the control to 458.38 µm2 in cold-treated animals. Together, our results show the links between cold stress and the cellular immune response, which probably results in the survival capability of this species.
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
16
|
Keshavarz M, Jo YH, Patnaik BB, Park KB, Ko HJ, Kim CE, Edosa TT, Lee YS, Han YS. TmRelish is required for regulating the antimicrobial responses to Escherichia coli and Staphylococcus aureus in Tenebrio molitor. Sci Rep 2020; 10:4258. [PMID: 32144366 PMCID: PMC7060202 DOI: 10.1038/s41598-020-61157-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Relish, a transcription factor, is a critical downstream component of the immune deficiency (Imd) pathway and regulates host defense against bacterial infection by mediating antimicrobial peptide (AMP) synthesis. Understanding the immunological function of the mealworm beetle, Tenebrio molitor Relish (TmRelish) will be instructive in understanding insect immunity. In the present study, full-length ORF of TmRelish was retrieved from T. molitor-expressed sequence tags and RNA-seq database. The predicted TmRelish amino acid sequence contained an N-terminal Rel-homology domain; an Ig-like, plexin, and transcription factor domain; ankyrin repeat motifs; a nuclear localization signal; and a C-terminal death domain and shared the highly conserved structure of the Relish proteins of other insect species. TmRelish mRNA was detected in all developmental stages of the insect; however, the highest levels were detected in the larval gut tissue and adult hemocytes. TmRelish mRNA level was upregulated in the fat body, hemocyte, and gut tissue 9 h after infection of T. molitor larvae by the gram-negative bacteria, Escherichia coli. Furthermore, TmRelish knockdown led to significantly higher mortality of the E. coli-infected larvae, and significantly lower mortality of larvae infected with Staphylococcus aureus or Candida albicans. To elucidate the possible cause of mortality, we measured AMP transcription in the fat body, hemocytes, gut, and Malpighian tubules (MTs) of T. molitor larvae. TmRelish knockdown suppressed the expression of nine AMP genes in the larval fat body and gut tissue during E. coli infection, suggesting that TmRelish positively regulates AMP expression in both immune-related tissues, in response to E. coli challenge. Furthermore, negative regulation of some AMPs by TmRelish in the MTs, gut and hemocytes in response to C. albicans infection suggests a crosstalk between the Toll and Imd pathways.
Collapse
Affiliation(s)
- Maryam Keshavarz
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Bharat Bhusan Patnaik
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Biotechnology, Trident Academy of Technology (TAT), F2-A, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Ki Beom Park
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hye Jin Ko
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chang Eun Kim
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Tariku Tesfaye Edosa
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Seok Lee
- School of Biotechnology and Life Sciences, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
17
|
TmDorX2 positively regulates antimicrobial peptides in Tenebrio molitor gut, fat body, and hemocytes in response to bacterial and fungal infection. Sci Rep 2019; 9:16878. [PMID: 31728023 PMCID: PMC6856108 DOI: 10.1038/s41598-019-53497-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
Dorsal, a member of the nuclear factor-kappa B (NF-κB) family of transcription factors, is a critical downstream component of the Toll pathway that regulates the expression of antimicrobial peptides (AMPs) against pathogen invasion. In this study, the full-length ORF of Dorsal was identified from the RNA-seq database of the mealworm beetle Tenebrio molitor (TmDorX2). The ORF of TmDorX2 was 1,482 bp in length, encoding a polypeptide of 493 amino acid residues. TmDorX2 contains a conserved Rel homology domain (RHD) and an immunoglobulin-like, plexins, and transcription factors (IPT) domain. TmDorX2 mRNA was detected in all developmental stages, with the highest levels observed in 3-day-old adults. TmDorX2 transcripts were highly expressed in the adult Malpighian tubules (MT) and the larval fat body and MT tissues. After challenging the larvae with Staphylococcus aureus and Escherichia coli, the TmDorX2 mRNA levels were upregulated 6 and 9 h post infection in the whole body, fat body, and hemocytes. Upon Candida albicans challenge, the TmDorX2 mRNA expression were found highest at 9 h post-infection in the fat body. In addition, TmDorX2-knockdown larvae exposed to E. coli, S. aureus, or C. albicans challenge showed a significantly increased mortality rate. Furthermore, the expression of 11 AMP genes was downregulated in the gut and fat body of dsTmDorX2-injected larvae upon E. coli challenge. After C. albicans and S. aureus challenge of dsTmDorX2-injected larvae, the expression of 11 and 10 AMPs was downregulated in the gut and fat body, respectively. Intriguingly, the expression of antifungal transcripts TmTenecin-3 and TmThaumatin-like protein-1 and -2 was greatly decreased in TmDorX2-silenced larvae in response to C. albicans challenge, suggesting that TmDorX2 regulates antifungal AMPs in the gut in response to C. albicans infection. The AMP expression profiles in the fat body, hemocytes, gut, and MTs suggest that TmDorX2 might have an important role in promoting the survival of T. molitor larvae against all mentioned pathogens.
Collapse
|
18
|
Abstract
Oxya chinensis is one of the most widespread grasshopper species found in China and one of the most common pests against rice. In view of the importance of haemocytes in insect immunity in general, and the lack of information on the haemocytes of O. chinensis, we examined the haemocytes of this species in detail. We challenged the cellular response of this grasshopper with the bacteria Escherichia coli, Staphylococcus aureus, and Bacillus subtilis Haemocyte morphology was observed using light, scanning electron and transmission electron microscopy, which revealed distinct morphological varieties of haemocytes. Granulocytes and plasmatocytes responded to the bacterial challenge by phagocytosis. Histochemical staining indicated the presence of acid phosphatase in plasmatocytes and granulocytes. We also observed non-phagocytic prohemocytes and vermicytes, but their functions in the circulation are unclear. Insect haemocytes play a crucial role in cellular immunity, and further research is needed for a comprehensive understanding.
Collapse
Affiliation(s)
- Xiaomin Zhang
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Keshi Zhang
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
19
|
The Influence of Bee Venom Melittin on the Functioning of the Immune System and the Contractile Activity of the Insect Heart-A Preliminary Study. Toxins (Basel) 2019; 11:toxins11090494. [PMID: 31461888 PMCID: PMC6784010 DOI: 10.3390/toxins11090494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Melittin (MEL) is a basic polypeptide originally purified from honeybee venom. MEL exhibits a broad spectrum of biological activity. However, almost all studies on MEL activity have been carried out on vertebrate models or cell lines. Recently, due to cheap breeding and the possibility of extrapolating the results of the research to vertebrates, insects have been used for various bioassays and comparative physiological studies. For these reasons, it is valuable to examine the influence of melittin on insect physiology. Here, for the first time, we report the immunotropic and cardiotropic effects of melittin on the beetle Tenebrio molitor as a model insect. After melittin injection at 10−7 M and 10−3 M, the number of apoptotic cells in the haemolymph increased in a dose-dependent manner. The pro-apoptotic action of MEL was likely compensated by increasing the total number of haemocytes. However, the injection of MEL did not cause any changes in the percent of phagocytic haemocytes or in the phenoloxidase activity. In an in vitro bioassay with a semi-isolated Tenebrio heart, MEL induced a slight chronotropic-positive effect only at a higher concentration (10−4 M). Preliminary results indicated that melittin exerts pleiotropic effects on the functioning of the immune system and the endogenous contractile activity of the heart. Some of the induced responses in T. molitor resemble the reactions observed in vertebrate models. Therefore, the T. molitor beetle may be a convenient invertebrate model organism for comparative physiological studies and for the identification of new properties and mechanisms of action of melittin and related compounds.
Collapse
|
20
|
Colasso AHM, Barros TF, Figueiredo IFDS, Carvalho Junior AR, Fernandes ES, Uchoa MRB, da Silva LCN. The latex of Euphorbia tirucalli inhibits staphyloxanthin production and protects Tenebrio molitor larvae against Staphylococcus aureus infection. Nat Prod Res 2019; 34:3536-3539. [PMID: 30870005 DOI: 10.1080/14786419.2019.1582036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The latex of Euphorbia tirucalli L. (LET) has great etnopharmacological relevance for several traditional communities. In this study, the in vitro and in vivo (using Tenebrio molitor larvae) antimicrobial effects of LET were evaluated. LET did not inhibit the growth of S. aureus, however, a reduction on staphyloxanthin production (an important virulence factor of S. aureus) was observed. LET (at 10 μL/kg) was also able to enhance the survival of larvae infected with a lethal dose of S. aureus, an effect associated with reduction in the numbers of haemocytes. Furthermore, haemocytes from LET-treated larvae exhibited dysfunctional lysosome activity. These results indicate the effectiveness of LET as an anti-infective agent which could be useful as source of lead molecules for the development of new therapies against S. aureus-induced infections.
Collapse
|
21
|
Vigneron A, Jehan C, Rigaud T, Moret Y. Immune Defenses of a Beneficial Pest: The Mealworm Beetle, Tenebrio molitor. Front Physiol 2019; 10:138. [PMID: 30914960 PMCID: PMC6422893 DOI: 10.3389/fphys.2019.00138] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/07/2019] [Indexed: 12/04/2022] Open
Abstract
The mealworm beetle, Tenebrio molitor, is currently considered as a pest when infesting stored grains or grain products. However, mealworms are now being promoted as a beneficial insect because their high nutrient content makes them a viable food source and because they are capable of degrading polystyrene and plastic waste. These attributes make T. molitor attractive for mass rearing, which may promote disease transmission within the insect colonies. Disease resistance is of paramount importance for both the control and the culture of mealworms, and several biotic and abiotic environmental factors affect the success of their anti-parasitic defenses, both positively and negatively. After providing a detailed description of T. molitor's anti-parasitic defenses, we review the main biotic and abiotic environmental factors that alter their presentation, and we discuss their implications for the purpose of controlling the development and health of this insect.
Collapse
Affiliation(s)
- Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Charly Jehan
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Thierry Rigaud
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
22
|
An Invertebrate Host to Study Fungal Infections, Mycotoxins and Antifungal Drugs: Tenebrio molitor. J Fungi (Basel) 2018; 4:jof4040125. [PMID: 30424549 PMCID: PMC6308941 DOI: 10.3390/jof4040125] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
Faced with ethical conflict and social pressure, researchers have increasingly chosen to use alternative models over vertebrates in their research. Since the innate immune system is evolutionarily conserved in insects, the use of these animals in research is gaining ground. This review discusses Tenebrio molitor as a potential model host for the study of pathogenic fungi. Larvae of T. molitor are known as cereal pests and, in addition, are widely used as animal and human feed. A number of studies on mechanisms of the humoral system, especially in the synthesis of antimicrobial peptides, which have similar characteristics to vertebrates, have been performed. These studies demonstrate the potential of T. molitor larvae as a model host that can be used to study fungal virulence, mycotoxin effects, host immune responses to fungal infection, and the action of antifungal compounds.
Collapse
|