1
|
Tamura H. Bacterial Pesticides: Mechanism of Action, Possibility of Food Contamination, and Residue Analysis Using MS. JOURNAL OF PESTICIDE SCIENCE 2024; 49:135-147. [PMID: 39398503 PMCID: PMC11464265 DOI: 10.1584/jpestics.d24-006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/02/2024] [Indexed: 10/15/2024]
Abstract
As Sustainable Development Goals (SDGs) and the realities of climate change become widely accepted around the world, the next-generation of integrated pest management will become even more important for establishing a sustainable food production system. To meet the current challenge of food security and climate change, biological control has been developed as one sustainable crop protection technology. However, most registered bacteria are ubiquitous soil-borne bacteria that are closely related to food poisoning and spoilage bacteria. Therefore, this review outlined (1) the mechanism of action of bacterial pesticides, (2) potential concerns about secondary contamination sources associated with past food contamination, and, as a prospective solution, focused on (3) principles and methods of bacterial identification, and (4) the possibility of identifying residual bacteria based on mass spectrometry.
Collapse
|
2
|
Sasiene ZJ, LeBrun ES, Velappan N, Anderson AR, Patterson NH, Dufresne M, Farrow MA, Norris JL, Caprioli RM, Mach PM, McBride EM, Glaros TG. Multidimensional mass profiles increase confidence in bacterial identification when using low-resolution mass spectrometers. Analyst 2024; 149:3564-3574. [PMID: 38717518 DOI: 10.1039/d4an00325j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Field-forward analytical technologies, such as portable mass spectrometry (MS), enable essential capabilities for real-time monitoring and point-of-care diagnostic applications. Significant and recent investments improving the features of miniaturized mass spectrometers enable various new applications outside of small molecule detection. Most notably, the addition of tandem mass spectrometry scans (MS/MS) allows the instrument to isolate and fragment ions and increase the analytical specificity by measuring unique chemical signatures for ions of interest. Notwithstanding these technological advancements, low-cost, portable systems still struggle to confidently identify clinically significant organisms of interest, such as bacteria, viruses, and proteinaceous toxins, due to the limitations in resolving power. To overcome these limitations, we developed a novel multidimensional mass fingerprinting technique that uses tandem mass spectrometry to increase the chemical specificity for low-resolution mass spectral profiles. We demonstrated the method's capabilities for differentiating four different bacteria, including attentuated strains of Yersinia pestis. This approach allowed for the accurate (>92%) identification of each organism at the strain level using de-resolved matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) data to mimic the performance characteristics of miniaturized mass spectrometers. This work demonstrates that low-resolution mass spectrometers, equipped with tandem MS acquisition modes, can accurately identify clinically relevant bacteria. These findings support the future application of these technologies for field-forward and point-of-care applications where high-performance mass spectrometers would be cost-prohibitive or otherwise impractical.
Collapse
Affiliation(s)
- Zachary J Sasiene
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Erick S LeBrun
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Nileena Velappan
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Austin R Anderson
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Nathan H Patterson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37240, USA
| | - Martin Dufresne
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37240, USA
| | - Melissa A Farrow
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37240, USA
| | - Jeremy L Norris
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37240, USA
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37240, USA
| | - Phillip M Mach
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Ethan M McBride
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Trevor G Glaros
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
3
|
Algahawi A, Harju I, Könönen E, Rantakokko-Jalava K, Gürsoy M. Factors affecting the quality and reproducibility of MALDI-TOF MS identification for human Capnocytophaga species. J Microbiol Methods 2024; 220:106911. [PMID: 38460763 DOI: 10.1016/j.mimet.2024.106911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Reproducibility and quality of MALDI-TOF MS spectra are critical in the identification process, however, information on the factors affecting the identification scores are scarce. Here, we studied the influence of various factors during the identification process of human oral Capnocytophaga species. The influence of two incubation times, plate-spotting reproducibility of two examiners, extraction technique, storage period of plates, and different laser repetition rates on the quality of MALDI-TOF MS identification of 34 human Capnocytophaga strains (including C. gingivalis, C. granulosa, C. haemolytica, C. leadbetteri, C. ochracea, C. sputigena, and Capnocytophaga genospecies AHN8471) was examined. The identification rate did not show a significant difference (P = 0.05) between the two incubation times, except that C. haemolytica needed a longer incubation time to be recognized at the genus level. The reproducibility of spotting between two examiners was ensured by following the manufacturer's instructions. At the species level, formic acid extraction improved the identification of species with limited representation in the database, such as C. haemolytica and C. granulosa. The storage of plates for one week decreased the identification scores. No significant difference (P = 0.39) was observed between the 60 Hz and 120 Hz laser repetition rates for identifying Capnocytophaga species to the genus or species level. In conclusion, the MALDI TOF MS offers a reliable Capnocytophaga identification after following the universal protocol, while the formic acid extraction is restricted to species with a limited number of strains in the database.
Collapse
Affiliation(s)
- Ahmed Algahawi
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland.
| | - Inka Harju
- Clinical Microbiology Laboratory, Turku University Hospital, Turku, Finland
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | | | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland; Oral Health Care, Wellbeing Services County of South-West Finland, Turku, Finland
| |
Collapse
|
4
|
Gao W, Li B, Ling L, Zhang L, Yu S. MALDI-TOF MS method for differentiation of methicillin-sensitive and methicillin-resistant Staphylococcus aureus using (E)-Propyl α-cyano-4-Hydroxyl cinnamylate. Talanta 2022; 244:123405. [PMID: 35349841 DOI: 10.1016/j.talanta.2022.123405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 01/02/2023]
Abstract
Differentiating methicillin-sensitive and methicillin-resistant Staphylococcus aureus (MRSA and MSSA) is crucial for clinical diagnosis and anti-microbial treatment. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is an efficient tool for identifying pathogenic microorganisms at the bacterial species level. Here, we found that MRSA and MSSA can be differentiated by MALDI-TOF MS by employing (E)-propylα-cyano-4-hydroxyl cinnamylate (CHCA-C3) as the matrix, which shows great performance for proteins/peptides, especially hydrophobic proteins. The results show that the mass spectra profile of standard MRSA (ATCC 43300) is significantly different from the profiles of standard MSSA strains (ATCC 25923 and 29213) when using CHCA-C3 as the matrix compared to traditional matrix. The mass profiles had great reproducibility and were scarcely influenced by the growth medium. Due to the enhanced discrimination ability of CHCA-C3, we collected the mass spectra of 62 clinical S. aureus strains and selected four representative peaks for principal component analysis, which showed great differentiation. Our results suggest that employing a suitable matrix could enhance the discrimination ability of antibiotic-resistant bacteria by MALDI-TOF MS.
Collapse
Affiliation(s)
- Wenjing Gao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Bin Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling Ling
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Li Zhang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Shaoning Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
5
|
Carbapenemase Producing Klebsiella pneumoniae (KPC): What Is the Best MALDI-TOF MS Detection Method. Antibiotics (Basel) 2021; 10:antibiotics10121549. [PMID: 34943761 PMCID: PMC8698427 DOI: 10.3390/antibiotics10121549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria is a group of highly dangerous antibiotic resistant Gram-negative Enterobacteriaceae. They cause infections associated with significant morbidity and mortality. Therefore, the rapid detection of KPC-producing bacteria plays a key role in clinical microbiology. Matrix assisted laser desorption/ionization time-of- flight (MALDI-TOF) is a rapidly evolving technology that finds application in various clinical, scientific, and industrial disciplines. In the present study, we demonstrated three different procedures of carbapenemase-producing K. pneumoniae (KPC) detection. The most basic model of MALDI-TOF instrument MS Microflex LT was used, operating in the linear ion-positive mode, commonly used in modern clinical laboratories. The first procedure was based on indirect monitoring of carbapenemase production with direct detection of hydrolyzed carbapenem antibiotic degradation products in the mass spectrum. The second procedure was based on direct detection of blaKPC accompanying peak with an 11,109 Da in the mass spectrum of carbapenemase-producing K. pneumoniae (KPC), which represents the cleaved protein (pKpQIL_p019) expressed by pKpQIL plasmid. In addition, several unique peaks were detected in the carbapenemase-producing K. pneumoniae (KPC) mass spectrum. The third procedure was the identification of carbapenemase-producing K. pneumoniae (KPC) based on the protein fingerprint using local database created from the whole mass spectra. By comparing detection procedures, we determined that the third procedure was very fast and relatively easy. However, it requires previous verification of carbapenemase-producing K. pneumoniae (KPC) using other methods as genetic blaKPC identification, detection of carbapenem degradation products, and accompanying peak with 11,109 Da, which represents cleaved pKpQIL_p019 protein expressed by pKpQIL plasmid. Detection of carbapenemase-producing K. pneumoniae using MALDI-TOF provides fast and accurate results that may help to reduce morbidity and mortality in hospital setting when applied in diagnostic situations.
Collapse
|
6
|
Topić Popović N, Kazazić SP, Bojanić K, Strunjak-Perović I, Čož-Rakovac R. Sample preparation and culture condition effects on MALDI-TOF MS identification of bacteria: A review. MASS SPECTROMETRY REVIEWS 2021. [PMID: 34642960 DOI: 10.1002/mas.21739] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an excellent tool for bacterial identification. It allows high throughput, sensitive and specific applications in clinical diagnostics and environmental research. Currently, there is no optimal standardized protocol for sample preparation and culture conditions to profile bacteria. The performance of MALDI-TOF MS is affected by several variables, such as sample preparation, culture media and culture conditions, incubation time/growth stage, incubation temperature, high salt content, blood in the culture media, and others. This review thus aims to clarify why a uniformed protocol is not plausible, to assess the effects these factors have on MALDI-TOF MS identification score, and discuss possible optimizations for its methodology, in relation to specific bacterial representatives and strain requirements.
Collapse
Affiliation(s)
- Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Snježana P Kazazić
- Laboratory for Mass Spectrometry and Functional Proteomics, Ruđer Bošković Institute, Zagreb, Croatia
| | - Krunoslav Bojanić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
7
|
Szultka-Młyńska M, Janiszewska D, Pomastowski P, Złoch M, Kupczyk W, Buszewski B. Identification of Bacteria Associated with Post-Operative Wounds of Patients with the Use of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Approach. Molecules 2021; 26:5007. [PMID: 34443592 PMCID: PMC8402041 DOI: 10.3390/molecules26165007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
The bacterial infection of post-operative wounds is a common health problem. Therefore, it is important to investigate fast and accurate methods of identifying bacteria in clinical samples. The aim of the study was to analyse the use of the MALDI-TOF MS technique to identify microorganism wounds that are difficult to heal. The most common bacteria are Escherichia coli, Staphylococcus spp., and Enterococcus spp. We also demonstrate the effect of culture conditions, such as the used growth medium (solid: Brain Heart Infusion Agar, Mueller Hilton Agar, Glucose Bromocresol Purple Agar, and Vancomycin Resistance Enterococci Agar Base and liquid: Tryptic Soy Broth and BACTEC Lytic/10 Anaerobic/F), the incubation time (4, 6, and 24h), and the method of the preparation of bacterial protein extracts (the standard method based on the Bruker guideline, the Sepsityper method) to identify factors and the quality of the obtained mass spectra. By comparing the protein profiles of bacteria from patients not treated with antibiotics to those treated with antibiotics based on the presence/absence of specific signals and using the UniProt platform, it was possible to predict the probable mechanism of the action of the antibiotic used and the mechanism of drug resistance.
Collapse
Affiliation(s)
- Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (D.J.); (B.B.)
| | - Daria Janiszewska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (D.J.); (B.B.)
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland; (P.P.); (M.Z.)
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland; (P.P.); (M.Z.)
| | - Wojciech Kupczyk
- Department of General, Gastroenterological and Oncological Surgery, Collegium Medicum, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (D.J.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland; (P.P.); (M.Z.)
| |
Collapse
|
8
|
Zhang J, Plowman JE, Tian B, Clerens S, On SLW. The influence of growth conditions on MALDI-TOF MS spectra of winemaking yeast: implications for industry applications. J Microbiol Methods 2021; 188:106280. [PMID: 34274408 DOI: 10.1016/j.mimet.2021.106280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Previous studies have shown MALDI-TOF MS to be a powerful tool in wine yeast identification and potential prediction of application. However, it is also established that substrate composition influences protein expression, but the degree to which this may affect MALDI-TOF spectra (and analytical results thereof) has not been fully explored. To further inform assay optimisation, the influence on MALDI-TOF spectra was determined using eight Saccharomyces strains of diverse origins cultivated on grape juices from Pinot Noir and Chardonnay varieties, synthetic grape juice, and laboratory-grade artificial culture media (YPD broth and agar). Our results demonstrated significant influences of culture media on strain MALDI-TOF spectra. Yeast culture on YPD agar is recommended for taxonomic studies, with YPD broth culture of S. cerevisiae offering improved intra-subspecific differentiation Furthermore, our data supported a correlation between MALDI spectra and the potential industrial application of individual yeast strains.
Collapse
Affiliation(s)
- Junwen Zhang
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85054, Lincoln, New Zealand
| | | | - Bin Tian
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85054, Lincoln, New Zealand
| | - Stefan Clerens
- AgResearch Ltd, Lincoln Research Centre, Lincoln, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Stephen L W On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85054, Lincoln, New Zealand.
| |
Collapse
|
9
|
Hill V, Kuhnert P, Erb M, Machado RAR. Identification of Photorhabdus symbionts by MALDI-TOF MS. MICROBIOLOGY-SGM 2021; 166:522-530. [PMID: 32301690 DOI: 10.1099/mic.0.000905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Species of the bacterial genus Photorhabus live in a symbiotic relationship with Heterorhabditis entomopathogenic nematodes. Besides their use as biological control agents against agricultural pests, some Photorhabdus species are also a source of natural products and are of medical interest due to their ability to cause tissue infections and subcutaneous lesions in humans. Given the diversity of Photorhabdus species, rapid and reliable methods to resolve this genus to the species level are needed. In this study, we evaluated the potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of Photorhabdus species. To this end, we established a collection of 54 isolates consisting of type strains and multiple field strains that belong to each of the validly described species and subspecies of this genus. Reference spectra for the strains were generated and used to complement a currently available database. The extended reference database was then used for identification based on the direct transfer sample preparation method and the protein fingerprint of single colonies. High-level discrimination of distantly related species was observed. However, lower discrimination was observed with some of the most closely related species and subspecies. Our results therefore suggest that MALDI-TOF MS can be used to correctly identify Photorhabdus strains at the genus and species level, but has limited resolution power for closely related species and subspecies. Our study demonstrates the suitability and limitations of MALDI-TOF-based identification methods for assessment of the taxonomic position and identification of Photorhabdus isolates.
Collapse
Affiliation(s)
- Virginia Hill
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland.,Institute of Plant Sciences, University of Bern, Switzerland
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Switzerland
| | - Ricardo A R Machado
- Experimental Biology Research Group, University of Neuchatel, Switzerland.,Institute of Plant Sciences, University of Bern, Switzerland
| |
Collapse
|
10
|
Monopoli A, Nacci A, Cataldi TRI, Calvano CD. Synthesis and Matrix Properties of α-Cyano-5-phenyl-2,4-pentadienic Acid (CPPA) for Intact Proteins Analysis by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Molecules 2020; 25:molecules25246054. [PMID: 33371472 PMCID: PMC7767571 DOI: 10.3390/molecules25246054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
The effectiveness of a synthesized matrix, α-cyano-5-phenyl-2,4-pentadienic acid (CPPA), for protein analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in complex samples such as foodstuff and bacterial extracts, is demonstrated. Ultraviolet (UV) absorption along with laser desorption/ionization mass spectrometry (LDI-MS) experiments were systematically conducted in positive ion mode under standard Nd:YLF laser excitation with the aim of characterizing the matrix in terms of wavelength absorption and proton affinity. Besides, the results for standard proteins revealed that CPPA significantly enhanced the protein signals, reduced the spot-to-spot variability and increased the spot homogeneity. The CPPA matrix was successful employed to investigate intact microorganisms, milk and seed extracts for protein profiling. Compared to conventional matrices such as sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA) and 4-chloro-α-cyanocinnamic acid (CClCA), CPPA exhibited better signal-to-noise (S/N) ratios and a uniform response for most examined proteins occurring in milk, hazelnut and in intact bacterial cells of E. coli. These findings not only provide a reactive proton transfer MALDI matrix with excellent reproducibility and sensitivity, but also contribute to extending the battery of useful matrices for intact protein analysis.
Collapse
Affiliation(s)
- Antonio Monopoli
- Agenzia delle Dogane e dei Monopoli, Ufficio delle Dogane di Bari, Corso De Tullio, 70122 Bari, Italy;
| | - Angelo Nacci
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 70126 Bari, Italy; (A.N.); (T.R.I.C.)
| | - Tommaso R. I. Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 70126 Bari, Italy; (A.N.); (T.R.I.C.)
- Centro Interdipartimentale di Ricerca S.M.A.R.T., 70126 Bari, Italy
| | - Cosima D. Calvano
- Centro Interdipartimentale di Ricerca S.M.A.R.T., 70126 Bari, Italy
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona, 70126 Bari, Italy
- Correspondence:
| |
Collapse
|
11
|
Study on Molecular Profiles of Staphylococcus aureus Strains: Spectrometric Approach. Molecules 2020; 25:molecules25214894. [PMID: 33105903 PMCID: PMC7660162 DOI: 10.3390/molecules25214894] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus remains a major health problem responsible for many epidemic outbreaks. Therefore, the development of efficient and rapid methods for studying molecular profiles of S. aureus strains for its further typing is in high demand. Among many techniques, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI TOF MS) represents a timely, cost-effective, and reliable strain typing approach, which is still rarely used due to insufficient knowledge about the impact of sample preparation and analysis conditions on the molecular profiles and strain classification efficiency of S. aureus. The aim of this study was to evaluate the effect of the culture conditions and matrix type on the differentiation of molecular profiles of various S. aureus strains via the MALDI TOF MS analysis and different computational methods. The analysis revealed that by changing the culture conditions, matrix type, as well as a statistical method, the differentiation of S. aureus strains can be significantly improved. Therefore, to accelerate the incorporation of the MALDI-based strain typing in routine laboratories, further studies on the standardization and searching of optimal conditions on a larger number of isolates and bacterial species are of great need.
Collapse
|
12
|
Mougin J, Flahaut C, Roquigny R, Bonnin-Jusserand M, Grard T, Le Bris C. Rapid Identification of Vibrio Species of the Harveyi Clade Using MALDI-TOF MS Profiling With Main Spectral Profile Database Implemented With an In-House Database: Luvibase. Front Microbiol 2020; 11:586536. [PMID: 33162963 PMCID: PMC7581793 DOI: 10.3389/fmicb.2020.586536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/17/2020] [Indexed: 12/02/2022] Open
Abstract
Vibrio bacteria, and particularly members of the Harveyi clade, are the causative agents of vibriosis. This disease is responsible for mass mortality events and important economic losses on aquaculture farms. Improvements in surveillance and diagnosis are needed to successfully manage vibriosis outbreaks. 16S rRNA gene sequencing is generally considered to be the gold standard for bacterial identification but the cost and long processing time make it difficult to apply for routine identification. In contrast, MALDI-TOF MS offers rapid diagnosis and is commonly used in veterinary laboratories today. The major limiting factor for using this technique is the low environmental bacterial diversity in the commonly available databases. Here, we demonstrate that the sole use of the commercially available Bruker BioTyper database is not fully adequate for identifying Vibrio bacteria isolated from aquaculture farms. We therefore developed a new in-house database named Luvibase, composed of 23 reference MALDI-TOF mass spectra profiles obtained from Vibrio collection strains, mostly belonging to the Harveyi clade. The comparison of the accuracy of MALDI-TOF MS profiling and 16S rRNA gene sequencing revealed a lack of resolution for 16S rRNA gene sequencing. In contrast, MALDI-TOF MS profiling proved to be a more reliable tool for resolving species-level variations within the Harveyi clade. Finally, combining the Luvibase with the Bruker ver.9.0.0.0 database, led to successful identification of 47 Vibrio isolates obtained from moribund abalone, seabass and oysters. Thus, the use of Luvibase allow for increased confidence in identifying Vibrio species belonging to the Harveyi clade.
Collapse
Affiliation(s)
- Julia Mougin
- Université du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Université d'Artois, Université de Lille, Université de Picardie Jules Verne, Université de Liège, Yncréa, Boulogne-sur-Mer, France
| | - Christophe Flahaut
- Université du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Université d'Artois, Université de Lille, Université de Picardie Jules Verne, Université de Liège, Yncréa, Boulogne-sur-Mer, France
| | - Roxane Roquigny
- Université du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Université d'Artois, Université de Lille, Université de Picardie Jules Verne, Université de Liège, Yncréa, Boulogne-sur-Mer, France
| | - Maryse Bonnin-Jusserand
- Université du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Université d'Artois, Université de Lille, Université de Picardie Jules Verne, Université de Liège, Yncréa, Boulogne-sur-Mer, France
| | - Thierry Grard
- Université du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Université d'Artois, Université de Lille, Université de Picardie Jules Verne, Université de Liège, Yncréa, Boulogne-sur-Mer, France
| | - Cédric Le Bris
- Université du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Université d'Artois, Université de Lille, Université de Picardie Jules Verne, Université de Liège, Yncréa, Boulogne-sur-Mer, France
| |
Collapse
|
13
|
Parsley NC, Williams OL, Hicks LM. Exploring the Diversity of Cysteine-Rich Natural Product Peptides via MS/MS Fingerprint Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1833-1843. [PMID: 32872784 PMCID: PMC7816094 DOI: 10.1021/jasms.0c00078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Natural product extracts present inherently complex matrices in which the identification of novel bioactive peptide species is challenged by low-abundance masses and significant structural and sequence diversity. Additionally, discovery efforts often result in the re-identification of known compounds, where modifications derived in vivo or during sample handling may obscure true sequence identity. Herein, we identify mass spectral (MS2) "fingerprint" ions characteristic of cyclotides, a diverse and biologically active family of botanical cysteine-rich peptides, based on regions of high sequence homology. We couple mass shift analysis with MS2 spectral fingerprint ions cross referenced with CyBase-a cyclotide database-to discern unique mass species in Viola communis extracts from mass species that are likely already characterized and those with common modifications. The approach is extended to a related class of cysteine-rich peptides, the trypsin inhibitors, using the characterized botanical species Lagenaria siceraria. Coupling the observation of highly abundant MS2 ions with mass shift analysis, we identify a new set of small, highly disulfide-bound cysteine-rich L. siceraria peptides.
Collapse
Affiliation(s)
| | | | - Leslie M. Hicks
- Address Correspondence to: Leslie M. Hicks, 125 South Road, CB#3290, Kenan Laboratories, C045, Chapel Hill, NC 27599, [T] 919-843-6903, [E]
| |
Collapse
|
14
|
Rifici C, Attili AR, De Biase D, Gonçalves dos Santos R, Seyffert N, De Paula Castro TL, Pereira Figueiredo HC, Scaramozzino C, Reale S, Paciello O, Cuteri V, Spier SJ, Azevedo V, Mazzullo G. Atypical Multibacterial Granulomatous Myositis in a Horse: First Report in Italy. Vet Sci 2020; 7:vetsci7020047. [PMID: 32326275 PMCID: PMC7355418 DOI: 10.3390/vetsci7020047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022] Open
Abstract
Infectious causes of myositis are reported relatively uncommonly in horses. Among them, bacterial causes include Streptococcus equi subsp. zooepidemicus, Actinobacillus equuli, Fusobacterium spp. Staphylococcus spp, and Corynebacterium pseudotuberculosis. Infection can be spread to muscles via haematogenous or extension from skin lesions. Parasitic myositis has also been documented. In this report, a 12 year-old Italian Quarter Horse mare presented with diffuse subcutaneous nodules and masses ranging from 2 × 3 to 5 × 20 cm in size, and adherent to subcutis and muscles that were first macroscopically and cytologically diagnosed as pyogranulomas. Subsequently, histological, molecular, bacteriological, and biochemical investigations were performed. All the data obtained allowed to diagnose a severe and diffuse multibacterial granulomatous myositis caused by Corynebacterium pseudotuberculosis and Corynebacterium amycolatum. Following the therapy and an initial disappearance of most of the lesions together with a general improvement of the mare, the clinical condition deteriorated, and new nodules appeared. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and PCR techniques revealed the presence of bacteria as Glutamicibacter creatinolyticus and Dietzia spp. To the authors’ knowledge, this case report represents the first description of multibacterial granulomatous myositis due to Corynebacterium pseudotuberculosis, Corynebacterium amycolatum, Glutamicibacter creatinolyticus, and Dietzia spp. in a horse reared in Italy.
Collapse
Affiliation(s)
- Claudia Rifici
- Department of Veterinary Science, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina (ME), Italy
| | - Anna-Rita Attili
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy
- Correspondence: ; Tel.: +39-(0)737-404002
| | - Davide De Biase
- Department of Pathology and Animal Health, University of Naples “Federico II”, Via Federico Delpino 1, 80137 Napoli, Italy
| | - Roselane Gonçalves dos Santos
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Núbia Seyffert
- Institute of Biology, Federal University of Bahia, Salvador-Bahia 40170-115, Brazil
| | | | | | - Carmelo Scaramozzino
- Scaravet Equine Breeding Center, Via Don Minzoni, 29, 89124 Reggio Calabria, Italy
| | - Stefano Reale
- Molecular Biology Department, Experimental Zooprophylactic Institute (IZS) of Sicily, Via Gino Marinuzzi 3, 90129 Palermo (PA), Italy
| | - Orlando Paciello
- Department of Pathology and Animal Health, University of Naples “Federico II”, Via Federico Delpino 1, 80137 Napoli, Italy
| | - Vincenzo Cuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy
| | - Sharon Jane Spier
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, CA 95616, USA
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Giuseppe Mazzullo
- Department of Veterinary Science, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina (ME), Italy
| |
Collapse
|
15
|
Velichko NV, Pinevich AV. Classification and Identification Tasks in Microbiology: Mass Spectrometric Methods Coming to the Aid. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719050151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Quéro L, Courault P, Cellière B, Lorber S, Jany JL, Puel O, Girard V, Vasseur V, Nodet P, Mounier J. Application of MALDI-TOF MS to species complex differentiation and strain typing of food related fungi: Case studies with Aspergillus section Flavi species and Penicillium roqueforti isolates. Food Microbiol 2019; 86:103311. [PMID: 31703856 DOI: 10.1016/j.fm.2019.103311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/29/2019] [Accepted: 08/20/2019] [Indexed: 11/26/2022]
Abstract
Filamentous fungi are one of the main causes of food losses worldwide and their ability to produce mycotoxins represents a hazard for human health. Their correct and rapid identification is thus crucial to manage food safety. In recent years, MALDI-TOF emerged as a rapid and reliable tool for fungi identification and was applied to typing of bacteria and yeasts, but few studies focused on filamentous fungal species complex differentiation and typing. Therefore, the aim of this study was to evaluate the use of MALDI-TOF to identify species of the Aspergillus section Flavi, and to differentiate Penicillium roqueforti isolates from three distinct genetic populations. Spectra were acquired from 23 Aspergillus species and integrated into a database for which cross-validation led to more than 99% of correctly attributed spectra. For P. roqueforti, spectra were acquired from 63 strains and a two-step calibration procedure was applied before database construction. Cross-validation and external validation respectively led to 94% and 95% of spectra attributed to the right population. Results obtained here suggested very good agreement between spectral and genetic data analysis for both Aspergillus species and P. roqueforti, demonstrating MALDI-TOF applicability as a fast and easy alternative to molecular techniques for species complex differentiation and strain typing of filamentous fungi.
Collapse
Affiliation(s)
- Laura Quéro
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France; BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390, La Balme les Grottes, France.
| | - Priscillia Courault
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390, La Balme les Grottes, France.
| | - Beatrice Cellière
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390, La Balme les Grottes, France.
| | - Sophie Lorber
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | - Jean-Luc Jany
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.
| | - Olivier Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | - Victoria Girard
- BioMérieux, R&D Microbiologie, Route de Port Michaud, 38390, La Balme les Grottes, France.
| | - Valérie Vasseur
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.
| | - Patrice Nodet
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.
| | - Jérôme Mounier
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280, Plouzané, France.
| |
Collapse
|
17
|
Gal-Mor O. Persistent Infection and Long-Term Carriage of Typhoidal and Nontyphoidal Salmonellae. Clin Microbiol Rev 2019; 32:e00088-18. [PMID: 30487167 PMCID: PMC6302356 DOI: 10.1128/cmr.00088-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ability of pathogenic bacteria to affect higher organisms and cause disease is one of the most dramatic properties of microorganisms. Some pathogens can establish transient colonization only, but others are capable of infecting their host for many years or even for a lifetime. Long-term infection is called persistence, and this phenotype is fundamental for the biology of important human pathogens, including Helicobacter pylori, Mycobacterium tuberculosis, and Salmonella enterica Both typhoidal and nontyphoidal serovars of the species Salmonella enterica can cause persistent infection in humans; however, as these two Salmonella groups cause clinically distinct diseases, the characteristics of their persistent infections in humans differ significantly. Here, following a general summary of Salmonella pathogenicity, host specificity, epidemiology, and laboratory diagnosis, I review the current knowledge about Salmonella persistence and discuss the relevant epidemiology of persistence (including carrier rate, duration of shedding, and host and pathogen risk factors), the host response to Salmonella persistence, Salmonella genes involved in this lifestyle, as well as genetic and phenotypic changes acquired during prolonged infection within the host. Additionally, I highlight differences between the persistence of typhoidal and nontyphoidal Salmonella strains in humans and summarize the current gaps and limitations in our understanding, diagnosis, and curing of persistent Salmonella infections.
Collapse
Affiliation(s)
- Ohad Gal-Mor
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
18
|
Gracioso LH, Baltazar MPG, Avanzi IR, Karolski B, Oller Nascimento CA, Perpetuo EA. Analysis of copper response inAcinetobactersp. by comparative proteomics. Metallomics 2019; 11:949-958. [DOI: 10.1039/c8mt00365c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal contamination exerts environmental pressure on several lifeforms.
Collapse
Affiliation(s)
- Louise Hase Gracioso
- Environmental Research and Education Center
- University of São Paulo, CEPEMA-POLI-USP
- Cubatão-SP
- Brazil
- The Interunits Graduate Program in Biotechnology
| | - Marcela Passos Galluzzi Baltazar
- Environmental Research and Education Center
- University of São Paulo, CEPEMA-POLI-USP
- Cubatão-SP
- Brazil
- Chemical Engineering Department
| | - Ingrid Regina Avanzi
- Environmental Research and Education Center
- University of São Paulo, CEPEMA-POLI-USP
- Cubatão-SP
- Brazil
| | - Bruno Karolski
- Environmental Research and Education Center
- University of São Paulo, CEPEMA-POLI-USP
- Cubatão-SP
- Brazil
- Chemical Engineering Department
| | | | - Elen Aquino Perpetuo
- Environmental Research and Education Center
- University of São Paulo, CEPEMA-POLI-USP
- Cubatão-SP
- Brazil
- Department of Marine Sciences
| |
Collapse
|
19
|
Tuohy JM, Mueller-Spitz SR, Albert CM, Scholz-Ng SE, Wall ME, Noutsios GT, Gutierrez AJ, Sandrin TR. MALDI-TOF MS Affords Discrimination of Deinococcus aquaticus Isolates Obtained From Diverse Biofilm Habitats. Front Microbiol 2018; 9:2442. [PMID: 30374340 PMCID: PMC6196315 DOI: 10.3389/fmicb.2018.02442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectroscopy (MALDI-TOF MS) has been used routinely over the past decade in clinical microbiology laboratories to rapidly characterize diverse microorganisms of medical importance both at the genus and species levels. Currently, there is keen interest in applying MALDI-TOF MS at taxonomic levels beyond species and to characterize environmental isolates. We constructed a model system consisting of 19 isolates of Deinococcus aquaticus obtained from biofilm communities indigenous to diverse substrates (concrete, leaf tissue, metal, and wood) in the Fox River - Lake Winnebago system of Wisconsin to: (1) develop rapid sample preparation methods that produce high quality, reproducible MALDI-TOF spectra and (2) compare the performance of MALDI-TOF MS-based profiling to common DNA-based approaches including 16S rRNA sequencing and genomic diversity by BOX-A1R fingerprinting. Our results suggest that MALDI-TOF MS can be used to rapidly and reproducibly characterize environmental isolates of D. aquaticus at the subpopulation level. MALDI-TOF MS provided higher taxonomic resolution than either 16S rRNA gene sequence analysis or BOX-A1R fingerprinting. Spectra contained features that appeared to permit characterization of isolates into two co-occurring subpopulations. However, reliable strain-level performance required rigorous and systematic standardization of culture conditions and sample preparation. Our work suggests that MALDI-TOF MS offers promise as a rapid, reproducible, and high-resolution approach to characterize environmental isolates of members of the genus Deinococcus. Future work will focus upon application of methods described here to additional members of this ecologically diverse and ubiquitous genus.
Collapse
Affiliation(s)
- James M Tuohy
- Biology Department, Glendale Community College, Glendale, AZ, United States
| | - Sabrina R Mueller-Spitz
- Biology Department, University of Wisconsin Oshkosh, Oshkosh, WI, United States.,Sustainability Institute for Regional Transformations, University of Wisconsin Oshkosh, Oshkosh, WI, United States
| | - Chad M Albert
- Biology Department, Glendale Community College, Glendale, AZ, United States.,Department of Natural Sciences, Western New Mexico University, Silver City, NM, United States
| | - Stacy E Scholz-Ng
- Biology Department, Glendale Community College, Glendale, AZ, United States.,Department of Natural Sciences, Western New Mexico University, Silver City, NM, United States
| | - Melinda E Wall
- Biology Department, Glendale Community College, Glendale, AZ, United States.,Department of Natural Sciences, Western New Mexico University, Silver City, NM, United States
| | - George T Noutsios
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Anthony J Gutierrez
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States.,Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
20
|
Vera L, Boyen F, Visscher A, Vandenbroucke V, Vanantwerpen G, Govaere J. Limitations of a chromogenic agar plate for the identifying bacteria isolated from equine endometritis samples. Equine Vet J 2018; 51:266-269. [DOI: 10.1111/evj.13004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/29/2018] [Indexed: 11/30/2022]
Affiliation(s)
- L. Vera
- Department of Large Animal Internal Medicine Faculty of Veterinary Medicine Ghent University Merelbeke Belgium
| | - F. Boyen
- Department of Pathology, Bacteriology and Poultry Diseases Faculty of Veterinary Medicine Ghent University Merelbeke Belgium
| | - A. Visscher
- Department of Reproduction, Obstetrics and Herd Health Faculty of Veterinary Medicine Ghent University Merelbeke Belgium
| | | | | | - J. Govaere
- Department of Reproduction, Obstetrics and Herd Health Faculty of Veterinary Medicine Ghent University Merelbeke Belgium
| |
Collapse
|
21
|
The application of UV resonance Raman spectroscopy for the differentiation of clinically relevant Candida species. Anal Bioanal Chem 2018; 410:5839-5847. [DOI: 10.1007/s00216-018-1196-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/30/2018] [Accepted: 06/13/2018] [Indexed: 01/21/2023]
|
22
|
Seuylemezian A, Aronson HS, Tan J, Lin M, Schubert W, Vaishampayan P. Development of a Custom MALDI-TOF MS Database for Species-Level Identification of Bacterial Isolates Collected From Spacecraft and Associated Surfaces. Front Microbiol 2018; 9:780. [PMID: 29867782 PMCID: PMC5968301 DOI: 10.3389/fmicb.2018.00780] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
Since the 1970s, the Planetary Protection Group at the Jet Propulsion Laboratory (JPL) has maintained an archive of spacecraft-associated bacterial isolates. Identification of these isolates was routinely performed by sequencing the 16S rRNA gene. Although this technique is an industry standard, it is time consuming and has poor resolving power for some closely related taxa. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry is widely used in clinical diagnostics and is a promising method to substitute standard 16S rRNA sequencing. However, manufacturer-provided databases lack the bacterial diversity found in spacecraft-assembly cleanrooms. This study reports the development of the first custom database of MALDI-TOF MS profiles of bacterial isolates obtained from spacecraft and associated cleanroom environments. With the use of this in-house database, 454 bacterial isolates were successfully identified in concurrence with their 16S rRNA sequence-based classifications. Additionally, MALDI-TOF MS resolved strain-level variations, identified potential novel species and distinguished between members of taxonomic groups, which is not possible using conventional 16S rRNA sequencing. MALDI-TOF MS has proved to be an accurate, high-throughput approach for real-time identification of bacterial isolates during the spacecraft assembly process.
Collapse
Affiliation(s)
- Arman Seuylemezian
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Heidi S Aronson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - James Tan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Mandy Lin
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Wayne Schubert
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
23
|
ESCMID postgraduate education course: applications of MALDI-TOF mass spectrometry in clinical microbiology. Microbes Infect 2017; 19:433-442. [PMID: 28669790 DOI: 10.1016/j.micinf.2017.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 02/04/2023]
|
24
|
Taneja N, Sethuraman N, Mishra A, Mohan B. The 2002 Chandigarh cholera outbreak revisited: utility of MALDI-TOF as a molecular epidemiology tool. Lett Appl Microbiol 2017; 62:452-8. [PMID: 27198622 DOI: 10.1111/lam.12574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/09/2016] [Accepted: 04/14/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED In July 2002, an outbreak of cholera occurred in north India with two separate geographical foci. Pulsed field gel electrophoresis (PFGE) was previously used in typing a representative sample of these isolates. This study evaluates the usefulness of MALDI-TOF as an epidemiological tool for typing Vibrio cholerae isolates in comparison with PFGE and Amplified fragment length polymorphisms (AFLP). Forty-six isolates of V. cholerae isolated from stool of patients affected in the July 2002 outbreak were typed using MALDI-TOF. To validate its utility, clinical and environmental isolates previously characterized by PFGE and AFLP were included for dendrogram analysis. All 46 isolates were correctly identified by MALDI-TOF to species level. Two distinct clades appeared on dendrogram using MALDI-TOF corresponding to the two geographical foci of the outbreak. For the study of evolution of organisms from environment, AFLP was superior as it clearly demarcated clinical and environmental isolates. The outbreak was not due to a single clone but due to multiple clones circulating simultaneously, as was seen with PFGE also. SIGNIFICANCE AND IMPACT OF THE STUDY MALDI-TOF appears to be a highly discriminatory, cost-effective and rapid epidemiological typing technique that can be used in the investigation of cholera outbreaks.
Collapse
Affiliation(s)
- N Taneja
- Enteric Laboratory, Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - N Sethuraman
- Enteric Laboratory, Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - A Mishra
- Enteric Laboratory, Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - B Mohan
- Enteric Laboratory, Department of Medical Microbiology, PGIMER, Chandigarh, India
| |
Collapse
|
25
|
Rapid detection of high-risk Enterococcus faecium clones by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Diagn Microbiol Infect Dis 2017; 87:299-307. [DOI: 10.1016/j.diagmicrobio.2016.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/07/2016] [Accepted: 12/11/2016] [Indexed: 12/18/2022]
|
26
|
Santos IC, Hildenbrand ZL, Schug KA. Mass Spectrometry for the Study of Microbial Communities in Environmental Waters. ADVANCES IN CHEMICAL POLLUTION, ENVIRONMENTAL MANAGEMENT AND PROTECTION 2017. [DOI: 10.1016/bs.apmp.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Yamamoto K, Hayakawa K, Nagamatsu M, Fujiya Y, Mawatari M, Kutsuna S, Takeshita N, Tamura S, Mezaki K, Ohmagari N. Bacteremia Due to Arthrobacter creatinolyticus in an Elderly Diabetic Man with Acute Cholangitis. Jpn J Infect Dis 2017; 70:201-202. [DOI: 10.7883/yoken.jjid.2016.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kei Yamamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine
| | - Kayoko Hayakawa
- Disease Control and Prevention Center, National Center for Global Health and Medicine
| | - Maki Nagamatsu
- Disease Control and Prevention Center, National Center for Global Health and Medicine
| | - Yoshihiro Fujiya
- Disease Control and Prevention Center, National Center for Global Health and Medicine
| | - Momoko Mawatari
- Disease Control and Prevention Center, National Center for Global Health and Medicine
| | - Satoshi Kutsuna
- Disease Control and Prevention Center, National Center for Global Health and Medicine
| | - Nozomi Takeshita
- Disease Control and Prevention Center, National Center for Global Health and Medicine
| | - Saeko Tamura
- Clinical laboratory, National Center for Global Health and Medicine
| | - Kazuhisa Mezaki
- Clinical laboratory, National Center for Global Health and Medicine
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine
| |
Collapse
|
28
|
Actinotignum (formerly Actinobaculum) schaalii: a review of MALDI-TOF for identification of clinical isolates, and a proposed method for presumptive phenotypic identification. Pathology 2016; 48:367-71. [PMID: 27131934 DOI: 10.1016/j.pathol.2016.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 03/12/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022]
Abstract
Actinotignum schaalii is a recognised cause of urinary tract infection. Following a case of urosepsis, 20 isolates of A. schaalii were collected over an initial 18 month period from urine and blood culture. An additional 25 isolates were collected over the following 13 months. Actinotignum schaalii had likely been overlooked or dismissed as a contaminant in our laboratory prior to this study period. It grows slowly on blood agar with supplemental CO2 or anaerobically. It may not grow on MacConkey agar or chromogenic agars used for routine urine culture. Repeated attempts at identification by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) may be required as the optimal age of cultures for testing is unclear. Utilising its characteristic antibiogram may assist phenotypic identification of this organism which is otherwise difficult to distinguish from other actinomycetes.
Collapse
|
29
|
Wang S, Xiao Z, Xiao C, Wang H, Wang B, Li Y, Chen X, Guo X. (E)-Propyl α-Cyano-4-Hydroxyl Cinnamylate: A High Sensitive and Salt Tolerant Matrix for Intact Protein Profiling by MALDI Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:709-718. [PMID: 26729454 DOI: 10.1007/s13361-015-1325-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 12/02/2015] [Accepted: 12/05/2015] [Indexed: 06/05/2023]
Abstract
Low-abundance samples and salt interference are always of great challenges for the practical protein profiling by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Herein, a series of carboxyl-esterified derivatives of α-cyano-4-hydroxycinnamic acid (CHCA) were synthesized and evaluated as matrices for MALDI-MS analysis of protein. Among them, (E)-propyl α-cyano-4-hydroxyl cinnamylate (CHCA-C3) was found to exhibit excellent assay performance for intact proteins by improving the detection sensitivity 10 folds compared with the traditional matrices [i.e., super2,5-dihydroxybenzoic acid (superDHB), sinapic acid (SA), and CHCA]. In addition, CHCA-C3 was shown to have high tolerance to salts, the ion signal of myoglobin was readily detected even in the presence of urea (8 M), NH4HCO3 (2 M), and KH2PO4 (500 mM), meanwhile sample washability was robust. These achievements were mainly attributed to improved ablation ability and increased hydrophobicity or affinity of CHCA-C3 to proteins in comparison with hydrophilic matrixes, leading to more efficient ionization of analyte. Furthermore, direct analysis of proteins from crude egg white demonstrated that CHCA-C3 was a highly efficient matrix for the analysis of low-abundance proteins in complex biological samples. These outstanding performances indicate the tremendous potential use of CHCA-C3 in protein profiling by MALDI-MS. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sheng Wang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhaohui Xiao
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Huixin Wang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bing Wang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ying Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xinhua Guo
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
30
|
Pushing the Limits of MALDI-TOF Mass Spectrometry: Beyond Fungal Species Identification. J Fungi (Basel) 2015; 1:367-383. [PMID: 29376916 PMCID: PMC5753130 DOI: 10.3390/jof1030367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022] Open
Abstract
Matrix assisted laser desorption ionization time of flight (MALDI-TOF) is a powerful analytical tool that has revolutionized microbial identification. Routinely used for bacterial identification, MALDI-TOF has recently been applied to both yeast and filamentous fungi, confirming its pivotal role in the rapid and reliable diagnosis of infections. Subspecies-level identification holds an important role in epidemiological investigations aimed at tracing virulent or drug resistant clones. This review focuses on present and future applications of this versatile tool in the clinical mycology laboratory.
Collapse
|
31
|
Kryazhevskikh NA, Loiko NG, Demkina EV, Mulyukin AL, Lebedev AT, Gaponov AM, Tutel’yan AV, Nikolaev YA, El’-Registan GI. Applicability of MALDI mass spectrometry for diagnostics of phase variants in bacterial populations. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715030121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
32
|
Korshunova TY, Mukhamatdyarova SR, Loginov ON. Taxonomic classification of the oil destructing bacterium using mass spectrometry methods by the results of analysis of cellular proteins and study of cellular fatty acids. BIOL BULL+ 2015. [DOI: 10.1134/s106235901503005x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Abdelhamid HN, Wu HF. Synthesis of a highly dispersive sinapinic acid@graphene oxide (SA@GO) and its applications as a novel surface assisted laser desorption/ionization mass spectrometry for proteomics and pathogenic bacteria biosensing. Analyst 2015; 140:1555-65. [DOI: 10.1039/c4an02158d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
GO-modified sinapinic acid was synthesized and characterized; it was then investigated for use in SALDI-MS for proteomics and pathogenic bacterial biosensing.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- Department of Chemistry
| | - Hui-Fen Wu
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| |
Collapse
|
34
|
Jamal W, Albert MJ, Rotimi VO. Real-time comparative evaluation of bioMerieux VITEK MS versus Bruker Microflex MS, two matrix-assisted laser desorption-ionization time-of-flight mass spectrometry systems, for identification of clinically significant bacteria. BMC Microbiol 2014; 14:289. [PMID: 25433488 PMCID: PMC4290442 DOI: 10.1186/s12866-014-0289-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/07/2014] [Indexed: 12/02/2022] Open
Abstract
Background Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) recently became available for the identification of bacteria in routine diagnostic laboratories. It is rapid and cost-effective and likely to replace phenotypic identification. This study was undertaken to compare two MALDI-TOF MS-based, Bruker Microflex MS (BMS) and VITEK MS (VMS) systems, for identification (ID) of clinically significant bacterial isolates. Clinically relevant broad diversity of bacterial isolates obtained during a 6-consecutive months of routine laboratory processing of clinical specimens were subjected to ID by the BMS and VMS in parallel with Vitek 2, a conventional phenotypic system (CPS). For the BMS, the isolates were tested in duplicates directly and after pretreatment. Identification was provided with accompanying scores according to manufacturers’ instructions. With VMS, single deposits of the same sets of isolates were tested in duplicates directly on MALDI-plate. Results were interpreted according to the manufacturer’s protocols. Discrepant results were resolved by 16S rRNA gene amplification and sequencing. Results A total of 806 pathogens comprising 507 Gram-negative bacilli (GNB), 16 Gram-negative cocci (GNC), 267 Gram-positive cocci (GPC), and 16 Gram-positive bacilli (GPB) were tested. BMS and VMS correctly identified isolates to genus and species levels (ID 97.3% and 93.2%, and 99.8% and 99.0%, respectively). Both systems as well as the CPS correctly identified the majority of the species in the family Enterobacteriaceae, Pseudomonas spp., and Acinetobacter baumannii. Turnaround time for identification by BMS and VMS was <20 min compared with 24-48 h by the CPS. Conclusions VMS performed slightly better than BMS with GPC ID, especially the Streptococcus spp. Some S. mitis isolates were identified as S. pneumoniae by BMS. BMS and VMS were rapid and proved to be consistently accurate for producing bacterial identification in a fraction of time it takes for identification by CPS.
Collapse
|
35
|
Nomura F. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:528-37. [PMID: 25448014 DOI: 10.1016/j.bbapap.2014.10.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
Rapid and accurate identification of microorganisms, a prerequisite for appropriate patient care and infection control, is a critical function of any clinical microbiology laboratory. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a quick and reliable method for identification of microorganisms, including bacteria, yeast, molds, and mycobacteria. Indeed, there has been a revolutionary shift in clinical diagnostic microbiology. In the present review, the state of the art and advantages of MALDI-TOF MS-based bacterial identification are described. The potential of this innovative technology for use in strain typing and detection of antibiotic resistance is also discussed. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Fumio Nomura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Divisions of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, 1-8-1 Inohana, Chiba City, Chiba 260-8670, Japan.
| |
Collapse
|
36
|
AlMasoud N, Xu Y, Nicolaou N, Goodacre R. Optimization of matrix assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) for the characterization of Bacillus and Brevibacillus species. Anal Chim Acta 2014; 840:49-57. [PMID: 25086893 PMCID: PMC4223412 DOI: 10.1016/j.aca.2014.06.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 11/23/2022]
Abstract
Optimization of MALDI-TOF-MS for characterizing Bacillus and Brevibacillus species. Development of a suitable chemometric workflow for processing raw MALDI-TOF-MS data. Classification of 7 species from bacteria achieved high accuracy (∼90%). Allowed to dry at room temperature (ca. 22 °C) for 1 h.
Over the past few decades there has been an increased interest in using various analytical techniques for detecting and identifying microorganisms. More recently there has been an explosion in the application of matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) for bacterial characterization, and here we optimize this approach in order to generate reproducible MS data from bacteria belonging to the genera Bacillus and Brevibacillus. Unfortunately MALDI-TOF-MS generates large amounts of data and is prone to instrumental drift. To overcome these challenges we have developed a preprocessing pipeline that includes baseline correction, peak alignment followed by peak picking that in combination significantly reduces the dimensionality of the MS spectra and corrects for instrument drift. Following this two different prediction models were used which are based on support vector machines and these generated satisfactory prediction accuracies of approximately 90%.
Collapse
Affiliation(s)
- Najla AlMasoud
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Yun Xu
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Nicoletta Nicolaou
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Royston Goodacre
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
37
|
Zhang L, Borror CM, Sandrin TR. A designed experiments approach to optimization of automated data acquisition during characterization of bacteria with MALDI-TOF mass spectrometry. PLoS One 2014; 9:e92720. [PMID: 24662978 PMCID: PMC3963954 DOI: 10.1371/journal.pone.0092720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/24/2014] [Indexed: 01/27/2023] Open
Abstract
MALDI-TOF MS has been shown capable of rapidly and accurately characterizing bacteria. Highly reproducible spectra are required to ensure reliable characterization. Prior work has shown that spectra acquired manually can have higher reproducibility than those acquired automatically. For this reason, the objective of this study was to optimize automated data acquisition to yield spectra with reproducibility comparable to those acquired manually. Fractional factorial design was used to design experiments for robust optimization of settings, in which values of five parameters (peak selection mass range, signal to noise ratio (S:N), base peak intensity, minimum resolution and number of shots summed) commonly used to facilitate automated data acquisition were varied. Pseudomonas aeruginosa was used as a model bacterium in the designed experiments, and spectra were acquired using an intact cell sample preparation method. Optimum automated data acquisition settings (i.e., those settings yielding the highest reproducibility of replicate mass spectra) were obtained based on statistical analysis of spectra of P. aeruginosa. Finally, spectrum quality and reproducibility obtained from non-optimized and optimized automated data acquisition settings were compared for P. aeruginosa, as well as for two other bacteria, Klebsiella pneumoniae and Serratia marcescens. Results indicated that reproducibility increased from 90% to 97% (p-value[Formula: see text]0.002) for P. aeruginosa when more shots were summed and, interestingly, decreased from 95% to 92% (p-value [Formula: see text] 0.013) with increased threshold minimum resolution. With regard to spectrum quality, highly reproducible spectra were more likely to have high spectrum quality as measured by several quality metrics, except for base peak resolution. Interaction plots suggest that, in cases of low threshold minimum resolution, high reproducibility can be achieved with fewer shots. Optimization yielded more reproducible spectra than non-optimized settings for all three bacteria.
Collapse
Affiliation(s)
- Lin Zhang
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona, United States of America
| | - Connie M. Borror
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona, United States of America
| | - Todd R. Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona, United States of America
- * E-mail:
| |
Collapse
|
38
|
Schumann P, Maier T. MALDI-TOF Mass Spectrometry Applied to Classification and Identification of Bacteria. METHODS IN MICROBIOLOGY 2014. [DOI: 10.1016/bs.mim.2014.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Šedo O, Vávrová A, Vad'urová M, Tvrzová L, Zdráhal Z. The influence of growth conditions on strain differentiation within the Lactobacillus acidophilus group using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2729-2736. [PMID: 24214857 DOI: 10.1002/rcm.6741] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling of bacteria is often used to distinguish isolates beyond the species level, even to the level of individual strains. However, the influence of bacterial growth conditions on the discriminatory power of the method to the strain level has not yet been properly evaluated. METHODS For the purpose of this study, we used an extraction protocol recommended for clinical laboratories for MALDI-TOF MS profiling of bacteria. Seventeen closely related strains of the Lactobacillus acidophilus group were cultivated under various growth conditions (growth medium, time, and temperature) and analyzed. RESULTS Out of a total of 327 samples, 80 % were correctly assigned to the species level and 13 % only to the genus level. When using data obtained from strains cultured for lengthy periods (7 days), the identification success rate was reduced due to poor signal quality, whereas with shorter cultivation times there was no influence of growth conditions on the assignment of particular strains to their corresponding species. However, variations in certain cultivation parameters were found to influence identification and differentiation of most of the examined strains. Strain discrimination was frequently found to be dependent on the selection of culture conditions. MALDI-TOF MS data treatment (strain-specific peak detection, BioTyper scoring, subtyping, or cluster analysis) also contributed to the discriminatory power of the method. CONCLUSIONS When MALDI-TOF MS profiling of bacteria is used for strain discrimination, the cultivation conditions should be properly optimized and controlled as they significantly contribute to the discriminatory power of the method.
Collapse
Affiliation(s)
- Ondrej Šedo
- Research Group Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
40
|
Effects of growth medium on matrix-assisted laser desorption-ionization time of flight mass spectra: a case study of acetic acid bacteria. Appl Environ Microbiol 2013; 80:1528-38. [PMID: 24362425 DOI: 10.1128/aem.03708-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of the growth medium used on the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectra generated and its consequences for species and strain level differentiation of acetic acid bacteria (AAB) were determined by using a set of 25 strains. The strains were grown on five different culture media that yielded a total of more than 600 mass spectra, including technical and biological replicates. The results demonstrate that the culture medium can have a profound effect on the mass spectra of AAB as observed in the presence and varying signal intensities of peak classes, in particular when culture media do not sustain optimal growth. The observed growth medium effects do not disturb species level differentiation but strongly affect the potential for strain level differentiation. The data prove that a well-constructed and robust MALDI-TOF mass spectrometry identification database should comprise mass spectra of multiple reference strains per species grown on different culture media to facilitate species and strain level differentiation.
Collapse
|
41
|
Usbeck JC, Kern CC, Vogel RF, Behr J. Optimization of experimental and modelling parameters for the differentiation of beverage spoiling yeasts by Matrix-Assisted-Laser-Desorption/Ionization–Time-of-Flight Mass Spectrometry (MALDI–TOF MS) in response to varying growth conditions. Food Microbiol 2013; 36:379-87. [DOI: 10.1016/j.fm.2013.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/30/2013] [Accepted: 07/12/2013] [Indexed: 01/24/2023]
|
42
|
Potential and limitations of MALDI-TOF MS for discrimination within the species Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides. J Verbrauch Lebensm 2013. [DOI: 10.1007/s00003-013-0826-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Sandrin TR, Goldstein JE, Schumaker S. MALDI TOF MS profiling of bacteria at the strain level: a review. MASS SPECTROMETRY REVIEWS 2013; 32:188-217. [PMID: 22996584 DOI: 10.1002/mas.21359] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 05/16/2023]
Abstract
Since the advent of the use of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS) as a tool for microbial characterization, efforts to increase the taxonomic resolution of the approach have been made. The rapidity and efficacy of the approach have suggested applications in counter-bioterrorism, prevention of food contamination, and monitoring the spread of antibiotic-resistant bacteria. Strain-level resolution has been reported with diverse bacteria, using library-based and bioinformatics-enabled approaches. Three types of characterization at the strain level have been reported: strain categorization, strain differentiation, and strain identification. Efforts to enhance the library-based approach have involved sample pre-treatment and data reduction strategies. Bioinformatics approaches have leveraged the ever-increasing amount of publicly available genomic and proteomic data to attain strain-level characterization. Bioinformatics-enabled strategies have facilitated strain characterization via intact biomarker identification, bottom-up, and top-down approaches. Rigorous quantitative and advanced statistical analyses have fostered success at the strain level with both approaches. Library-based approaches can be limited by effects of sample preparation and culture conditions on reproducibility, whereas bioinformatics-enabled approaches are typically limited to bacteria, for which genetic and/or proteomic data are available. Biological molecules other than proteins produced in strain-specific manners, including lipids and lipopeptides, might represent other avenues by which strain-level resolution might be attained. Immunological and lectin-based chemistries have shown promise to enhance sensitivity and specificity. Whereas the limits of the taxonomic resolution of MALDI TOF MS profiling of bacteria appears bacterium-specific, recent data suggest that these limits might not yet have been reached.
Collapse
Affiliation(s)
- Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85069, USA.
| | | | | |
Collapse
|
44
|
Mulet M, Gomila M, Scotta C, Sánchez D, Lalucat J, García-Valdés E. Concordance between whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry and multilocus sequence analysis approaches in species discrimination within the genus Pseudomonas. Syst Appl Microbiol 2013; 35:455-64. [PMID: 23140936 DOI: 10.1016/j.syapm.2012.08.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/31/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
Abstract
Multilocus sequence analysis (MLSA) is one of the most accepted methods for the phylogenetic assignation of Pseudomonas strains to their corresponding species. Furthermore, updated databases are essential for correct bacterial identification and the number of Pseudomonas species is increasing continuously. Currently, 127 species are validly described in Euzéby's List of Species with Standing in Nomenclature, and 29 novel species have been described since the publication of the last comprehensive MLSA phylogenetic study based on the sequences of the 16S rDNA, gyrB, rpoB and rpoD genes. Therefore, an update of the sequence database is presented, together with the analysis of the phylogeny of the genus Pseudomonas. Whole-cell matrix-assisted laser-desorption/ionization time-of-flight (WC-MALDI-TOF) mass spectrometry (MS) analysis has been applied very recently to the identification of bacteria and is considered to be a fast and reliable method. A total of 133 type strains of the recognized species and subspecies in the genus Pseudomonas, together with other representative strains, were analyzed using this new technique, and the congruence between the WC-MALDI-TOF MS and MLSA techniques was assessed for the discrimination and correct species identification of the strains. The utility of both methods in the identification of environmental and clinical strains is discussed.
Collapse
Affiliation(s)
- Magdalena Mulet
- Microbiología, Departamento de Biología, Universidad de las Islas Baleares, 07122 Palma de Mallorca, Islas Baleares, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Kern CC, Usbeck JC, Vogel RF, Behr J. Optimization of Matrix-Assisted-Laser-Desorption-Ionization-Time-Of-Flight Mass Spectrometry for the identification of bacterial contaminants in beverages. J Microbiol Methods 2013; 93:185-91. [PMID: 23541955 DOI: 10.1016/j.mimet.2013.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 11/30/2022]
Abstract
The growth of microbial contaminants in industrially produced beverages can cause turbidity, haze and off-flavors resulting in quality loss often rendering the product undrinkable. In this work Matrix-Assisted-Laser-Desorption-Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) based on the generation of peptide mass fingerprints, which form a distinctive protein peak pattern, is presented as a rapid, reliable and powerful tool for the identification of spoilage bacteria encountered in beverages. Lactobacillus brevis, Pediococcus claussenii and Leuconostoc mesenteroides were used to optimize sample preparation and MALDI-TOF MS-settings. Different sample preparation methods ranging from plain cell smears to more elaborate extraction procedures including mechanical and enzymatical disruption of cells were investigated. The effects of culturing time and the availability of oxygen and nutrients on the acquired protein peak patterns were studied. While cell smears at times hampered the acquisition of spectra for strain L. brevis all other procedures constantly delivered good quality spectra for all three strains. The extraction procedure allowed good reproducibility of spectra with high information content and enabled differentiation on the species level regardless of the culture conditions used. The application of specific culture conditions to microorganisms resulted in minor but stable changes in spectra, which were not sufficient to impair identification of isolates on the species level.
Collapse
Affiliation(s)
- Carola C Kern
- Technische Universität München, Lehrstuhl für Technische Mikrobiologie, Weihenstephaner Steig 16, 85350 Freising, Germany
| | | | | | | |
Collapse
|
46
|
Biswas S, Rolain JM. Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture. J Microbiol Methods 2013; 92:14-24. [DOI: 10.1016/j.mimet.2012.10.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 01/22/2023]
|
47
|
Prisyazhnaya NV, Plotnikova EG, Bueva OV, Korsakova ES, Dorofeeva LV, Il’ina EN, Lebedev AT, Evtushenko LI. Application of MALDI-TOF mass spectrometry for differentiation of closely related species of the “Arthrobacter crystallopoietes” phylogenetic group. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712060136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
48
|
von Bergen M, Eidner A, Schmidt F, Murugaiyan J, Wirth H, Binder H, Maier T, Roesler U. Identification of harmless and pathogenic algae of the genus Prototheca by MALDI-MS. Proteomics Clin Appl 2012; 3:774-84. [PMID: 21136986 DOI: 10.1002/prca.200780138] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The only plants infectious for mammals, green algae from the genus Prototheca, are often overseen or mistaken for yeast in clinical diagnosis. To improve this diagnostical gap, a method was developed for fast and reliable identification of Prototheca. A collection of all currently recognized Prototheca species, most represented by several strains, were submitted to a simple extraction by 70% formic acid and ACN; the extracts were analyzed by means of MALDI-MS. Most of the peaks were found in the range from 4 to 20 kDa and showed a high reproducibility, not in absolute intensities, but in their peak pattern. The selection of measured peaks is mostly due to the technique of ionization in MALDI-MS, because proteins in the range up to 200 kDa were detected using gel electrophoresis. Some of the proteins were identified by peptide mass fingerprinting and MS(2) analysis and turned out to be ribosomal proteins or other highly abundant proteins such as ubiquitin. For the preparation of a heatmap, the intensities of the peaks were plotted and a cluster analysis was performed. From the peak-lists, a principal component analysis was conducted and a dendrogram was built. This dendrogram, based on MALDI spectra, was in fairly good agreement with a dendrogram based on sequence information from 18S DNA. As a result, pathogenic and nonpathogenic species from the genus Prototheca can be identified, with possible consequences for clinical diagnostics by MALDI-typing.
Collapse
Affiliation(s)
- Martin von Bergen
- Department of Proteomics, UFZ - Helmholtz-Centre for Environmental Research, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Stephen KE, Homrighausen D, DePalma G, Nakatsu CH, Irudayaraj J. Surface enhanced Raman spectroscopy (SERS) for the discrimination of Arthrobacter strains based on variations in cell surface composition. Analyst 2012; 137:4280-6. [PMID: 22842541 DOI: 10.1039/c2an35578g] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface enhanced Raman spectroscopy (SERS) is a rapid and highly sensitive spectroscopic technique that has the potential to measure chemical changes in bacterial cell surface in response to environmental changes. The objective of this study was to determine whether SERS had sufficient resolution to differentiate closely related bacteria within a genus grown on solid and liquid medium, and a single Arthrobacter strain grown in multiple chromate concentrations. Fourteen closely related Arthrobacter strains, based on their 16S rRNA gene sequences, were used in this study. After performing principal component analysis in conjunction with Linear Discriminant Analysis, we used a novel, adapted cross-validation method, which more faithfully models the classification of spectra. All fourteen strains could be classified with up to 97% accuracy. The hierarchical trees comparing SERS spectra from the liquid and solid media datasets were different. Additionally, hierarchical trees created from the Raman data were different from those obtained using 16S rRNA gene sequences (a phylogenetic measure). A single bacterial strain grown on solid media culture with three different chromate levels also showed significant spectral distinction at discrete points identified by the new Elastic Net regularized regression method demonstrating the ability of SERS to detect environmentally induced changes in cell surface composition. This study demonstrates that SERS is effective in distinguishing between a large number of very closely related Arthrobacter strains and could be a valuable tool for rapid monitoring and characterization of phenotypic variations in a single population in response to environmental conditions.
Collapse
Affiliation(s)
- Kate E Stephen
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
50
|
Böhme K, Fernández-No IC, Barros-Velázquez J, Gallardo JM, Cañas B, Calo-Mata P. SpectraBank: An open access tool for rapid microbial identification by MALDI-TOF MS fingerprinting. Electrophoresis 2012; 33:2138-42. [DOI: 10.1002/elps.201200074] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Karola Böhme
- Department of Analytical Chemistry; Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| | - Inmaculada C. Fernández-No
- Department of Analytical Chemistry; Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry; Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| | - Jose M. Gallardo
- Department of Food Technology; Institute for Marine Research (IIM-CSIC); Vigo; Spain
| | - Benito Cañas
- Department of Analytical Chemistry; University Complutense of Madrid; Madrid; Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry; Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| |
Collapse
|