1
|
de Castro PA, Akiyama DY, Pinzan CF, dos Reis TF, Delbaje E, Rocha P, Izidoro MA, Schenkman S, Sugimoto S, Takeshita N, Steffen K, Aycock JL, Dolan SK, Rokas A, Fill T, Goldman GH. Aspergillus fumigatus secondary metabolite pyripyropene is important for the dual biofilm formation with Pseudomonas aeruginosa. mBio 2025; 16:e0036325. [PMID: 40094363 PMCID: PMC11980569 DOI: 10.1128/mbio.00363-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
The human pathogenic fungus Aspergillus fumigatus establishes dual biofilm interactions in the lungs with the pathogenic bacterium Pseudomonas aeruginosa. Screening of 21 A. fumigatus null mutants revealed seven mutants (two G protein-coupled receptors, three mitogen-activated protein kinase receptors, a Gα protein, and one histidine kinase receptor) with reduced biofilm formation, specifically in the presence of P. aeruginosa. Transcriptional profiling and metabolomics analysis of secondary metabolites produced by one of these mutants, ΔgpaB (gpaB encodes a Gα protein), showed GpaB controls the production of several important metabolites for the dual biofilm interaction, including pyripyropene A, a potent inhibitor of mammalian acyl-CoA cholesterol acyltransferase. Deletion of pyr2, encoding a non-reducing polyketide synthase essential for pyripyropene biosynthesis, showed reduced A. fumigatus Δpyr2-P. aeruginosa biofilm growth, altered macrophage responses, and attenuated mouse virulence in a chemotherapeutic murine model. We identified pyripyropene as a novel player in the ecology and pathogenic interactions of this important human fungal pathogen.IMPORTANCEAspergillus fumigatus and Pseudomonas aeruginosa are two important human pathogens. Both organisms establish biofilm interactions in patients affected with chronic lung pulmonary infections, such as cystic fibrosis (CF) and chronic obstructive pulmonary disease. Colonization with A. fumigatus is associated with an increased risk of P. aeruginosa colonization in CF patients, and disease prognosis is poor when both pathogens are present. Here, we identified A. fumigatus genetic determinants important for the establishment of in vitro dual A. fumigatus-P. aeruginosa biofilm interactions. Among them, an A. fumigatus Gα protein GpaB is important for this interaction controlling the production of the secondary metabolite pyripyropene. We demonstrate that the lack of pyripyropene production decreases the dual biofilm interaction between the two species as well as the virulence of A. fumigatus in a chemotherapeutic murine model of aspergillosis. These results reveal a complete novel role for this secondary metabolite in the ecology and pathogenic interactions of this important human fungal pathogen.
Collapse
Affiliation(s)
- Patricia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Endrews Delbaje
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Peter Rocha
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Sérgio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Shinya Sugimoto
- Department of Bacteriology, Jikei Center for Biofilm Science and Technology, Laboratory of Amyloid Regulation, The Jikei University School of Medicine, Tokyo, Japan
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Karin Steffen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Jessica L. Aycock
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| | - Stephen K. Dolan
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Taícia Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
2
|
Kim C, Jothi R, Oh KK, Park DS. Novel Species-Specific Primers Enable Accurate Detection and Quantification of Pseudomonas aeruginosa via qPCR. J Food Prot 2025; 88:100467. [PMID: 39956321 DOI: 10.1016/j.jfp.2025.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Pseudomonas aeruginosa, a notable pathogen in nosocomial infections, also emerges as a significant and often underestimated foodborne pathogen, frequently identified in diverse food categories, including meat, milk, fruits, vegetables, and water. Its resilience, virulence, and ability to form biofilms necessitate the development of novel methods for early detection of its presence in food products. This study aims to identify, design, and validate specific genetic markers for P. aeruginosa detection through quantitative PCR (qPCR) analysis. In this study, 816 publicly available genome sequences of P. aeruginosa strains were compared to identify a conserved and specific gene encoding a hypothetical protein (WP_003109295.1) in P. aeruginosa DSM 50071. Primers targeting this gene region were designed and validated for their ability to detect P. aeruginosa using qPCR, demonstrating a high level of sensitivity and specificity for P. aeruginosa among various Pseudomonas species. Further validation through standard curve analysis using three different templates such as cloned DNA, genomic DNA, and cell suspension confirmed the exceptional sensitivity and specificity of the designed primers in quantifying P. aeruginosa via qPCR. Additionally, the on-site application of these primers was validated on P. aeruginosa-inoculated carrot samples, highlighting their reliability and accuracy. The proposed direct qPCR method offers substantial advantages for the rapid, simple, and specific detection of P. aeruginosa, enhancing the efficiency of diagnostic and monitoring processes for this pathogen in food and vegetable distribution systems.
Collapse
Affiliation(s)
- Chaerin Kim
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Ravi Jothi
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Kwang-Kyo Oh
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Dong Suk Park
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
| |
Collapse
|
3
|
Lucky OP, Kusi J. Silver nanoparticle-induced antimicrobial resistance in Pseudomonas aeruginosa and Salmonella spp. Isolates from an urban lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125758. [PMID: 39884545 DOI: 10.1016/j.envpol.2025.125758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/31/2024] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
The antimicrobial properties and widespread incorporation of silver nanoparticles (AgNPs) into consumer products have raised concerns about their potential impact on public health and the environment. This study examined citrate-coated and uncoated AgNPs' antimicrobial effects on microbial growth and their potential to induce antimicrobial resistance (AMR) in the natural environment. We isolated Pseudomonas aeruginosa and Salmonella spp. from a local lake. We exposed the pathogenic isolates to the AgNPs and examined their impact on antimicrobial susceptibility using the Kirby-Bauer method. Both citrate-coated and uncoated AgNPs caused a significant rapid decline in bacterial population growth. The LOEC of citrate-coated AgNP for the bacterial population was 10-fold lower than that of the uncoated AgNP. The NOECs of citrate-coated and uncoated AgNPs for AMR in Salmonella spp. was <47.8 μg/L and that of P. aeruginosa was 95.5 μg/L. Citrate-coated and uncoated AgNPs induced AMR in Salmonella spp. at 47.8 μg/L and P. aeruginosa at 192.3 μg/L. All AgNP-induced Salmonella spp. isolates were resistant to ampicillin while AgNP-induced P. aeruginosa isolates were resistant to ciprofloxacin and gentamicin. For citrate-coated AgNP antimicrobial susceptibility tests, 13.3 and 17.5% were positive for resistance in P. aeruginosa and Salmonella spp. respectively. Uncoated AgNP antimicrobial susceptibility tests showed 3.3 and 10.8% positive for resistance in P. aeruginosa and Salmonella spp. respectively. The AgNP-induced resistance was concentration-dependent. The findings of this study demonstrate that AgNPs can alter bacterial populations and stimulate AMR in pathogenic bacteria, raising concerns about the potential health risks associated with the contaminants of emerging concern.
Collapse
Affiliation(s)
- Otite P Lucky
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive SW 2145, PO Box 1099, Edwardsville, IL, 62026, USA
| | - Joseph Kusi
- Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive SW 2145, PO Box 1099, Edwardsville, IL, 62026, USA.
| |
Collapse
|
4
|
Xu Y, Ma J, Dai C, Mao Z, Zhou Y. CRISPR/Cas12a-drived electrochemiluminescence and fluorescence dual-mode magnetic biosensor for sensitive detection of Pseudomonas aeruginosa based on iridium(III) complex as luminophore. Biosens Bioelectron 2024; 264:116678. [PMID: 39154508 DOI: 10.1016/j.bios.2024.116678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa (P. aeruginosa) poses a significant threat to human health, causing sepsis, inflammation, and pneumonia, so it is crucial to devise an expeditious detection platform for the P. aeruginosa. In this work, bis (2- (3, 5- dimethylphenyl) quinoline- C2, N') (acetylacetonato) iridium (III) Ir (dmpq)2 (acac) with excellent electrochemiluminescence (ECL) and fluorescence (FL) and magnetic nanoparticles were encapsulated in silica spheres. The luminescent units exhibited equal ECL and FL properties compared with single iridium complexes, and enabled rapid separation, which was of vital significance for the establishment of biosensors with effective detection. In addition, the luminescent units were further reacted with the DNA with quenching units to obtain the signal units, and the ECL/FL dual-mode biosensor was employed with the CRISPR/Cas12a system to further improve its specific recognition ability. The ECL detection linear range of as-proposed biosensor in this work was 100 fM-10 nM with the detection limit of 73 fM (S/N = 3), and FL detection linear range was 1 pM-10 nM with the detection limit of 0.126 pM (S/N = 3). Importantly, the proposed dual-mode biosensor exhibited excellent repeatability and stability in the detection of P. aeruginosa in real samples, underscoring its potential as an alternative strategy for infection prevention and safeguarding public health and safety in the future.
Collapse
Affiliation(s)
- Yaoyao Xu
- School of Chemistry and Life Science, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Jingjing Ma
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Chenji Dai
- School of Chemistry and Life Science, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Ziwang Mao
- School of Chemistry and Life Science, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Yuyang Zhou
- School of Chemistry and Life Science, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China.
| |
Collapse
|
5
|
Ferrusca Bernal D, Mosqueda J, Pérez-Sánchez G, Chávez JAC, Neri Martínez M, Rodríguez A, Carvajal-Gamez B. Loop-Mediated Isothermal Amplification Coupled with Reverse Line Blot Hybridization for the Detection of Pseudomonas aeruginosa. Microorganisms 2024; 12:2316. [PMID: 39597705 PMCID: PMC11596522 DOI: 10.3390/microorganisms12112316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Pseudomonas aeruginosa is a pathogen of critical priority importance according to the WHO. Due to its multi-resistance and expression of various virulence factors, it is the causal agent of severe healthcare-acquired infections (HAIs). Effective strategies to control infections caused by P. aeruginosa must include early and specific detection of the pathogen for early and timely antibiotic prescription. The need to develop a specific and reproducible diagnostic technique is urgent, which must often be more sensitive and faster than current clinical diagnostic methods. In this study, we implement and standardize the loop-mediated isothermal amplification (LAMP) technique, coupled with the reverse line blot hybridization (RLBH) technique for the detection of P. aeruginosa. A set of primers and probes was designed to amplify a specific region of the P. aeruginosa 16s rRNA gene. The sensitivity of the LAMP-RLBH method was 3 × 10-4 ng/μL, 1000 times more sensitive than the PCR and LAMP technique (this work), with a sensitivity of 3 × 10-3 ng/μL. The LAMP-RLBH and LAMP techniques showed specific amplification and no cross-reaction with members of the ESKAPE group and other Pseudomonas species. The present investigation provides a technique that can be easily performed in less time, achieving a faster and more reliable alternative compared to traditional microbial diagnostic methods for the detection of P. aeruginosa.
Collapse
Affiliation(s)
- Daniel Ferrusca Bernal
- Immunology and Vaccines Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico; (D.F.B.); (J.M.); (M.N.M.)
| | - Juan Mosqueda
- Immunology and Vaccines Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico; (D.F.B.); (J.M.); (M.N.M.)
- Cuerpo Académico, Salud Animal y Microbiología Ambiental, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico;
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | | | - Mónica Neri Martínez
- Immunology and Vaccines Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico; (D.F.B.); (J.M.); (M.N.M.)
- Proteogenomic and Molecular Diagnosis Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico
| | - Angelina Rodríguez
- Cuerpo Académico, Salud Animal y Microbiología Ambiental, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico;
- Maestría en Química Clínica Diagnóstica, Facultad de Química, Autonomous University of Queretaro, Queretaro 76010, Mexico
| | - Bertha Carvajal-Gamez
- Immunology and Vaccines Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico; (D.F.B.); (J.M.); (M.N.M.)
- Cuerpo Académico, Salud Animal y Microbiología Ambiental, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico;
- Proteogenomic and Molecular Diagnosis Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico
- Maestría en Química Clínica Diagnóstica, Facultad de Química, Autonomous University of Queretaro, Queretaro 76010, Mexico
| |
Collapse
|
6
|
Makk J, Toumi M, Krett G, Lange-Enyedi NT, Schachner-Groehs I, Kirschner AKT, Tóth E. Temporal changes in the morphological and microbial diversity of biofilms on the surface of a submerged stone in the Danube River. Biol Futur 2024; 75:261-277. [PMID: 38970754 DOI: 10.1007/s42977-024-00228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Epilithic biofilms are ubiquitous in large river environments and are crucial for biogeochemical processes, but their community structures and functions remain poorly understood. In this paper, the seasonal succession in the morphological structure and the taxonomic composition of an epilithic bacterial biofilm community at a polluted site of the Danube River were followed using electron microscopy, high-throughput 16S rRNA gene amplicon sequencing and multiplex/taxon-specific PCRs. The biofilm samples were collected from the same submerged stone and carried out bimonthly in the littoral zone of the Danube River, downstream of a large urban area. Scanning electron microscopy showed that the biofilm was composed of diatoms and a variety of bacteria with different morphologies. Based on amplicon sequencing, the bacterial communities were dominated by the phyla Pseudomonadota and Bacteroidota, while the most abundant archaea belonged to the phyla Nitrososphaerota and Nanoarchaeota. The changing environmental factors had an effect on the composition of the epilithic microbial community. Critical levels of faecal pollution in the water were associated with increased relative abundance of Sphaerotilus, a typical indicator of "sewage fungus", but the composition and diversity of the epilithic biofilms were also influenced by several other environmental factors such as temperature, water discharge and total suspended solids (TSS). The specific PCRs showed opportunistic pathogenic bacteria (e.g. Pseudomonas spp., Legionella spp., P. aeruginosa, L. pneumophila, Stenotrophomonas maltophilia) in some biofilm samples, but extended spectrum β-lactamase (ESBL) genes and macrolide resistance genes could not be detected.
Collapse
Affiliation(s)
- Judit Makk
- Department of Microbiology, Faculty of Science, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, 1117, Budapest, Hungary.
| | - Marwene Toumi
- Department of Microbiology, Faculty of Science, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, 1117, Budapest, Hungary
| | - Gergely Krett
- Department of Microbiology, Faculty of Science, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, 1117, Budapest, Hungary
| | - Nóra Tünde Lange-Enyedi
- Department of Microbiology, Faculty of Science, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, 1117, Budapest, Hungary
| | - Iris Schachner-Groehs
- Center for Pathophysiology, Infectiology and Immunology, Institute of Hygiene and Applied Immunology - Water Microbiology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
| | - Alexander K T Kirschner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Hygiene and Applied Immunology - Water Microbiology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500, Krems an Der Donau, Austria
| | - Erika Tóth
- Department of Microbiology, Faculty of Science, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, 1117, Budapest, Hungary
| |
Collapse
|
7
|
Bouchali R, Mandon C, Danty-Berger E, Géloën A, Marjolet L, Youenou B, Pozzi ACM, Vareilles S, Galia W, Kouyi GL, Toussaint JY, Cournoyer B. Runoff microbiome quality assessment of a city center rainwater harvesting zone shows a differentiation of pathogen loads according to human mobility patterns. Int J Hyg Environ Health 2024; 260:114391. [PMID: 38781750 DOI: 10.1016/j.ijheh.2024.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The hygienic quality of urban surfaces can be impaired by multiple sources of microbiological contaminants. These surfaces can trigger the development of multiple bacterial taxa and favor their spread during rain events through the circulation of runoff waters. These runoff waters are commonly directed toward sewer networks, stormwater infiltration systems or detention tanks prior a release into natural water ways. With water scarcity becoming a major worldwide issue, these runoffs are representing an alternative supply for some usage like street cleaning and plant watering. Microbiological hazards associated with these urban runoffs, and surveillance guidelines must be defined to favor these uses. Runoff microbiological quality from a recently implemented city center rainwater harvesting zone was evaluated through classical fecal indicator bacteria (FIB) assays, quantitative PCR and DNA meta-barcoding analyses. The incidence of socio-urbanistic patterns on the organization of these urban microbiomes were investigated. FIB and DNA from Human-specific Bacteroidales and pathogens such as Staphylococcus aureus were detected from most runoffs and showed broad distribution patterns. 16S rRNA DNA meta-barcoding profilings further identified core recurrent taxa of health concerns like Acinetobacter, Mycobacterium, Aeromonas and Pseudomonas, and divided these communities according to two main groups of socio-urbanistic patterns. One of these was highly impacted by heavy traffic, and showed recurrent correlation networks involving bacterial hydrocarbon degraders harboring significant virulence properties. The tpm-based meta-barcoding approach identified some of these taxa at the species level for more than 30 genera. Among these, recurrent pathogens were recorded such as P. aeruginosa, P. paraeruginosa, and Aeromonas caviae. P. aeruginosa and A. caviae tpm reads were found evenly distributed over the study site but those of P. paraeruginosa were higher among sub-catchments impacted by heavy traffic. Health risks associated with these runoff P. paraeruginosa emerging pathogens were high and associated with strong cytotoxicity on A549 lung cells. Recurrent detections of pathogens in runoff waters highlight the need of a microbiological surveillance prior allowing their use. Good microbiological quality can be obtained for certain typologies of sub-catchments with good hygienic practices but not all. A reorganization of Human mobility and behaviors would likely trigger changes in these bacterial diversity patterns and reduce the occurrences of the most hazardous groups.
Collapse
Affiliation(s)
- Rayan Bouchali
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Claire Mandon
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Emmanuelle Danty-Berger
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Alain Géloën
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Laurence Marjolet
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Benjamin Youenou
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Adrien C M Pozzi
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Sophie Vareilles
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Wessam Galia
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | | | - Jean-Yves Toussaint
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Benoit Cournoyer
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France.
| |
Collapse
|
8
|
Ahmadi N, Salimizand H, Zomorodi AR, Abbas JE, Ramazanzadeh R, Haghi F, Hassanzadeh S, Jahantigh M, Shahin M. Genomic diversity of β-lactamase producing Pseudomonas aeruginosa in Iran; the impact of global high-risk clones. Ann Clin Microbiol Antimicrob 2024; 23:5. [PMID: 38218982 PMCID: PMC10790247 DOI: 10.1186/s12941-024-00668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/04/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Hospital-acquired infections caused by multidrug-resistant Pseudomonas aeruginosa incline hospital stay and costs of treatment that resulted in an increased mortality rate. The frequency of P. aeruginosa high-risk clones producing carbapenemases was investigated in our clinical samples. METHODS In this cross-sectional study, 155 non-repetitive P. aeruginosa isolates were included from different medical centers of Iran. Antibiotic susceptibility testing was determined, and the presence of β-lactamases were sought by phenotypic and genotypic methods. The clonal relationship of all isolates was investigated, and multi-locus sequence typing (MLST) was used for finding the sequence types of carbapenemase-producers. RESULTS The agent with highest percent susceptibility rate was recorded for colistin (94.9%). MOX and FOX were found both as low as 1.95% (3/155). The most frequent narrow spectrum β-lactamase was SHV with 7.7% (12/155) followed by PER, OXA-1, and TEM with the frequency of 7.1% (11/155), 3.2% (5/155), and 1.3% (2/155), respectively. Carbapenemases were detected in 28 isolates (18%). The most frequent carbapenemase was IMP with 9% (14/155) followed by NDM, 8.4% (13/155). OXA-48 and VIM were also detected both per one isolate (0.65%). MLST of carbapenem resistant P. aeruginosa isolates revealed that ST244, ST664, ST235, and ST357 were spread in subjected clinical settings. REP-PCR uncovered high genomic diversity in our clinical setting. CONCLUSION Clonal proliferation of ST235 strain plays a key role in the propagation of MDR pattern in P. aeruginosa. Our data showed that high-risk clones has distributed in Iran, and programs are required to limit spreading of these clones.
Collapse
Affiliation(s)
- Nazila Ahmadi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Himen Salimizand
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jalileh Ebn Abbas
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Rashid Ramazanzadeh
- Department of Microbiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fakhri Haghi
- Department of Microbiology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sepideh Hassanzadeh
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojdeh Jahantigh
- Department of Microbiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mojtaba Shahin
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Arak branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
9
|
Bouchali R, Marjolet L, Mondamert L, Chonova T, Ribun S, Laurent E, Bouchez A, Labanowski J, Cournoyer B. Evidence of Bacterial Community Coalescence between Freshwater and Discharged tpm-Harboring Bacterial Taxa from Hospital and Domestic Wastewater Treatment Plants among Epilithic Biofilms. Microorganisms 2023; 11:microorganisms11040922. [PMID: 37110345 PMCID: PMC10144666 DOI: 10.3390/microorganisms11040922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/18/2023] [Indexed: 04/05/2023] Open
Abstract
The ability of WWTP outflow bacteria at colonizing rock surfaces and contributing to the formation of river epilithic biofilms was investigated. Bacterial community structures of biofilms (b-) developing on rocks exposed to treated wastewaters (TWW) of a hospital (HTWW) and a domestic (DTWW) clarifier, and to surface waters of the stream located at 10 m, 500 m, and 8 km from the WWTP outlet, were compared. Biofilm bacterial contents were analyzed by cultural approaches and a tpm-based DNA metabarcoding analytical scheme. Co-occurrence distribution pattern analyses between bacterial datasets and eighteen monitored pharmaceuticals were performed. Higher concentrations of iohexol, ranitidine, levofloxacin, and roxithromycin were observed in the b-HTWW while atenolol, diclofenac, propranolol, and trimethoprim were higher in the b-DTWW. MPN growth assays showed recurrent occurrences of Pseudomonas aeruginosa and Aeromonas caviae among these biofilms. An enrichment of multi-resistant P. aeruginosa cells was observed in the hospital sewer line. P. aeruginosa MPN values were negatively correlated to roxithromycin concentrations. The tpm DNA metabarcoding analyses confirmed these trends and allowed an additional tracking of more than 90 species from 24 genera. Among the recorded 3082 tpm ASV (amplicon sequence variants), 41% were allocated to the Pseudomonas. Significant differences through ANOSIM and DESeq2 statistical tests were observed between ASV recovered from b-HTWW, b-DTWW, and epilithic river biofilms. More than 500 ASV were found restricted to a single sewer line such as those allocated to Aeromonas popoffii and Stenotrophomonas humi being strictly found in the b-HTWW file. Several significant correlations between tpm ASV counts per species and pharmaceutical concentrations in biofilms were recorded such as those of Lamprocystis purpurea being positively correlated with trimethoprim concentrations. A tpm source tracking analysis showed the b-DTWW and b-HTWW tpm ASV to have contributed, respectively, at up to 35% and 2.5% of the epilithic river biofilm tpm-taxa recovered downstream from the WWTP outlet. Higher contributions of TWW taxa among epilithic biofilms were recorded closer to the WWTP outlet. These analyses demonstrated a coalescence of WWTP sewer communities with river freshwater taxa among epilithic biofilms developing downstream of a WWTP outlet.
Collapse
Affiliation(s)
- Rayan Bouchali
- UMR Ecologie Microbienne, CNRS 5557, INRAE 1418, Research Group «Bacterial Opportunistic Pathogens and Environment», VetAgro Sup, Aisle 3, 1st Floor, 69280 Marcy L’Etoile, France
| | - Laurence Marjolet
- UMR Ecologie Microbienne, CNRS 5557, INRAE 1418, Research Group «Bacterial Opportunistic Pathogens and Environment», VetAgro Sup, Aisle 3, 1st Floor, 69280 Marcy L’Etoile, France
| | - Leslie Mondamert
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), École Nationale Supérieure d’Ingénieurs (ENSIP), UMR CNRS 7285, Université de Poitiers, 86000 Poitiers, France
| | - Teofana Chonova
- UMR CARRTEL, INRAE, Université de Savoie Mont Blanc, 75 Avenue de Corzent, 74200 Thonon-les-Bains, France
| | - Sébastien Ribun
- UMR Ecologie Microbienne, CNRS 5557, INRAE 1418, Research Group «Bacterial Opportunistic Pathogens and Environment», VetAgro Sup, Aisle 3, 1st Floor, 69280 Marcy L’Etoile, France
| | - Elodie Laurent
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), École Nationale Supérieure d’Ingénieurs (ENSIP), UMR CNRS 7285, Université de Poitiers, 86000 Poitiers, France
| | - Agnès Bouchez
- UMR CARRTEL, INRAE, Université de Savoie Mont Blanc, 75 Avenue de Corzent, 74200 Thonon-les-Bains, France
| | - Jérôme Labanowski
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), École Nationale Supérieure d’Ingénieurs (ENSIP), UMR CNRS 7285, Université de Poitiers, 86000 Poitiers, France
| | - Benoit Cournoyer
- UMR Ecologie Microbienne, CNRS 5557, INRAE 1418, Research Group «Bacterial Opportunistic Pathogens and Environment», VetAgro Sup, Aisle 3, 1st Floor, 69280 Marcy L’Etoile, France
| |
Collapse
|
10
|
Milligan EG, Calarco J, Davis BC, Keenum IM, Liguori K, Pruden A, Harwood VJ. A Systematic Review of Culture-Based Methods for Monitoring Antibiotic-Resistant Acinetobacter, Aeromonas, and Pseudomonas as Environmentally Relevant Pathogens in Wastewater and Surface Water. Curr Environ Health Rep 2023:10.1007/s40572-023-00393-9. [PMID: 36821031 DOI: 10.1007/s40572-023-00393-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW Mounting evidence indicates that habitats such as wastewater and environmental waters are pathways for the spread of antibiotic-resistant bacteria (ARB) and mobile antibiotic resistance genes (ARGs). We identified antibiotic-resistant members of the genera Acinetobacter, Aeromonas, and Pseudomonas as key opportunistic pathogens that grow or persist in built (e.g., wastewater) or natural aquatic environments. Effective methods for monitoring these ARB in the environment are needed to understand their influence on dissemination of ARB and ARGs, but standard methods have not been developed. This systematic review considers peer-reviewed papers where the ARB above were cultured from wastewater or surface water, focusing on the accuracy of current methodologies. RECENT FINDINGS Recent studies suggest that many clinically important ARGs were originally acquired from environmental microorganisms. Acinetobacter, Aeromonas, and Pseudomonas species are of interest because their ability to persist and grow in the environment provides opportunities to engage in horizontal gene transfer with other environmental bacteria. Pathogenic strains of these organisms resistant to multiple, clinically relevant drug classes have been identified as an urgent threat. However, culture methods for these bacteria were generally developed for clinical samples and are not well-vetted for environmental samples. The search criteria yielded 60 peer-reviewed articles over the past 20 years, which reported a wide variety of methods for isolation, confirmation, and antibiotic resistance assays. Based on a systematic comparison of the reported methods, we suggest a path forward for standardizing methodologies for monitoring antibiotic resistant strains of these bacteria in water environments.
Collapse
Affiliation(s)
- Erin G Milligan
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.,Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jeanette Calarco
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Benjamin C Davis
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ishi M Keenum
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Krista Liguori
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA. .,Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
11
|
Atta S, Vo-Dinh T. Solution-Based Ultra-Sensitive Surface-Enhanced Raman Scattering Detection of the Toxin Bacterial Biomarker Pyocyanin in Biological Fluids Using Sharp-Branched Gold Nanostars. Anal Chem 2023; 95:2690-2697. [PMID: 36693215 PMCID: PMC9909734 DOI: 10.1021/acs.analchem.2c03210] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
There is a critical need for sensitive rapid point-of-care detection of bacterial infection biomarkers in complex biological fluids with minimal sample preparation, which can improve early-stage diagnosis and prevent several bacterial infections and fatal diseases. A solution-based surface-enhanced Raman scattering (SERS) detection platform has long been sought after for low cost, rapid, and on-site detection of analyte molecules, but current methods still exhibit poor sensitivity. In this study, we have tuned the morphology of the surfactant-free gold nanostars (GNSs) to achieve sharp protruding spikes for maximum SERS enhancement. We have controlled the GNS spike morphologies and optimized SERS performance in the solution phase using para-mercaptobenzoic acid as an SERS probe. To illustrate the potential for point-of-care applications, we have utilized a portable Raman instrument for measurements. For pathogenic agent sensing applications, we demonstrated rapid and sensitive detection of the toxin biomarker pyocyanin (PYO) used as the bacterial biomarker model system. Pyocyanin is a toxic compound produced and secreted by the common water-borne Gram-negative bacterium Pseudomonas aeruginosa, a pathogen known for advanced antibiotic resistance and association with serious diseases such as ventilator-associated pneumonia and cystic fibrosis. The limit of detection (LOD) achieved for PYO was 0.05 nM using sharp branched GNSs. Furthermore, as a proof of strategy, this SERS detection of PYO was performed directly in drinking water, human saliva, and human urine without any sample treatment pre-purification, achieving an LOD of 0.05 nM for drinking water and 0.4 nM for human saliva and urine. This work provides a proof-of-principle demonstration for the high sensitivity detection of the bacterial toxin biomarker with minimal sample preparation: the "mix and detect" detection of the GNS platform is simple, robust, and rapid, taking only 1-2 min for each measurement. Overall, our SERS detection platform shows great potential for point-of-need sensing and point-of-care diagnostics in biological fluids.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
12
|
Kim JK, Yun H, Yeom CH, Kim EJ, Kim W, Lee CS, Kim BG, Jeong HJ. Flow cytometry-based rapid detection of Staphylococcus aureus and Pseudomonas aeruginosa using fluorescent antibodies. RSC Adv 2022; 12:34660-34669. [PMID: 36545616 PMCID: PMC9717348 DOI: 10.1039/d2ra05694a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) are major pathogens frequently detected in food and beverage poisoning, and persistent infections. Therefore, the development of a rapid method that can detect these pathogens before serious multiplication is required. In this study, we established a flow cytometry (FCM)-based detection method that allows rapid acquisition of cell populations in fluid samples by using a fluorescent antibody against S. aureus or P. aeruginosa. Using this method, we detected these pathogens with a 103 to 105 CFU order of limit of detection value within 1 hour. The FCM-based method for the detection of S. aureus and P. aeruginosa offers the possibility of high-throughput analysis of pathogens in food, environmental, and clinical sources.
Collapse
Affiliation(s)
- Joo-Kyung Kim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National UniversitySeoul08826South Korea
| | - Hanool Yun
- Department of Biological and Chemical Engineering, Hongik UniversitySejong30016South Korea
| | - Chang-Hun Yeom
- Department of Biological and Chemical Engineering, Hongik UniversitySejong30016South Korea
| | - Eun-Jung Kim
- Bio-MAX/N-Bio, Seoul National UniversitySeoul08826South Korea
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans UniversitySeoul 03760South Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National UniversityDaejeon 34134South Korea
| | - Byung-Gee Kim
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National UniversitySeoul08826South Korea,Bio-MAX/N-Bio, Seoul National UniversitySeoul08826South Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik UniversitySejong30016South Korea
| |
Collapse
|
13
|
High Rates of Extensively Drug-Resistant Pseudomonas aeruginosa in Children with Cystic Fibrosis. Curr Microbiol 2022; 79:353. [PMID: 36209248 DOI: 10.1007/s00284-022-03048-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
Abstract
Pseudomonas aeruginosa has a high adaptive capacity, favoring the selection of antibiotic-resistant strains, which are currently considered a global health problem. The purpose of this work was to investigate the rate and distribution of extensively drug-resistant (XDR) P. aeruginosa in pediatric patients with cystic fibrosis (CF) with recurrent infections and to distinguish the current efficacy of antibiotics commonly used in eradication therapy at a Mexican institute focused on children. A total of 118 P. aeruginosa isolates from 25 children with CF (2015-2019) underwent molecular identification, antimicrobial sensitivity tests, and Random Amplified Polymorphic DNA genotyping (RAPD-PCR). The bacterial isolates were grouped in 84 RAPD profiles, revealing a cross-infection between two sisters, whose resistance profile remained unchanged for more than 2 years. Furthermore, 77.1% (91/118) and 51.7% (61/118) of isolates showed in vitro susceptibility to ceftazidime and amikacin, respectively, antibiotics often used in eradication therapy at our institution. As well, 42.4% (50/118) were categorized as multi-drug resistant (MDR) and 12.7% (15/118) were XDR. Of these resistant isolates, 84.6% (55/65) were identified from patients with recurrent infections. The high frequency of XDR strains in children with CF should be considered a caution mark, as such resistance patterns are more commonly found in adult patients. Additionally, amikacin may soon prove ineffective. Careful use of available antibiotics is crucial before therapeutic possibilities are reduced and "antibiotic resistance crisis" worsens.
Collapse
|
14
|
Unravelling the Distinctive Virulence Traits and Clonal Relationship among the Pseudomonas aeruginosa Isolates from Diabetic Patients. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections with P. aeruginosa are three times more common in people with diabetes than in non-diabetic individuals. Investigations disclosing the distinguishing traits of P. aeruginosa strains to cause respiratory and wound infection in diabetics is limited. Wound swab and sputum from infected diabetic patients were used for the isolation of P. aeruginosa. The confirmed isolates were evaluated for their virulence factor production, antibiotic susceptibility, and clonal relationship. The study confirmed the increased virulence of sputum isolates characterized by their multidrug resistant nature, strong biofilm formation at 72h [(p<0.05) =0.003)] and 96h [(p<0.05) =0.002)] and elaboration of proteolytic enzymes (40.0%). Albeit the fact that wound isolates were less virulent than the sputum isolates, there was an increased siderophore production (77.0%). Nearly 90.0% of the isolates including sputum and wound were resistant to colistin. Random Amplified Polymorphic DNA analysis showed no distinct lineages of wound and sputum isolates. The study disclosed the higher prevalence of virulent P. aeruginosa in causing infection in the diabetics. No distinct lineages of the wound and sputum isolates indicated their ability to adapt to different host environments. To the best of our knowledge, this is the first study to show the difference in virulence traits among the P. aeruginosa strains isolated from sputum and wound of diabetic patients. Our study distinctly reveals the significance of periodic examination of antibiotic resistance and virulence factors of P. aeruginosa in order to recognize the possible co-regulatory mechanism involved in their expression.
Collapse
|
15
|
Saha K, Kabir ND, Islam MR, Amin MB, Hoque KI, Halder K, Saleh AA, Parvez MAK, Begum K, Alam MJ, Islam MA. Isolation and characterisation of carbapenem-resistant Pseudomonas aeruginosa from hospital environments in tertiary care hospitals in Dhaka, Bangladesh. J Glob Antimicrob Resist 2022; 30:31-37. [PMID: 35447383 DOI: 10.1016/j.jgar.2022.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/03/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Increasing evidence of carbapenem-resistant Pseudomonas aeruginosa (CRPA) infection in healthcare facilities poses an alarming threat to public health. There is little evidence on the occurrence of this organism in Bangladeshi hospitals. METHODS We collected 117 environmental swab samples from two tertiary care hospitals in Dhaka, Bangladesh and tested for Pseudomonas species by nonselective enrichment of swabs followed by plating on Cetrimide agar. We confirmed the isolates as P. aeruginosa by API 20NE test and polymerase chain reaction Polymerase Chain Reaction (PCR) for 16S rRNA gene. We analysed P. aeruginosa isolates for susceptibility against 15 clinically important antibiotics and tested the carbapenem-resistant isolates for metallo β-lactamase (MBL). All CRPA isolates were characterised for carbapenem-resistant genes, virulence genes and biofilm formation genes. RESULTS Of 117 swab samples, 82 (70%) were tested positive for P. aeruginosa. All P. aeruginosa isolates were multidrug-resistant, and 39% (n = 32) of isolates were CRPA. Around 56% (n = 18) of CRPA were MBL-producing; 22% (n = 7) of isolates were positive for carbapenemase gene blaNDM followed by 16% (n = 5) for blaVIM and 13% (n = 4) for blaIMP. Sequencing identified these genes as blaNDM-1, blaIMP-13, blaVIM-2 variants. Based on optical density values, 94% (n = 30) of CRPA isolates were capable of producing biofilms. All CRPA isolates (n = 32) were positive for at least 1 of 6 biofilm-associated genes and 4 of 12 virulence genes tested in the study. CONCLUSION Hospital environments in Bangladesh are contaminated with highly virulent CRPA, which might be a potential source of hospital-acquired infections, accentuating the need for strengthening hospital infection control programs.
Collapse
Affiliation(s)
- Karabi Saha
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Nayel Daneesh Kabir
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Rayhanul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mohammed Badrul Amin
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Kazi Injamamul Hoque
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Kakali Halder
- Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Ahmed Abu Saleh
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | | | | | - Mohammad Aminul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh; Paul G. Allen School for Global Health, Washington State University, Pullman, Washington.
| |
Collapse
|
16
|
Secondary Metabolites Produced during Aspergillus fumigatus and Pseudomonas aeruginosa Biofilm Formation. mBio 2022; 13:e0185022. [PMID: 35856657 PMCID: PMC9426470 DOI: 10.1128/mbio.01850-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In cystic fibrosis (CF), mucus plaques are formed in the patient's lungs, creating a hypoxic condition and a propitious environment for colonization and persistence of many microorganisms. There is clinical evidence showing that Aspergillus fumigatus can cocolonize CF patients with Pseudomonas aeruginosa, which has been associated with lung function decline. P. aeruginosa produces several compounds with inhibitory and antibiofilm effects against A. fumigatus in vitro; however, little is known about the fungal compounds produced in counterattack. Here, we annotated fungal and bacterial secondary metabolites (SM) produced in mixed biofilms under normoxia and hypoxia conditions. We detected nine SM produced by P. aeruginosa. Phenazines and different analogs of pyoverdin were the main compounds produced by P. aeruginosa, and their secretion levels were increased by the fungal presence. The roles of the two operons responsible for phenazine production (phzA1 and phzA2) were also investigated, and mutants lacking one of those operons were able to produce partial sets of phenazines. We detected a total of 20 SM secreted by A. fumigatus either in monoculture or in coculture with P. aeruginosa. All these compounds were secreted during biofilm formation in either normoxia or hypoxia. However, only eight compounds (demethoxyfumitremorgin C, fumitremorgin, ferrichrome, ferricrocin, triacetylfusigen, gliotoxin, gliotoxin E, and pyripyropene A) were detected during biofilm formation by the coculture of A. fumigatus and P. aeruginosa under normoxia and hypoxia conditions. Overall, we showed how diverse SM secretion is during A. fumigatus and P. aeruginosa mixed culture and how this can affect biofilm formation in normoxia and hypoxia. IMPORTANCE The interaction between Pseudomonas aeruginosa and Aspergillus fumigatus has been well characterized in vitro. In this scenario, the bacterium exerts a strong inhibitory effect against the fungus. However, little is known about the metabolites produced by the fungus to counterattack the bacteria. Our work aimed to annotate secondary metabolites (SM) secreted during coculture between P. aeruginosa and A. fumigatus during biofilm formation in both normoxia and hypoxia. The bacterium produces several different types of phenazines and pyoverdins in response to presence of the fungus. In contrast, we were able to annotate 29 metabolites produced during A. fumigatus biofilm formation, but only 8 compounds were detected during biofilm formation by the coculture of A. fumigatus and P. aeruginosa upon either normoxia or hypoxia. In conclusion, we detected many SM secreted during A. fumigatus and P. aeruginosa biofilm formation. This analysis provides several opportunities to understand the interactions between these two species.
Collapse
|
17
|
Shin J, Shin S, Jung SH, Park C, Cho SY, Lee DG, Chung YJ. Duplex dPCR System for Rapid Identification of Gram-Negative Pathogens in the Blood of Patients with Bloodstream Infection: A Culture-Independent Approach. J Microbiol Biotechnol 2021; 31:1481-1489. [PMID: 34528911 PMCID: PMC9705831 DOI: 10.4014/jmb.2103.03044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Early and accurate detection of pathogens is important to improve clinical outcomes of bloodstream infections (BSI), especially in the case of drug-resistant pathogens. In this study, we aimed to develop a culture-independent digital PCR (dPCR) system for multiplex detection of major sepsiscausing gram-negative pathogens and antimicrobial resistance genes using plasma DNA from BSI patients. Our duplex dPCR system successfully detected nine targets (five bacteria-specific targets and four antimicrobial resistance genes) through five reactions within 3 hours. The minimum detection limit was 50 ag of bacterial DNA, suggesting that 1 CFU/ml of bacteria in the blood can be detected. To validate the clinical applicability, cell-free DNA samples from febrile patients were tested with our system and confirmed high consistency with conventional blood culture. This system can support early identification of some drug-resistant gram-negative pathogens, which can help improving treatment outcomes of BSI.
Collapse
Affiliation(s)
- Juyoun Shin
- Department of Microbiology, The Catholic University of Korea, College of Medicine, Seoul 06591, Republic of Korea
| | - Sun Shin
- Precision Medicine Research Center, Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, College of Medicine, Seoul 06591, Republic of Korea
| | - Seung-Hyun Jung
- Department of Biochemistry, The Catholic University of Korea, College of Medicine, Seoul 06591, Republic of Korea
| | - Chulmin Park
- Vaccine Bio Research Institute, The Catholic University of Korea, College of Medicine, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea
| | - Sung-Yeon Cho
- Vaccine Bio Research Institute, The Catholic University of Korea, College of Medicine, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea,Department of Internal Medicine, The Catholic University of Korea, College of Medicine, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea
| | - Dong-Gun Lee
- Vaccine Bio Research Institute, The Catholic University of Korea, College of Medicine, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea,Department of Internal Medicine, The Catholic University of Korea, College of Medicine, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea
| | - Yeun-Jun Chung
- Department of Microbiology, The Catholic University of Korea, College of Medicine, Seoul 06591, Republic of Korea,Precision Medicine Research Center, Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, College of Medicine, Seoul 06591, Republic of Korea,Corresponding author Phone: +82-2-2258-7343 Fax: +82-2-537-0572 E-mail:
| |
Collapse
|
18
|
Tanaka Y, Khoo EH, Salleh NABM, Teo SL, Ow SY, Sutarlie L, Su X. A portable SERS sensor for pyocyanin detection in simulated wound fluid and through swab sampling. Analyst 2021; 146:6924-6934. [PMID: 34647550 DOI: 10.1039/d1an01360b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A portable surface-enhanced Raman spectroscopy (SERS) sensor for detecting pyocyanin (PYO) in simulated wound fluid and from bacteria samples was developed. Solution-phase SERS detection protocols are designed to be compatible with two different clinical practices for wound exudate collection, namely negative pressure liquid collection and swabbing. For citrate-coated metal nanoparticles of three different compositions, i.e. gold (AuNPs), alloyed silver/gold (AgAuNPs), and silver (AgNPs), we firstly confirmed their interaction with PYO in the complex wound fluid, using fluorescence quenching experiments, which rationalized the Raman enhancement effects. We then demonstrated the Raman enhancement effects of the metal nanoparticles in the order of AgNPs > AgAuNPs > AuNPs. The limit of detection (LOD) achieved for PYO is 1.1 μM (in a linear range of 0.1-25 μM by the AgNPs), 10.9 μM (in a linear range of 5-100 μM, by the AgAuNPs), and 17.7 μM (in a linear range of 10-100 μM by the AuNPs). The AgNP and AgAuNP sensors together cover the sensitivity and dynamic range requirements for the clinical detection of wound infection, where PYO is present at a concentration of 1-50 μM. In addition, sterilized cotton swabs were used to collect wound fluid and transfer samples into AgNP solution for SERS measurements. This detection protocol was completed within 5 minutes with a LOD of 23.1 μM (in a linear range of 15-100 μM). The SERS sensing protocol was validated by its successful detection of PYO in cultured Pseudomonas aeruginosa bacteria. The findings presented in this work pave the way towards point-of-care diagnostics of wound infections.
Collapse
Affiliation(s)
- Yuki Tanaka
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634.
| | - Eng Huat Khoo
- Institute of High Performance Computing, Electronics and Photonics Department, 1 Fusionopolis Way, Connexis North, #16-16, Singapore 138632
| | - Nur Asinah Binte Mohamed Salleh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634.
| | - Siew Lang Teo
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634.
| | - Sian Yang Ow
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634.
| | - Laura Sutarlie
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634.
| | - Xiaodi Su
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634. .,Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive 3, Singapore 117543.
| |
Collapse
|
19
|
Shahin M, Ahmadi A. Molecular characterization of NDM-1-producing Pseudomonas aeruginosa isolates from hospitalized patients in Iran. Ann Clin Microbiol Antimicrob 2021; 20:76. [PMID: 34732199 PMCID: PMC8567709 DOI: 10.1186/s12941-021-00482-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023] Open
Abstract
Background The emergence of carbapenem-resistant Pseudomonas aeruginosa is one of the most important challenges in a healthcare setting. The aim of this study is double-locus sequence typing (DLST) typing of blaNDM-1 positive P. aeruginosa isolates. Methods Twenty-nine blaNDM-1 positive isolates were collected during three years of study from different cities in Iran. Modified hodge test (MHT), double-disk synergy test (DDST) and double-disk potentiation test (DDPT) was performed for detection of carbapenemase and metallo-beta-lactamase (MBL) producing blaNDM-1 positive P. aeruginosa isolates. The antibiotic resistance genes were considered by PCR method. Clonal relationship of blaNDM-1 positive was also characterized using DLST method. Results Antibiotic susceptibility pattern showed that all isolates were resistant to imipenem and ertapenem. DDST and DDPT revealed that 15/29 (51.8%) and 26 (89.7%) of blaNDM-1 positive isolates were MBL producing isolates, respectively. The presence of blaOXA-10,blaVIM-2, blaIMP-1 and blaSPM genes were detected in 86.2%, 41.4%, 34.5% and 3.5% isolates, respectively. DLST typing results revealed the main cluster were DLST 25-11 with 13 infected or colonized patients. Conclusions The presence of blaNDM-1 gene with other MBLs encoding genes in P. aeruginosa is a potential challenge in the treatment of microorganism infections. DLST showed partial diversity among 29 blaNDM-1 positive isolates.
Collapse
Affiliation(s)
- Mojtaba Shahin
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Arak Branch, Islamic Azad University, Arak, Iran
| | - Ali Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Arak Branch, Islamic Azad University, Arak, Iran.
| |
Collapse
|
20
|
Han Q, Yan X, Zhang R, Wang G, Zhang Y. Juglone Inactivates Pseudomonas aeruginosa through Cell Membrane Damage, Biofilm Blockage, and Inhibition of Gene Expression. Molecules 2021; 26:molecules26195854. [PMID: 34641398 PMCID: PMC8510502 DOI: 10.3390/molecules26195854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Due to the strong drug resistance of Pseudomonas aeruginosa (P. aeruginosa), the inhibition effects of conventional disinfectants and antibiotics are not obvious. Juglone extracted from discarded walnut husk, as a kind of plant-derived antimicrobial agent, has the advantages of naturalness, high efficiency, and low residue, with a potential role in the inhibition of P. aeruginosa. This study elucidated the inhibitory effect of juglone on the growth of plankton and the formation of P. aeruginosa biofilm. The results showed that juglone (35 μg/mL) had an irreversible inhibitory effect on P. aeruginosa colony formation (about 107 CFU/mL). The integrity and permeability of the cell membrane were effectively destroyed, accompanied by disorder of the membrane permeability, mass leakage of the cytoplasm, and ATP consumption. Further studies manifested that juglone could induce the abnormal accumulation of ROS in cells and block the formation of the cell membrane. In addition, RT-qPCR showed that juglone could effectively block the expression of five virulence genes and two genes involved in the production of extracellular polymers, thereby reducing the toxicity and infection of P. aeruginosa and preventing the production of extracellular polymers. This study can provide support for the innovation of antibacterial technology toward P. aeruginosa in food.
Collapse
Affiliation(s)
| | | | | | - Guoliang Wang
- Correspondence: (G.W.); (Y.Z.); Tel.: +86-138-1830-0608 (Y.Z.)
| | - Youlin Zhang
- Correspondence: (G.W.); (Y.Z.); Tel.: +86-138-1830-0608 (Y.Z.)
| |
Collapse
|
21
|
Tóth E, Toumi M, Farkas R, Takáts K, Somodi C, Ács É. Insight into the hidden bacterial diversity of Lake Balaton, Hungary. Biol Futur 2021; 71:383-391. [PMID: 34554460 DOI: 10.1007/s42977-020-00040-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/17/2020] [Indexed: 11/26/2022]
Abstract
In the present study, the prokaryotic community structure of the water of Lake Balaton was investigated at the littoral region of three different points (Tihany, Balatonmáriafürdő and Keszthely) by cultivation independent methods [next-generation sequencing (NGS), specific PCRs and microscopy cell counting] to check the hidden microbial diversity of the lake. The taxon-specific PCRs did not show pathogenic bacteria but at Keszthely and Máriafürdő sites extended spectrum beta-lactamase-producing microorganisms could be detected. The bacterial as well as archaeal diversity of the water was high even when many taxa are still uncultivable. Based on NGS, the bacterial communities were dominated by Proteobacteria, Bacteroidetes and Actinobacteria, while the most frequent Archaea belonged to Woesearchaeia (Nanoarchaeota). The ratio of the detected taxa differed among the samples. Three different types of phototrophic groups appeared: Cyanobacteria (oxygenic phototrophic organisms), Chloroflexi (anaerobic, organotrophic bacteria) and the aerobic, anoxic photoheterotrophic group (AAPs). Members of Firmicutes appeared only with low abundance, and Enterobacteriales (order within Proteobacteria) were present also only in low numbers in all samples.
Collapse
Affiliation(s)
- E Tóth
- Department of Microbiology, Eötvös Loránd University, Budapest, Hungary.
| | - M Toumi
- Department of Microbiology, Eötvös Loránd University, Budapest, Hungary
| | - R Farkas
- Department of Microbiology, Eötvös Loránd University, Budapest, Hungary
| | - K Takáts
- Department of Microbiology, Eötvös Loránd University, Budapest, Hungary
| | - Cs Somodi
- Department of Microbiology, Eötvös Loránd University, Budapest, Hungary
| | - É Ács
- MTA Centre for Ecological Research, Danube Research Institute, Budapest, Hungary
- National University of Public Service, Faculty of Water Sciences, Baja, Hungary
| |
Collapse
|
22
|
Youenou B, Chauviat A, Ngari C, Poulet V, Nazaret S. In vitro study to evaluate the antimicrobial activity of various multifunctional cosmetic ingredients and chlorphenesin on bacterial species at risk in the cosmetic industry. J Appl Microbiol 2021; 132:933-948. [PMID: 34333822 DOI: 10.1111/jam.15245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/18/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
AIMS We evaluated the activity of the preservative chlorphenesin and of four antimicrobial cosmetic multifunctional ingredients against various strains of gram-negative and gram-positive human opportunistic pathogens. METHODS AND RESULTS Growth kinetics, modelling growth parameters and statistical analyses enabled comparing bacterial behaviour in the presence and in the absence of the compound. Whatever compound tested (i.e. chlorphenesin, phenylpropanol, hexanediol, ethylhexylglycerin, hydroxyacetophenone) and strain origin (i.e. clinical versus industrial), the growth of 42 strains belonging to Acinetobacter spp., Burkholderia cepacia complex and Stenotrophomonas maltophilia, was totally inhibited. On the opposite all of the P. aeruginosa strains (n = 13) as well as 4 and 6 out of 10 strains of Pluralibacter gergoviae grew in the presence of chlorphenesin and ethylhexylglycerin, respectively. Some P. gergoviae and Staphylococcus hominis strains withstand hydroxyacetophenone. Within a species, the different strains show variable latency phase, growth rate (r) and carrying capacity (K). They can be similar, lower or higher than those measured in control conditions. CONCLUSIONS Data showed differences in the antimicrobial activity of compounds. Upon exposure, strains differed in their behaviour between and within species. Whatever species and strains, compound sensitivity could not be related to antibiotic resistance. SIGNIFICANCE AND IMPACT OF THE STUDY Most multifunctional ingredients showed significant antimicrobial properties against the wide panel of species and strains evaluated. This will help adjusting preservation strategies in the cosmetic industry.
Collapse
Affiliation(s)
- Benjamin Youenou
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Amandine Chauviat
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | | | | | - Sylvie Nazaret
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
23
|
Antibiogram profile and virulence signatures of Pseudomonas aeruginosa isolates recovered from selected agrestic hospital effluents. Sci Rep 2021; 11:11800. [PMID: 34083705 PMCID: PMC8175747 DOI: 10.1038/s41598-021-91280-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
Hospital wastewater (HWW) harbours diverse microbial species and a miscellany of genome that would facilitate the emergence of novel pathogen upon genome integration that manifests novel traits in infectious pathogens. The study aimed to determine the antibiogram, and virulence signatures of Pseudomonas aeruginosa (P. aeruginosa) recovered from selected agrestic hospital effluents in Eastern Cape, South Africa. Thirty-six (36) wastewater samples were collected from selected hospital drains between February 2018 and April 2018, processed and analyzed by culture-dependent methods for the isolation of P. aeruginosa. The identity confirmation of isolates was achieved by amplification of oprl and oprL genes. Antibiogram was done using standard disk diffusion technique of Kirby-Bauer as approved by CLSI 2018 guidelines. Virulence signatures (lasA, lasB, toxA, popB) among isolates were analysed using polymerase chain reaction. A total of 54 P. aeruginosa isolates were confirmed by amplification of oprl and oprL genes in the hospital wastewater effluent samples. The isolates showed a 100% susceptibility to gentamicin, amikacin and imipenem antimicrobial agents. Ceftazidime recorded the most resistance (63%) against the isolates studied. Other antibiotics had a resistance range of 7% and 35%. The MAR index among the isolates revealed a range of 0.23 and 0.38. ToxA virulence gene was detected in all isolates while popB, lasB, lasA were detected in 82%, 75% and 54% of the isolates. This study reveals P. aeruginosa isolates with virulence traits and some strains showing multiple antibiotic resistance. The multiple antibiotic resistance index (MARI) of ≥ 0.2 indicates that the some isolates may have emerged from high-risk sources, thus projecting a risk to public health. However, with the high sensitivity pattern observed among the studied isolates, most of the antibiotics used in the susceptibility tests are not at peril. Hence, the use of these antibiotics is encouraged for treatment of infection attributed to P. aeruginosa. It is also pertinent to initiate strict control and rigid antibiotics therapeutic policy with surveillance programmes for multidrug-resistant pathogens to forestall the development and transmission of resistance traits in the pathogens.
Collapse
|
24
|
Govender R, Amoah ID, Adegoke AA, Singh G, Kumari S, Swalaha FM, Bux F, Stenström TA. Identification, antibiotic resistance, and virulence profiling of Aeromonas and Pseudomonas species from wastewater and surface water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:294. [PMID: 33893564 DOI: 10.1007/s10661-021-09046-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Aquatic environments are hotspots for the spread of antibiotic-resistant bacteria and genes due to pollution caused mainly by anthropogenic activities. The aim of this study was to evaluate the impact of wastewater effluents, informal settlements, hospital, and veterinary clinic discharges on the occurrence, antibiotic resistance profile and virulence signatures of Aeromonas spp. and Pseudomonas spp. isolated from surface water and wastewater. High counts of Aeromonas spp. (2.5 (± 0.8) - 3.3 (± 0.4) log10 CFU mL-1) and Pseudomonas spp. (0.6 (± 1.0) - 1.8 (± 1.0) log10 CFU mL-1) were obtained. Polymerase chain reaction (PCR) and MALDI-TOF characterization identified four species of Aeromonas and five of Pseudomonas. The isolates displayed resistance to 3 or more antibiotics (71% of Aeromonas and 94% of Pseudomonas). Aeromonas spp. showed significant association with the antibiotic meropenem (χ2 = 3.993, P < 0.05). The virulence gene aer in Aeromonas was found to be positively associated with the antibiotic resistance gene blaOXA (χ2 = 6.657, P < 0.05) and the antibiotic ceftazidime (χ2 = 7.537, P < 0.05). Aeromonas recovered from both wastewater and surface water displayed high resistance to ampicillin and had higher multiple antibiotic resistance (MAR) indices close to the hospital. Pseudomonas isolates on the other hand exhibited low resistance to carbapenems but very high resistance to the third-generation cephalosporins and cefixime. The results showed that some of the Pseudomonas spp. and Aeromonas spp. isolates were extended-spectrum β-lactamase producing bacteria. In conclusion, the strong association between virulence genes and antibiotic resistance in the isolates shows the potential health risk to communities through direct and indirect exposure to the water.
Collapse
Affiliation(s)
- Reshme Govender
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Anthony Ayodeji Adegoke
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Gulshan Singh
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa.
| | - Feroz Mahomed Swalaha
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Thor Axel Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| |
Collapse
|
25
|
Virulence genotyping of drug resistant Pseudomonas aeruginosa clinical isolates in Egypt using multiplex PCR. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2020.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Shanon MR, Al-Marzoqi AH, Hussein HJ. Prototheca spp. co-infections and their virulence factors in human protothecosis in Hillah city, Iraq. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2020.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Lippai A, Farkas R, Szuróczki S, Szabó A, Felföldi T, Toumi M, Tóth E. Microbiological investigations of two thermal baths in Budapest, Hungary. Report: effect of bathing and pool operation type on water quality. JOURNAL OF WATER AND HEALTH 2020; 18:1020-1032. [PMID: 33328372 DOI: 10.2166/wh.2020.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In Hungary, which is famous for its thermal baths, according to the regulations, waters are investigated in hygienic aspects with standard cultivation methods. In the present study, two thermal baths were investigated (the well and three different pool waters in both) using cultivation methods, taxon-specific polymerase chain reactions (PCRs), multiplex PCRs and next-generation amplicon sequencing. Mainly members of the natural microbial community of the well waters and bacteria originating from the environment were detected but several opportunistic pathogenic taxa, e.g., Pseudomonas aeruginosa, P. stutzeri, Acinetobacter johnsoni, Acinetobacter baumanni, Moraxella osloensis, Microbacterium paraoxydans, Legionella spp., Stenotrophomonas maltophilia and Staphylococcus aureus were revealed by the applied methods. Pools with charging-unloading operation had higher microscopic cell counts, colony-forming unit (CFU) counts, number of cocci, P. aeruginosa and S. aureus compared to the recirculation systems. Bacteria originating from human sources (e.g., skin) were identified in the pool waters with less than 1% relative abundance, and their presence was sporadic in the pools. Comparing the microbiological quality of the pools based on the first sampling time and the following four months' period it was revealed that recirculation operation type has better water quality than the charging-unloading pool operation from a hygienic point of view.
Collapse
Affiliation(s)
- Anett Lippai
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail: ; Eurofins KVI-PLUSZ Environmental Testing Office Ltd, Szállító utca 6, 1211 Budapest, Hungary
| | - Rózsa Farkas
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| | - Sára Szuróczki
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| | - Marwene Toumi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| | - Erika Tóth
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| |
Collapse
|
28
|
Medina-Rojas M, Stribling W, Snesrud E, Garry BI, Li Y, Gann PM, Demons ST, Tyner SD, Zurawski DV, Antonic V. Comparison of Pseudomonas aeruginosa strains reveals that Exolysin A toxin plays an additive role in virulence. Pathog Dis 2020; 78:5804881. [PMID: 32167551 DOI: 10.1093/femspd/ftaa010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/18/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa possesses an array of virulence genes ensuring successful infection development. A two-partner secretion system Exolysin BA (ExlBA) is expressed in the PA7-like genetic outliers consisting of ExlA, a pore-forming toxin and ExlB transporter protein. Presence of exlBA in multidrug-resistant (MDR) strains has not been investigated, particularly in the strains isolated from wounded soldiers. METHODS We screened whole genome sequences of 2439 MDR- P. aeruginosa strains for the presence of exlBA. We compiled all exlBA positive strains and compared them with a diversity set for demographics, antimicrobial profiles and phenotypic characteristics: surface motility, biofilm formation, pyocyanin production and hemolysis. We compared the virulence of strains with comparable phenotypic characteristics in Galleria mellonella. RESULTS We identified 33 exlBA-positive strains (1.5%). These strains have increased antibiotic resistance, they are more motile, produce more robust biofilms and have comparable pyocianin production with the diversity set despite the phenotypic differences within the group. In in vivo infection models, these strains were less virulent than Type III Secretion System (T3SS) positive counterparts. CONCLUSIONS exlBA-positive strains are wide spread among the PA7-like outliers. While not as virulent as strains possessing T3SS, these strains exhibit phenotypic features associated with virulence and are still lethal in vivo.
Collapse
Affiliation(s)
- Maria Medina-Rojas
- Walter Reed Army Institute of Research, Wound Infections Department, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - William Stribling
- Walter Reed Army Institute of Research, Multidrug-Resistant Organism Repository and Surveillance Network, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Erik Snesrud
- Walter Reed Army Institute of Research, Multidrug-Resistant Organism Repository and Surveillance Network, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Brittany I Garry
- Walter Reed Army Institute of Research, Wound Infections Department, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Yuanzhang Li
- Walter Reed Army Institute of Research, Preventive Medicine, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Patrick Mc Gann
- Walter Reed Army Institute of Research, Multidrug-Resistant Organism Repository and Surveillance Network, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Samandra T Demons
- Walter Reed Army Institute of Research, Wound Infections Department, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Stuart D Tyner
- Walter Reed Army Institute of Research, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Daniel V Zurawski
- Walter Reed Army Institute of Research, Wound Infections Department, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| | - Vlado Antonic
- Walter Reed Army Institute of Research, Wound Infections Department, Bacterial Disease Branch, 503 Robert Grant Ave, Silver Spring MD, 20910, USA
| |
Collapse
|
29
|
Zhao F, Niu L, Nong J, Wang C, Wang J, Liu Y, Gao N, Zhu X, Wu L, Hu S. Rapid and sensitive detection of Pseudomonas aeruginosa using multiple cross displacement amplification and gold nanoparticle-based lateral flow biosensor visualization. FEMS Microbiol Lett 2019; 365:5040226. [PMID: 29931095 DOI: 10.1093/femsle/fny147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/16/2018] [Indexed: 11/15/2022] Open
Abstract
Pseudomonas aeruginosa causes nosocomial infections of burn patients and other immunocompromised individuals, but the conventional diagnosis of P. aeruginosa infection depends on time-consuming culture-based methods. Hence, a simple, fast, sensitive technique for detection of P. aeruginosa using multiple cross displacement amplification (MCDA) and gold nanoparticle-based lateral flow biosensors (LFB) was developed. By using this technique, the reaction could be completed at an optimized constant temperature (67°C) within only 40 min. The reaction product could be detected visually using an LFB, eliminating the need for special equipment. The P. aeruginosa-MCDA-LFB method was highly specific, and accurately distinguished P. aeruginosa from other pathogens. Just 10 fg of genomic DNA template (from pure culture) could be detected. The assay could also detect P. aeruginosa in clinical sputum samples and showed the same sensitivity and specificity as the reference (culture-biochemical) method. In the future, this rapid, simple and accurate P. aeruginosa-MCDA-LFB technique might be applied in clinical practice.
Collapse
Affiliation(s)
- Fan Zhao
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing 100144, China
| | - Lina Niu
- Department of Pathogen Biology, School of Basic Medicine and Lifescience, Hainan Medical University, Haikou, Hainan 571101, China.,Key Laboratory of Translation Medicine Tropical Diseases (Hainan Medical University), Ministry of Education, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571199, China.,Hainan Medical University-University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan 571199, China
| | - Jinqing Nong
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing 100144, China
| | - Chunmei Wang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing 100144, China
| | - Jing Wang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing 100144, China
| | - Yan Liu
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing 100144, China
| | - Naishu Gao
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing 100144, China
| | - Xiaoxue Zhu
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing 100144, China
| | - Lei Wu
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing 100144, China
| | - Shoukui Hu
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing 100144, China
| |
Collapse
|
30
|
Pham TM, Kretzschmar M, Bertrand X, Bootsma M, on behalf of COMBACTE-MAGNET Consortium. Tracking Pseudomonas aeruginosa transmissions due to environmental contamination after discharge in ICUs using mathematical models. PLoS Comput Biol 2019; 15:e1006697. [PMID: 31461450 PMCID: PMC6736315 DOI: 10.1371/journal.pcbi.1006697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 09/10/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an important cause of healthcare-associated infections, particularly in immunocompromised patients. Understanding how this multi-drug resistant pathogen is transmitted within intensive care units (ICUs) is crucial for devising and evaluating successful control strategies. While it is known that moist environments serve as natural reservoirs for P. aeruginosa, there is little quantitative evidence regarding the contribution of environmental contamination to its transmission within ICUs. Previous studies on other nosocomial pathogens rely on deploying specific values for environmental parameters derived from costly and laborious genotyping. Using solely longitudinal surveillance data, we estimated the relative importance of P. aeruginosa transmission routes by exploiting the fact that different routes cause different pattern of fluctuations in the prevalence. We developed a mathematical model including background transmission, cross-transmission and environmental contamination. Patients contribute to a pool of pathogens by shedding bacteria to the environment. Natural decay and cleaning of the environment lead to a reduction of that pool. By assigning the bacterial load shed during an ICU stay to cross-transmission, we were able to disentangle environmental contamination during and after a patient's stay. Based on a data-augmented Markov Chain Monte Carlo method the relative importance of the considered acquisition routes is determined for two ICUs of the University hospital in Besançon (France). We used information about the admission and discharge days, screening days and screening results of the ICU patients. Both background and cross-transmission play a significant role in the transmission process in both ICUs. In contrast, only about 1% of the total transmissions were due to environmental contamination after discharge. Based on longitudinal surveillance data, we conclude that cleaning improvement of the environment after discharge might have only a limited impact regarding the prevention of P.A. infections in the two considered ICUs of the University hospital in Besançon. Our model was developed for P. aeruginosa but can be easily applied to other pathogens as well.
Collapse
Affiliation(s)
- Thi Mui Pham
- Julius Center for Health Sciences and Primary Care of the UMC Utrecht, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| | - Mirjam Kretzschmar
- Julius Center for Health Sciences and Primary Care of the UMC Utrecht, Utrecht University, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Utrecht, The Netherlands
| | - Xavier Bertrand
- Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France
- UMR 6249 Chrono-environnement, Université de Bourgogne-Franche-Comté, Besançon, France
| | - Martin Bootsma
- Julius Center for Health Sciences and Primary Care of the UMC Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Mathematics, Faculty of Sciences, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
31
|
Magin V, Garrec N, Andrés Y. Selection of Bacteriophages to Control In Vitro 24 h Old Biofilm of Pseudomonas Aeruginosa Isolated from Drinking and Thermal Water. Viruses 2019; 11:E749. [PMID: 31412645 PMCID: PMC6722843 DOI: 10.3390/v11080749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes public healthcare issues. In moist environments, this Gram-negative bacterium persists through biofilm-associated contamination on surfaces. Bacteriophages are seen as a promising alternative strategy to chemical biocides. This study evaluates the potential of nine lytic bacteriophages as biocontrol treatments against nine environmental P. aerginosa isolates. The spot test method is preliminarily used to define the host range of each virus and to identify their minimum infectious titer, depending on the strain. Based on these results, newly isolated bacteriophages 14.1, LUZ7, and B1 are selected and assessed on a planktonic cell culture of the most susceptible isolates (strains MLM, D1, ST395E, and PAO1). All liquid infection assays are achieved in a mineral minimum medium that is much more representative of real moist environments than standard culture medium. Phages 14.1 and LUZ7 eliminate up to 90% of the PAO1 and D1 bacterial strains. Hence, their effectiveness is evaluated on the 24 h old biofilms of these strains, established on a stainless steel coupon that is characteristic of materials found in thermal and industrial environments. The results of quantitative PCR viability show a maximum reduction of 1.7 equivalent Log CFU/cm2 in the coupon between treated and untreated surfaces and shed light on the importance of considering the entire virus/host/environment system for optimizing the treatment.
Collapse
Affiliation(s)
- Vanessa Magin
- Centre Scientifique et Technique du Bâtiment, Plateforme AQUASIM, 44300 Nantes, France.
- Institut Mines Télécom Atlantique, Laboratoire de Génie des Procédés Environnement Agro-alimentaire (UMR CNRS 6144), 44300 Nantes, France.
| | - Nathalie Garrec
- Centre Scientifique et Technique du Bâtiment, Plateforme AQUASIM, 44300 Nantes, France
| | - Yves Andrés
- Institut Mines Télécom Atlantique, Laboratoire de Génie des Procédés Environnement Agro-alimentaire (UMR CNRS 6144), 44300 Nantes, France
| |
Collapse
|
32
|
Golpayegani A, Nodehi RN, Rezaei F, Alimohammadi M, Douraghi M. Real-time polymerase chain reaction assays for rapid detection and virulence evaluation of the environmental Pseudomonas aeruginosa isolates. Mol Biol Rep 2019; 46:4049-4061. [PMID: 31093874 DOI: 10.1007/s11033-019-04855-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/03/2019] [Indexed: 10/26/2022]
Abstract
Rapid and species-specific detection, and virulence evaluation of opportunistic pathogens such as Pseudomonas aeruginosa, are issues that increasingly has attracted the attention of public health authorities. A set of primers and hydrolysis probe was designed based on one of the P. aeruginosa housekeeping genes, gyrB, and its specificity and sensitivity was evaluated by TaqMan qPCR methods. The end point PCR and SYBR Green qPCR were used as control methods. Furthermore, multiplex RT-qPCRs were developed for gyrB as reference and four virulence genes, including lasB, lasR, rhlR and toxA. Totally, 40 environmental samples, two clinical isolates from CF patients, two standard strains of P. aeruginosa, and 15 non-target reference strains were used to test the sensitivity and specificity of qPCR assays. In silico and in vitro cross-species testing confirmed the high specificity and low cross-species amplification of the designed gyrB418F/gyrB490R/gyrB444P. The sensitivity of both TaqMan and SYBR Green qPCRs was 100% for all target P. aeruginosa, and the detected count of bacteria was below ten genomic equivalents. The lowest M value obtained from gene-stability measurement was 0.19 that confirmed the suitability of gyrB as the reference gene for RT-qPCR. The developed qPCRs have enough detection power for identification of P. aeruginosa in environmental samples including clean and recreational water, treated and untreated sewage and soil. The short amplicon length of our designed primers and probes, alongside with a low M value, make it as a proper methodology for RT-qPCR in virulence genes expression assessment.
Collapse
Affiliation(s)
- Abdolali Golpayegani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Vice-Chancellor for Health, Bam University of Medical Sciences, Bam, Iran.,Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ramin Nabizadeh Nodehi
- Department of Environmental Health Engineering, School of Public Health and Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health and Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Douraghi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran. .,Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, PO Box 14155-6446, Tehran, Iran.
| |
Collapse
|
33
|
Mangiaterra G, Amiri M, Di Cesare A, Pasquaroli S, Manso E, Cirilli N, Citterio B, Vignaroli C, Biavasco F. Detection of viable but non-culturable Pseudomonas aeruginosa in cystic fibrosis by qPCR: a validation study. BMC Infect Dis 2018; 18:701. [PMID: 30587160 PMCID: PMC6307279 DOI: 10.1186/s12879-018-3612-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022] Open
Abstract
Background Routine culture-based diagnosis of Pseudomonas aeruginosa lung infection in Cystic Fibrosis (CF) patients can be hampered by the phenotypic variability of the microorganism, including its transition to a Viable But Non-Culturable (VBNC) state. The aim of this study was to validate an ecfX-targeting qPCR protocol developed to detect all viable P. aeruginosa bacteria and to identify VBNC forms in CF sputum samples. Methods The study involved 115 P. aeruginosa strains of different origins and 10 non-P. aeruginosa strains and 88 CF sputum samples, 41 Culture-Positive (CP) and 47 Culture-Negative (CN). Spiking assays were performed using scalar dilutions of a mixture of live and dead P. aeruginosa ATCC 9027 and a pooled P. aeruginosa-free sputum batch. Total DNA from sputum samples was extracted by a commercial kit, whereas a crude extract was obtained from the broth cultures. Extracellular DNA (eDNA) interference was evaluated by comparing the qPCR counts obtained from DNase-treated and untreated aliquots of the same samples. The statistical significance of the results was assessed by the Wilcoxon test and Student’s t test. Results The newly-developed qPCR protocol identified 96.6% of the P. aeruginosa isolates; no amplification was obtained with strains belonging to different species. Spiking assays supported protocol reliability, since counts always matched the amount of live bacteria, thus excluding the interference of dead cells and eDNA. The protocol sensitivity threshold was 70 cells/ml of the original sample. Moreover, qPCR detected P. aeruginosa in 9/47 CN samples and showed higher bacterial counts compared with the culture method in 10/41 CP samples. Conclusions Our findings demonstrate the reliability of the newly-developed qPCR protocol and further highlight the need for harnessing a non-culture approach to achieve an accurate microbiological diagnosis of P. aeruginosa CF lung infection and a greater understanding of its evolution. Electronic supplementary material The online version of this article (10.1186/s12879-018-3612-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gianmarco Mangiaterra
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy.
| | - Mehdi Amiri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Andrea Di Cesare
- Department of Earth, Environmental and Life Sciences, University of Genoa, Corso Europa, 26, 16132, Genoa, Italy
| | - Sonia Pasquaroli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Esther Manso
- Microbiology Laboratory, Azienda Ospedaliero-Universitaria, Ospedali Riuniti Umberto I°- G.M. Lancisi - G. Salesi, Ancona, Italy
| | - Natalia Cirilli
- Mother-Child Department, Cystic Fibrosis Referral Care Center, United Hospitals, Ancona, Italy
| | - Barbara Citterio
- Department of Biomolecular Sciences sect. Biotechnology, University of Urbino "Carlo Bo", Urbino, Italy
| | - Carla Vignaroli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Biavasco
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
34
|
Bernardin-Souibgui C, Barraud S, Bourgeois E, Aubin JB, Becouze-Lareure C, Wiest L, Marjolet L, Colinon C, Lipeme Kouyi G, Cournoyer B, Blaha D. Incidence of hydrological, chemical, and physical constraints on bacterial pathogens, Nocardia cells, and fecal indicator bacteria trapped in an urban stormwater detention basin in Chassieu, France. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24860-24881. [PMID: 29931635 DOI: 10.1007/s11356-018-1994-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
The nature and fate of urban contaminants washed by stormwater events and accumulating in a detention basin (DB) were investigated. Relations between bacterial and chemical contaminants of trapped urban sediments, and field parameters were analyzed. Fecal indicators and some pathogens known to be environmentally transmitted (Nocardia, Pseudomonas aeruginosa, and Aeromonas caviae) were tracked, and their persistence investigated. Six sampling campaigns were carried out over 3 years, using five sites including a settling chamber (SC). Aerosolized bacteria at these sites were also monitored. Deposits in the basin were made of fine particles and their content in chemical pollutants was found highly variable. High polycyclic aromatic hydrocarbon (PAH) contents were measured but only three pesticides, over 22, were detected. Deposits were significantly contaminated by fecal indicator bacteria (FIB), P. aeruginosa, A. caviae, and by Nocardia. Only A. caviae showed significant numbers in aerosolized particles recovered over the detention basin. Nocardia spp. cells heavily contaminated the SC. The efficacy of the detention basin at reducing bacterial counts per rain event and over time were estimated. A slight drop in the counts was monitored for fecal indicators but not for the other bacterial groups. Hydrodynamic parameters had a strong impact on the distribution and features of the deposits. Multiple factors impacted the fate of FIB, P. aeruginosa, A. caviae, and Nocardia cells, but in a group dependent manner. Nocardia counts were found positively correlated with volatile organic matter. FIB appeared highly efficient colonizers of the DB.
Collapse
Affiliation(s)
- Claire Bernardin-Souibgui
- Université de Lyon, Lyon, France
- UMR Ecologie Microbienne, CNRS 5557, INRA 1418, VetAgro Sup, Research group on "Bacterial Opportunistic Pathogens and Environment", Université Lyon I, 8 avenue Rockefeller, 69373, Lyon, France
| | - Sylvie Barraud
- Université de Lyon, Lyon, France
- DEEP, INSA Lyon, 34 avenue des Arts, 69621, Villeurbanne cedex, France
| | - Emilie Bourgeois
- Université de Lyon, Lyon, France
- UMR Ecologie Microbienne, CNRS 5557, INRA 1418, VetAgro Sup, Research group on "Bacterial Opportunistic Pathogens and Environment", Université Lyon I, 8 avenue Rockefeller, 69373, Lyon, France
| | - Jean-Baptiste Aubin
- Université de Lyon, Lyon, France
- DEEP, INSA Lyon, 34 avenue des Arts, 69621, Villeurbanne cedex, France
- Institut Camille-Jordan UMR CNRS 5208, INSA Lyon - Bâtiment Léonard de Vinci, 69621, Villeurbanne cedex, France
| | - Celine Becouze-Lareure
- Université de Lyon, Lyon, France
- DEEP, INSA Lyon, 34 avenue des Arts, 69621, Villeurbanne cedex, France
| | - Laure Wiest
- Institut des Sciences Analytiques, CNRS 5280, Université Lyon 1, ENS Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Laurence Marjolet
- Université de Lyon, Lyon, France
- UMR Ecologie Microbienne, CNRS 5557, INRA 1418, VetAgro Sup, Research group on "Bacterial Opportunistic Pathogens and Environment", Université Lyon I, 8 avenue Rockefeller, 69373, Lyon, France
| | - Celine Colinon
- Université de Lyon, Lyon, France
- UMR Ecologie Microbienne, CNRS 5557, INRA 1418, VetAgro Sup, Research group on "Bacterial Opportunistic Pathogens and Environment", Université Lyon I, 8 avenue Rockefeller, 69373, Lyon, France
| | - Ghislain Lipeme Kouyi
- Université de Lyon, Lyon, France
- DEEP, INSA Lyon, 34 avenue des Arts, 69621, Villeurbanne cedex, France
| | - Benoit Cournoyer
- Université de Lyon, Lyon, France
- UMR Ecologie Microbienne, CNRS 5557, INRA 1418, VetAgro Sup, Research group on "Bacterial Opportunistic Pathogens and Environment", Université Lyon I, 8 avenue Rockefeller, 69373, Lyon, France
| | - Didier Blaha
- Université de Lyon, Lyon, France.
- UMR Ecologie Microbienne, CNRS 5557, INRA 1418, VetAgro Sup, Research group on "Bacterial Opportunistic Pathogens and Environment", Université Lyon I, 8 avenue Rockefeller, 69373, Lyon, France.
| |
Collapse
|
35
|
Amini B, Kamali M, Salouti M, Yaghmaei P. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:421-429. [PMID: 29649678 DOI: 10.1016/j.saa.2018.03.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50ngmL-1 with the limit detection of 9.899ngmL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108CFUmL-1 in real samples with a detection limit of 320CFUmL-1.
Collapse
Affiliation(s)
- Bahram Amini
- Department of Biology, Science and Research Branch (IAU), Islamic Azad University, Tehran, Iran
| | - Mehdi Kamali
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Salouti
- Department of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch (IAU), Islamic Azad University, Tehran, Iran
| |
Collapse
|
36
|
Bel’kova NL, Dzyuba EV, Klimenko ES, Khanaev IV, Denikina NN. Detection and Genetic Characterization of Bacteria of the Genus Pseudomonas from Microbial Communities of Lake Baikal. RUSS J GENET+ 2018; 54:514-524. [DOI: 10.1134/s1022795418040038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/18/2017] [Indexed: 07/26/2024]
|
37
|
Zheng Y, Chen H, Yao M, Li X. Bacterial pathogens were detected from human exhaled breath using a novel protocol. JOURNAL OF AEROSOL SCIENCE 2018; 117:224-234. [PMID: 32226119 PMCID: PMC7094568 DOI: 10.1016/j.jaerosci.2017.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 05/21/2023]
Abstract
It is generally believed that influenza outbreak is associated with breath-borne transmission of viruses, however relevant evidence is little for that of respiratory bacterial infections. On another front, point-of-care infection diagnostic methods at the bedside are significantly lacking. Here, we used a newly developed protocol of integrating an exhaled breath condensate (EBC) collection device (PKU BioScreen) and Loop Mediated Isothermal Amplification (LAMP) to investigate what bacterial pathogens can be directly exhaled out from humans. Exhaled breath condensates were collected from human subjects with respiratory infection symptoms at Peking University 3rd hospital using the BioScreen. The screened bacterial pathogens included Streptococcus pneumoniae, Staphylococcus aureus, Methicillin-resistant Stphylococcus aureus (MRSA), Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia, Haemophilus influenzae, Legionella pneumophila, Mycoplasma Pneumonia, Chlamydia pneumonia, and Mycobacterium tuberculosis. The results were further compared and validated using throat swabs from the same patients by a PCR method. Here, human bacterial pathogens such as H. influenzae, P. aeruginosa, E. coli, S. aureus and MRSA were detected in exhaled breath using the developed protocol that integrates the EBC collection and LAMP. For the patients recruited from the hospital, seven types of pathogens were detected from 36.5% of them, and for the remaining subjects none of those screened bacterial pathogens was detected. Importantly, some super resistant bacteria such as MRSA were detected from the exhaled breath, suggesting that breathing might be also an important bacterial transmission route. Results from throat swabs showed that 36.2% of the subjects were found to be infected with H. influenzae, P. aeruginosa, E. coli, S. maltophilia, S. aureus and MRSA. For the EBC samples, 33.3% were found to be infected with MRSA, E. coli and P. aeruginosa. Depending on the initial pathogen load in the sample, the entire protocol (EBC-LAMP) only takes 20-60 min to complete for a respiratory infection diagnosis. For different detection methods and pathogens, the agreements between the EBC and throat swabs from the same patients were found to range from 35% to 65%. Here, we have detected several bacterial pathogens including MRSA from exhaled breath, and the developed protocol could be very useful for the bedside pathogen screening particularly in remote areas where resources are significantly limited or prohibited.
Collapse
Affiliation(s)
- Yunhao Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaoguang Li
- Department of Infectious Diseases, Peking University Third Hospital, Peking University, Beijing 100191, China
| |
Collapse
|
38
|
Manajit O, Longyant S, Sithigorngul P, Chaivisuthangkura P. Development of uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification coupled with nanogold probe (UDG-LAMP-AuNP) for specific detection of Pseudomonas aeruginosa. Mol Med Rep 2018; 17:5734-5743. [PMID: 29436623 PMCID: PMC5866016 DOI: 10.3892/mmr.2018.8557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/22/2018] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an important opportunistic pathogen that causes serious infections in humans, including keratitis in contact lens wearers. Therefore, establishing a rapid, specific and sensitive method for the identification of P. aeruginosa is imperative. In the present study, the uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification combined with nanogold labeled hybridization probe (UDG-LAMP-AuNP) was developed for the detection of P. aeruginosa. UDG-LAMP was performed to prevent carry over contamination and the LAMP reactions can be readily observed using the nanogold probe. A set of 4 primers and a hybridization probe were designed based on the ecfX gene. The UDG-LAMP reactions were performed at 65°C for 60 min using the ratio of 40% deoxyuridine triphosphate to 60% deoxythymidine triphosphate. The detection of UDG-LAMP products using the nanogold labeled hybridization probe, which appeared as a red-purple color, was examined at 65°C for 5 min with 40 mM MgSO4. The UDG-LAMP-AuNP demonstrated specificity to all tested isolates of P. aeruginosa without cross reaction to other bacteria. The sensitivity for the detection of pure culture was 1.6×103 colony-forming units (CFU) ml−1 or equivalent to 3 CFU per reaction while that of polymerase chain reaction was 30 CFU per reaction. The detection limit of spiked contact lenses was 1.1×103 CFU ml−1 or equivalent to 2 CFU per reaction. In conclusion, the UDG-LAMP-AuNP assay was rapid, simple, specific and was effective for the identification of P. aeruginosa in contaminated samples.
Collapse
Affiliation(s)
- Orapan Manajit
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Siwaporn Longyant
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Paisarn Sithigorngul
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Parin Chaivisuthangkura
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
39
|
Diversity of free-living amoebae in soils and their associated human opportunistic bacteria. Parasitol Res 2017; 116:3151-3162. [DOI: 10.1007/s00436-017-5632-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
|
40
|
Strong incidence of Pseudomonas aeruginosa on bacterial rrs and ITS genetic structures of cystic fibrosis sputa. PLoS One 2017; 12:e0173022. [PMID: 28282386 PMCID: PMC5345789 DOI: 10.1371/journal.pone.0173022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 02/14/2017] [Indexed: 11/20/2022] Open
Abstract
Cystic fibrosis (CF) lungs harbor a complex community of interacting microbes, including pathogens like Pseudomonas aeruginosa. Meta-taxogenomic analysis based on V5-V6 rrs PCR products of 52 P. aeruginosa-positive (Pp) and 52 P. aeruginosa-negative (Pn) pooled DNA extracts from CF sputa suggested positive associations between P. aeruginosa and Stenotrophomonas and Prevotella, but negative ones with Haemophilus, Neisseria and Burkholderia. Internal Transcribed Spacer analyses (RISA) from individual DNA extracts identified three significant genetic structures within the CF cohorts, and indicated an impact of P. aeruginosa. RISA clusters Ip and IIIp contained CF sputa with a P. aeruginosa prevalence above 93%, and of 24.2% in cluster IIp. Clusters Ip and IIIp showed lower RISA genetic diversity and richness than IIp. Highly similar cluster IIp RISA profiles were obtained from two patients harboring isolates of a same P. aeruginosa clone, suggesting convergent evolution in the structure of their microbiota. CF patients of cluster IIp had received significantly less antibiotics than patients of clusters Ip and IIIp but harbored the most resistant P. aeruginosa strains. Patients of cluster IIIp were older than those of Ip. The effects of P. aeruginosa on the RISA structures could not be fully dissociated from the above two confounding factors but several trends in these datasets support the conclusion of a strong incidence of P. aeruginosa on the genetic structure of CF lung microbiota.
Collapse
|
41
|
A magnetic relaxation switch aptasensor for the rapid detection of Pseudomonas aeruginosa using superparamagnetic nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2142-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Tang Y, Ali Z, Zou J, Jin G, Zhu J, Yang J, Dai J. Detection methods for Pseudomonas aeruginosa: history and future perspective. RSC Adv 2017. [DOI: 10.1039/c7ra09064a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The current review summarized and analyzed the development of detection techniques forPseudomonas aeruginosaover the past 50 years.
Collapse
Affiliation(s)
- Yongjun Tang
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Zeeshan Ali
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Jun Zou
- School of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan 411104
- China
| | - Gang Jin
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Junchen Zhu
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Jian Yang
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Jianguo Dai
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| |
Collapse
|
43
|
Youenou B, Hien E, Deredjian A, Brothier E, Favre-Bonté S, Nazaret S. Impact of untreated urban waste on the prevalence and antibiotic resistance profiles of human opportunistic pathogens in agricultural soils from Burkina Faso. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25299-25311. [PMID: 27696161 DOI: 10.1007/s11356-016-7699-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
This study examined the long-term effects of the landfill disposal of untreated urban waste for soil fertilization on the prevalence and antibiotic resistance profiles of various human opportunistic pathogens in soils from Burkina Faso. Samples were collected at three sites in the periphery of Ouagadougou during two campaigns in 2008 and 2011. At each site, amendment led to changes in physico-chemical characteristics as shown by the increase in pH, CEC, total C, total N, and metal contents. Similarly, the numbers of total heterotrophic bacteria were higher in the amended fields than in the control ones. No sanitation indicators, i.e., coliforms, Staphylococci, and Enterococci, were detected. Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) were detected at a low level in one amended field. Stenotrophomonas maltophilia was detected from both campaigns at the three sites in the amended fields and only once in an unamended field. Diversity analysis showed some opportunistic pathogen isolates to be closely related to reference clinical strains responsible for nosocomial- or community-acquired infections in Northern countries. Antibiotic resistance tests showed that P. aeruginosa and Bcc isolates had a wild-type phenotype and that most S. maltophilia isolates had a multi-drug resistance profile with resistance to 7 to 15 antibiotics. Then we were able to show that amendment led to an increase of some human opportunistic pathogens including multi-drug resistant isolates. Although the application of untreated urban waste increases both soil organic matter content and therefore soil fertility, the consequences of this practice on human health should be considered.
Collapse
Affiliation(s)
- Benjamin Youenou
- Research Group on « Multi-résistance environnementale et efflux bactérien», UMR 5557 Ecologie Microbienne, CNRS, VetAgro Sup and Université Lyon 1, 43, Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, Villeurbanne, France
| | - Edmond Hien
- LMI IESOL, UMR Eco&Sols, IRD-Université de Ouagadougou, UFR/SVT 03 BP 7021, Ouagadougou, Burkina Faso
| | - Amélie Deredjian
- Research Group on « Multi-résistance environnementale et efflux bactérien», UMR 5557 Ecologie Microbienne, CNRS, VetAgro Sup and Université Lyon 1, 43, Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, Villeurbanne, France
| | - Elisabeth Brothier
- Research Group on « Multi-résistance environnementale et efflux bactérien», UMR 5557 Ecologie Microbienne, CNRS, VetAgro Sup and Université Lyon 1, 43, Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, Villeurbanne, France
| | - Sabine Favre-Bonté
- Research Group on « Multi-résistance environnementale et efflux bactérien», UMR 5557 Ecologie Microbienne, CNRS, VetAgro Sup and Université Lyon 1, 43, Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, Villeurbanne, France
| | - Sylvie Nazaret
- Research Group on « Multi-résistance environnementale et efflux bactérien», UMR 5557 Ecologie Microbienne, CNRS, VetAgro Sup and Université Lyon 1, 43, Boulevard du 11 Novembre 1918, Villeurbanne Cedex, 69622, Villeurbanne, France.
| |
Collapse
|
44
|
Sands KM, Wilson MJ, Lewis MAO, Wise MP, Palmer N, Hayes AJ, Barnes RA, Williams DW. Respiratory pathogen colonization of dental plaque, the lower airways, and endotracheal tube biofilms during mechanical ventilation. J Crit Care 2016; 37:30-37. [PMID: 27621110 DOI: 10.1016/j.jcrc.2016.07.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/10/2016] [Accepted: 07/24/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE In mechanically ventilated patients, the endotracheal tube is an essential interface between the patient and ventilator, but inadvertently, it also facilitates the development of ventilator-associated pneumonia (VAP) by subverting pulmonary host defenses. A number of investigations suggest that bacteria colonizing the oral cavity may be important in the etiology of VAP. The present study evaluated microbial changes that occurred in dental plaque and lower airways of 107 critically ill mechanically ventilated patients. MATERIALS AND METHODS Dental plaque and lower airways fluid was collected during the course of mechanical ventilation, with additional samples of dental plaque obtained during the entirety of patients' hospital stay. RESULTS A "microbial shift" occurred in dental plaque, with colonization by potential VAP pathogens, namely, Staphylococcus aureus and Pseudomonas aeruginosa in 35 patients. Post-extubation analyses revealed that 70% and 55% of patients whose dental plaque included S aureus and P aeruginosa, respectively, reverted back to having a predominantly normal oral microbiota. Respiratory pathogens were also isolated from the lower airways and within the endotracheal tube biofilms. CONCLUSIONS To the best of our knowledge, this is the largest study to date exploring oral microbial changes during both mechanical ventilation and after recovery from critical illness. Based on these findings, it was apparent that during mechanical ventilation, dental plaque represents a source of potential VAP pathogens.
Collapse
Affiliation(s)
- Kirsty M Sands
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK.
| | - Melanie J Wilson
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| | - Michael A O Lewis
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| | - Matt P Wise
- Adult Critical Care, University Hospital of Wales, Heath Park, Cardiff, Wales, UK
| | - Nicki Palmer
- Adult Critical Care, University Hospital of Wales, Heath Park, Cardiff, Wales, UK
| | - Anthony J Hayes
- Bioimaging Hub, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Rosemary A Barnes
- Cardiff Institute of Infection & Immunity, School of Medicine, Heath Park, Cardiff, Wales, UK
| | - David W Williams
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
45
|
Chen Y, Cheng N, Xu Y, Huang K, Luo Y, Xu W. Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor. Biosens Bioelectron 2016; 81:317-323. [DOI: 10.1016/j.bios.2016.03.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 11/26/2022]
|
46
|
Wu Q, Ye Y, Li F, Zhang J, Guo W. Prevalence and genetic characterization of Pseudomonas aeruginosa in drinking water in Guangdong Province of China. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Boukerb AM, Decor A, Ribun S, Tabaroni R, Rousset A, Commin L, Buff S, Doléans-Jordheim A, Vidal S, Varrot A, Imberty A, Cournoyer B. Genomic Rearrangements and Functional Diversification of lecA and lecB Lectin-Coding Regions Impacting the Efficacy of Glycomimetics Directed against Pseudomonas aeruginosa. Front Microbiol 2016; 7:811. [PMID: 27303392 PMCID: PMC4885879 DOI: 10.3389/fmicb.2016.00811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
LecA and LecB tetrameric lectins take part in oligosaccharide-mediated adhesion-processes of Pseudomonas aeruginosa. Glycomimetics have been designed to block these interactions. The great versatility of P. aeruginosa suggests that the range of application of these glycomimetics could be restricted to genotypes with particular lectin types. The likelihood of having genomic and genetic changes impacting LecA and LecB interactions with glycomimetics such as galactosylated and fucosylated calix[4]arene was investigated over a collection of strains from the main clades of P. aeruginosa. Lectin types were defined, and their ligand specificities were inferred. These analyses showed a loss of lecA among the PA7 clade. Genomic changes impacting lec loci were thus assessed using strains of this clade, and by making comparisons with the PAO1 genome. The lecA regions were found challenged by phage attacks and PAGI-2 (genomic island) integrations. A prophage was linked to the loss of lecA. The lecB regions were found less impacted by such rearrangements but greater lecB than lecA genetic divergences were recorded. Sixteen combinations of LecA and LecB types were observed. Amino acid variations were mapped on PAO1 crystal structures. Most significant changes were observed on LecBPA7, and found close to the fucose binding site. Glycan array analyses were performed with purified LecBPA7. LecBPA7 was found less specific for fucosylated oligosaccharides than LecBPAO1, with a preference for H type 2 rather than type 1, and Lewis(a) rather than Lewis(x). Comparison of the crystal structures of LecBPA7 and LecBPAO1 in complex with Lewis(a) showed these changes in specificity to have resulted from a modification of the water network between the lectin, galactose and GlcNAc residues. Incidence of these modifications on the interactions with calix[4]arene glycomimetics at the cell level was investigated. An aggregation test was used to establish the efficacy of these ligands. Great variations in the responses were observed. Glycomimetics directed against LecB yielded the highest numbers of aggregates for strains from all clades. The use of a PAO1ΔlecB strain confirmed a role of LecB in this aggregation phenotype. Fucosylated calix[4]arene showed the greatest potential for a use in the prevention of P. aeruginosa infections.
Collapse
Affiliation(s)
- Amine M Boukerb
- Equipes de Recherche, Bactéries Pathogènes Opportunistes et Environnement, Centre de Ressources Biologiques - Environnement Microbiologie Lyon, UMR Centre National de la Recherche Scientifique 5557 Ecologie Microbienne, Université Lyon 1 and VetAgro Sup Lyon, France
| | - Aude Decor
- Centre de Recherche sur les Macromolécules Végétales (UPR 5301), Centre National de la Recherche Scientifique and Université Grenoble Alpes Grenoble, France
| | - Sébastien Ribun
- Equipes de Recherche, Bactéries Pathogènes Opportunistes et Environnement, Centre de Ressources Biologiques - Environnement Microbiologie Lyon, UMR Centre National de la Recherche Scientifique 5557 Ecologie Microbienne, Université Lyon 1 and VetAgro Sup Lyon, France
| | - Rachel Tabaroni
- Centre de Recherche sur les Macromolécules Végétales (UPR 5301), Centre National de la Recherche Scientifique and Université Grenoble Alpes Grenoble, France
| | - Audric Rousset
- Laboratoire de Chimie Organique 2 - Glycochimie, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR Centre National de la Recherche Scientifique 5246, Université Lyon 1 Lyon, France
| | - Loris Commin
- Université de Lyon, VetAgro Sup, UPSP 2011-03-101, Interactions Cellules Environnement and CRB-ANIM (ANR-INBS11-0003) Marcy-L'Etoile, France
| | - Samuel Buff
- Université de Lyon, VetAgro Sup, UPSP 2011-03-101, Interactions Cellules Environnement and CRB-ANIM (ANR-INBS11-0003) Marcy-L'Etoile, France
| | - Anne Doléans-Jordheim
- Equipes de Recherche, Bactéries Pathogènes Opportunistes et Environnement, Centre de Ressources Biologiques - Environnement Microbiologie Lyon, UMR Centre National de la Recherche Scientifique 5557 Ecologie Microbienne, Université Lyon 1 and VetAgro Sup Lyon, France
| | - Sébastien Vidal
- Laboratoire de Chimie Organique 2 - Glycochimie, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR Centre National de la Recherche Scientifique 5246, Université Lyon 1 Lyon, France
| | - Annabelle Varrot
- Centre de Recherche sur les Macromolécules Végétales (UPR 5301), Centre National de la Recherche Scientifique and Université Grenoble Alpes Grenoble, France
| | - Anne Imberty
- Centre de Recherche sur les Macromolécules Végétales (UPR 5301), Centre National de la Recherche Scientifique and Université Grenoble Alpes Grenoble, France
| | - Benoit Cournoyer
- Equipes de Recherche, Bactéries Pathogènes Opportunistes et Environnement, Centre de Ressources Biologiques - Environnement Microbiologie Lyon, UMR Centre National de la Recherche Scientifique 5557 Ecologie Microbienne, Université Lyon 1 and VetAgro Sup Lyon, France
| |
Collapse
|
48
|
Sands KM, Twigg JA, Lewis MAO, Wise MP, Marchesi JR, Smith A, Wilson MJ, Williams DW. Microbial profiling of dental plaque from mechanically ventilated patients. J Med Microbiol 2015; 65:147-159. [PMID: 26690690 PMCID: PMC5115166 DOI: 10.1099/jmm.0.000212] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Micro-organisms isolated from the oral cavity may translocate to the lower airways during mechanical ventilation (MV) leading to ventilator-associated pneumonia (VAP). Changes within the dental plaque microbiome during MV have been documented previously, primarily using culture-based techniques. The aim of this study was to use community profiling by high throughput sequencing to comprehensively analyse suggested microbial changes within dental plaque during MV. Bacterial 16S rDNA gene sequences were obtained from 38 samples of dental plaque sampled from 13 mechanically ventilated patients and sequenced using the Illumina platform. Sequences were processed using Mothur, applying a 97 % gene similarity cut-off for bacterial species level identifications. A significant ‘microbial shift’ occurred in the microbial community of dental plaque during MV for nine out of 13 patients. Following extubation, or removal of the endotracheal tube that facilitates ventilation, sampling revealed a decrease in the relative abundance of potential respiratory pathogens and a compositional change towards a more predominantly (in terms of abundance) oral microbiota including Prevotella spp., and streptococci. The results highlight the need to better understand microbial shifts in the oral microbiome in the development of strategies to reduce VAP, and may have implications for the development of other forms of pneumonia such as community-acquired infection.
Collapse
Affiliation(s)
- Kirsty M Sands
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, UK
| | - Joshua A Twigg
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, UK
| | - Michael A O Lewis
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, UK
| | - Matt P Wise
- Adult Critical Care, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Julian R Marchesi
- School of Biosciences, Main Building, Park Place, Cardiff University, Cardiff, Wales, UK.,Centre for Digestive and Gut Health, Imperial College London, London, UK
| | - Ann Smith
- School of Biosciences, Main Building, Park Place, Cardiff University, Cardiff, Wales, UK
| | - Melanie J Wilson
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, UK
| | - David W Williams
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, UK
| |
Collapse
|
49
|
Mulamattathil SG, Bezuidenhout C, Mbewe M. Analysis of physico-chemical and bacteriological quality of drinking water in Mafikeng, South Africa. JOURNAL OF WATER AND HEALTH 2015; 13:1143-1152. [PMID: 26608775 DOI: 10.2166/wh.2015.273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mafikeng, the capital of the North West Province, receives water from two sources, namely the Molopo eye and the Modimola dam. Once treated, the potable water is mixed and supplied to the city via distribution systems. This study was designed to assess the quality of drinking water in Mafikeng and also to determine whether the water from the two sources has an impact on the mixed water quality. Physico-chemical parameters and bacteriological quality (faecal coliforms (FCs), total coliforms (TCs), heterotrophic bacteria and Peudomonas spp.) was monitored at three drinking water sites weekly for 4 months. The results revealed that the physico-chemical quality of the water was generally acceptable. The pH ranged from 5.7 ± 0.18 to 8.6 ± 0.14, the temperature ranged from 18.3 ± 0.69 to 25.1 ± 0.69 °C and the total dissolved solids (TDS) ranged from 159.9 ± 22.44 to 364.4 ± 12.44 mg/l. These values are within the target water quality range for drinking water as prescribed by WHO, Department of Water Affairs and SANS 241. What is of concern was the microbial quality of the water. FCs, TCs, heterotrophic bacteria and Pseudomonas spp. were present in some of the treated water samples. The most significant finding of this study is that all drinking water samples were positive for Pseudomonas spp. (>100/100 ml).
Collapse
Affiliation(s)
- Suma George Mulamattathil
- School of Agricultural and Environmental Sciences, Department of Water and Sanitation, University of Limpopo, Turfloop Campus, Private Bag X1106, Sovenga 0727, South Africa E-mail:
| | - Carlos Bezuidenhout
- Unit for Environmental Science and Management, North West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Moses Mbewe
- School of Agricultural and Environmental Sciences, Department of Water and Sanitation, University of Limpopo, Turfloop Campus, Private Bag X1106, Sovenga 0727, South Africa E-mail:
| |
Collapse
|
50
|
Genome Sequences of Three Strains of the Pseudomonas aeruginosa PA7 Clade. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01366-15. [PMID: 26586898 PMCID: PMC4653800 DOI: 10.1128/genomea.01366-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Draft genome sequences of three P. aeruginosa strains from the PA7 clade are presented here. Their lengths are 6.36 (EML528), 6.44 (EML545), and 6.33 Mb (EML548). Comparisons with the PA7 genome showed 5,113 conserved coding sequences (CDSs), and significant numbers of strain-specific CDSs. Their analysis will improve our understanding of this highly divergent clade.
Collapse
|