1
|
Gao X, Zhu X, Wang Z, Liu X, Guo R, Luan J, Liu Z, Yu F. Modulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus by Sphingomonas Sp Y503 via the CrMAPKKK1-CrMAPKK1/CrMAPKK2-CrMPK3 Signaling Cascade. PLANT, CELL & ENVIRONMENT 2025; 48:1692-1704. [PMID: 39473344 DOI: 10.1111/pce.15253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 01/04/2025]
Abstract
Catharanthus roseus is a highly relevant model for investigating plant defense mechanisms and the biosynthesis of therapeutically valuable compounds, including terpenoid indole alkaloids (TIAs). It has been demonstrated that beneficial microbial interactions can regulate TIA biosynthesis in C. roseus, highlighting the need to fully comprehend the molecular mechanisms involved to efficiently implement eco-friendly strategies. This study explores the effects of a novel microbial strain, Y503, identified as Sphingomonas sp., on TIA production and the underlying mechanisms in C. roseus. Through bioinformatics analysis, we have identified 17 MAPKKKs, 7 MAPKKs, and 13 MAPKs within the C. roseus genome. Further investigation has verified the presence of the MAPK module (CrMAPKKK1-CrMAPKK1/CrMAPKK2-CrMPK3) mediating Y503 in regulating TIA biosynthesis in C. roseus. This study provides foundational information for strengthening the plant defense system in C. roseus through advantageous microbial interactions, which could contribute to the sustainable cultivation of medicinal plants such as C. roseus.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Xiaona Zhu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Zhiqin Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Xuejing Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Rui Guo
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Jing Luan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Zhiwen Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Fang Yu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
2
|
Ghezzi D, Salvi L, Costantini PE, Firrincieli A, Iorio M, Lopo E, Sosio M, Elbanna AH, Khalil ZG, Capon RJ, De Waele J, Vergara F, Sauro F, Cappelletti M. Ancient and remote quartzite caves as a novel source of culturable microbes with biotechnological potential. Microbiol Res 2024; 286:127793. [PMID: 38901277 DOI: 10.1016/j.micres.2024.127793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
Quartzite caves located on table-top mountains (tepuis) in the Guyana Shield, are ancient, remote, and pristine subterranean environments where microbes have evolved peculiar metabolic strategies to thrive in silica-rich, slightly acidic and oligotrophic conditions. In this study, we explored the culturable fraction of the microbiota inhabiting the (ortho)quartzite cave systems in Venezuelan tepui (remote table-top mountains) and we investigated their metabolic and enzymatic activities in relation with silica solubilization and extracellular hydrolytic activities as well as the capacity to produce antimicrobial compounds. Eighty microbial strains were isolated with a range of different enzymatic capabilities. More than half of the isolated strains performed at least three enzymatic activities and four bacterial strains displayed antimicrobial activities. The antimicrobial producers Paraburkholderia bryophila CMB_CA002 and Sphingomonas sp. MEM_CA187, were further analyzed by conducting chemotaxonomy, phylogenomics, and phenomics. While the isolate MEM_CA187 represents a novel species of the genus Sphingomonas, for which the name Sphingomonas imawarii sp. nov. is proposed, P. bryophila CMB_CA002 is affiliated with a few strains of the same species that are antimicrobial producers. Chemical analyses demonstrated that CMB_CA002 produces ditropolonyl sulfide that has a broad range of activity and a possibly novel siderophore. Although the antimicrobial compounds produced by MEM_CA187 could not be identified through HPLC-MS analysis due to the absence of reference compounds, it represents the first soil-associated Sphingomonas strain with the capacity to produce antimicrobials. This work provides first insights into the metabolic potential present in quartzite cave systems pointing out that these environments are a novel and still understudied source of microbial strains with biotechnological potential.
Collapse
Affiliation(s)
- Daniele Ghezzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Luca Salvi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Paolo E Costantini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy; Department for Innovation in Biological, Agro-Food and Forest systems, University of Tuscia, Viterbo 01100, Italy
| | | | - Ettore Lopo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | | | - Ahmed H Elbanna
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Pharmacognosy, Cairo University, Cairo 11562, Egypt
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jo De Waele
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna 40126, Italy; La Venta Geographic Explorations Association, Treviso 31100, Italy
| | - Freddy Vergara
- La Venta Geographic Explorations Association, Treviso 31100, Italy; Teraphosa Exploring Team, Puerto Ordaz, Venezuela
| | - Francesco Sauro
- La Venta Geographic Explorations Association, Treviso 31100, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy; La Venta Geographic Explorations Association, Treviso 31100, Italy.
| |
Collapse
|
3
|
Dos-Santos CM, Nascimento WBA, Cesar MJSC, Baldani JI, Schwab S. Diversity of bacteria of the genus Sphingomonas associated with sugarcane (Saccharum spp.) culm apoplast fluid and their agrotechnological potential. World J Microbiol Biotechnol 2024; 40:304. [PMID: 39155347 DOI: 10.1007/s11274-024-04111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
In sugarcane, sequences related to the genus Sphingomonas have been widely detected by microbiome studies. In this work, the presence of bacteria of this genus was confirmed using culture-dependent and independent techniques. A collection of thirty isolates was obtained using semispecific cultivation conditions, and a specific PCR assay was applied to help confirm the isolates as belonging to the genus. A series of laboratory evaluations were carried out to identify potential properties among the isolates in the collection, which consequently allowed the identification of some most promising isolates for the development of new agricultural bioinputs. In a separate analysis, the culture-independent fluorescence in situ hybridization (FISH) methodology was applied to demonstrate the natural occurrence of Sphingomonas in different organs and tissues of sugarcane. The results showed the presence of bacteria of the genus in the spaces between cells (apoplast) of the culm parenchyma, in vessels in the region of the leaf vein, on the adaxial surface of the leaf blade, and on the root surface, sometimes close to the base of root hairs, which suggests extensive colonization on the host plant. In summary, the present study corroborates previous metagenomic amplicon sequencing results that indicated a high occurrence of Sphingomonas associated with sugarcane. This is the first study that uses approaches other than amplicon sequencing to confirm the occurrence of the genus in sugarcane and, at the same time, demonstrates potentially beneficial activities to be explored by sugarcane cultivation.
Collapse
Affiliation(s)
- Carlos M Dos-Santos
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro State, 23891-000, Brazil
- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro State, 23897-000, Brazil
- Instituto SENAI de Inovação em Química Verde, Rio de Janeiro, Rio de Janeiro State, 20271-030, Brazil
| | - W Bruno A Nascimento
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro State, 23891-000, Brazil
- Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro State, 23897-000, Brazil
| | - M Joana S C Cesar
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro State, 23891-000, Brazil
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro State, 23897-000, Brazil
| | - José Ivo Baldani
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro State, 23891-000, Brazil
| | - Stefan Schwab
- Embrapa Agrobiologia, Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro State, 23891-000, Brazil.
| |
Collapse
|
4
|
Gao J, Feng P, Zhang J, Dong C, Wang Z, Chen M, Yu Z, Zhao B, Hou X, Wang H, Wu Z, Jemim RS, Yu H, Sun D, Jing P, Chen J, Song W, Zhang X, Zhou Z, Wu J. Enhancing maize's nitrogen-fixing potential through ZmSBT3, a gene suppressing mucilage secretion. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2645-2659. [PMID: 37929676 DOI: 10.1111/jipb.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/04/2023] [Indexed: 11/07/2023]
Abstract
Maize (Zea mays) requires substantial amounts of nitrogen, posing a challenge for its cultivation. Recent work discovered that some ancient Mexican maize landraces harbored diazotrophic bacteria in mucilage secreted by their aerial roots. To see if this trait is retained in modern maize, we conducted a field study of aerial root mucilage (ARM) in 258 inbred lines. We observed that ARM secretion is common in modern maize, but the amount significantly varies, and only a few lines have retained the nitrogen-fixing traits found in ancient landraces. The mucilage of the high-ARM inbred line HN5-724 had high nitrogen-fixing enzyme activity and abundant diazotrophic bacteria. Our genome-wide association study identified 17 candidate genes associated with ARM across three environments. Knockouts of one candidate gene, the subtilase family gene ZmSBT3, confirmed that it negatively regulates ARM secretion. Notably, the ZmSBT3 knockout lines had increased biomass and total nitrogen accumulation under nitrogen-free culture conditions. High ARM was associated with three ZmSBT3 haplotypes that were gradually lost during maize domestication, being retained in only a few modern inbred lines such as HN5-724. In summary, our results identify ZmSBT3 as a potential tool for enhancing ARM, and thus nitrogen fixation, in maize.
Collapse
Affiliation(s)
- Jingyang Gao
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Peijiang Feng
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jingli Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chaopei Dong
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhao Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mingxiang Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhongliang Yu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bowen Zhao
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xin Hou
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huijuan Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhaokun Wu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Razia Sultana Jemim
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haidong Yu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Doudou Sun
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pei Jing
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiafa Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, 56237, Mexico
| | - Zijian Zhou
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianyu Wu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
5
|
Li Y, Wang H, Wang M, Wang Y, Shi B. The perfluoroalkyl substances influenced the distribution of bacterial communities and their functions from source water to tap water. WATER RESEARCH 2023; 247:120831. [PMID: 37950955 DOI: 10.1016/j.watres.2023.120831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Perfluoroalkyl substances (PFASs) and antibiotic resistance genes (ARGs) in drinking water are environmental issues that require special attention. The objective of this study was to know the effects of PFASs on microbial communities and their functional genes from source water to tap water. PFASs were detected by mass-labeled internal standards method, and the microbial communities and functional genes were analyzed by metagenomics. Our results indicated that the concentration of total PFASs in the water ranged from 47.7 to 171.4 ng/L, with perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) being the dominant types. The PFASs concentration decreased slowly from source to tap water in some months. PFBA, PFOA, perfluorooctane sulfonic acid (PFOS) and perfluorohexanoic acid (PFHxA) influenced the functional genes related to two-component system, bacterial secretion system and flagellar assembly of Aquabacterium, Methylobacterium, and Curvibacter, which contributed significantly to macB and evgS. Therefore, the bacterial communities enhanced adaptation to fluctuating environments by upregulating some functional genes under the PFASs stress, with concomitant changes in the expression of ARGs. Moreover, PFASs also promoted the expression of functional genes associated with human diseases, such as shigellosis and tuberculosis, which increased the risk of human pathogenicity. The bench scale experiment results also suggested that PFOA and PFOS in drinking water can promote the ARGs proliferation and induce microbial risk. Therefore, it is necessary to take measures to prevent the risks caused by PFASs and ARGs in drinking water.
Collapse
Affiliation(s)
- Yukang Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Min Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yili Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Xin J, Cao H, Bao X, Hu C. Does nest occupancy by birds influence the microbial composition? Front Microbiol 2023; 14:1232208. [PMID: 38053547 PMCID: PMC10694247 DOI: 10.3389/fmicb.2023.1232208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023] Open
Abstract
Nest microbiota plays a vital role in the breeding and development of birds, which not only provides protection to bird hosts but also negatively affects the host. At present, it is unclear whether the composition of the microbes in the nests is affected by nesting. For this reason, we hung artificial nest boxes to simulate the natural nesting environment and combined 16S rRNA and ITS high-throughput sequencing technology to further study the differences in microbial composition and richness between used nests and control nests of Japanese tits (Parus minor). The study found that the bacteria in used nests and control nests showed significant differences at the phylum level (p < 0.05). It is also worth noting that the predominant bacteria in used nests were Proteobacteria (51.37%), Actinobacteria (29.72%), Bacteroidetes (6.59%), and Firmicutes (3.82%), while the predominant bacteria in control nests were Proteobacteria (93.70%), Bacteroidetes (2.33%), and Acidobacteria (2.06%). Both used nests and control nests showed similar fungi at the phylum level, which consisted mainly of Ascomycota and Basidiomycota, although significant differences were found in their relative abundance between both groups. The results of alpha diversity analysis showed significant differences in bacteria between the two groups and not in fungi. However, the beta diversity analysis showed significant differences between both bacteria and fungi. In summary, our results showed that the used nests had a higher abundance of beneficial microbiota and a lower presence of pathogenic microbiota. Therefore, we speculate that birds will change the characteristics of the nest microbial composition in the process of nest breeding to ensure their smooth reproductive development.
Collapse
Affiliation(s)
- Jiajia Xin
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Heqin Cao
- Forestry College, Guizhou University, Guiyang, Guizhou, China
- Research Center for Biodiversity and Nature Conservation, Guizhou University, Guiyang, Guizhou, China
| | - Xiaoyang Bao
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Canshi Hu
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
- Research Center for Biodiversity and Nature Conservation, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Li R, Ren C, Wu L, Zhang X, Mao X, Fan Z, Cui W, Zhang W, Wei G, Shu D. Fertilizing-induced alterations of microbial functional profiles in soil nitrogen cycling closely associate with crop yield. ENVIRONMENTAL RESEARCH 2023; 231:116194. [PMID: 37217131 DOI: 10.1016/j.envres.2023.116194] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Fertilization and rhizosphere selection are key regulators for soil nitrogen (N) cycling and microbiome. Thus, clarifying how the overall N cycling processes and soil microbiome respond to these factors is a prerequisite for understanding the consequences of high inputs of fertilizers, enhancing crop yields, and formulating reasonable nitrogen management strategies under agricultural intensification scenarios. To do this, we applied shotgun metagenomics sequencing to reconstruct N cycling pathways on the basis of abundance and distribution of related gene families, as well as explored the microbial diversity and interaction via high throughput sequencing based on a two-decade fertilization experiment in Loess Plateau of China semiarid area. We found that bacteria and fungi respond divergent to fertilization regimes and rhizosphere selection, in terms of community diversity, niche breadth, and microbial co-occurrence networks. Moreover, organic fertilization decreased the complexity of bacterial networks but increased the complexity and stability of fungal networks. Most importantly, rhizosphere selection exerted more strongly influences on the soil overall nitrogen cycling than the application of fertilizers, accompanied by the increase in the abundance of nifH, NIT-6, and narI genes and the decrease in the abundance of amoC, norC, and gdhA genes in the rhizosphere soil. Furthermore, keystone families screening from soil microbiome (e.g., Sphingomonadaceae, Sporichthyaceae, and Mortierellaceae), which were affected by the edaphic variables, contributed greatly to crop yield. Collectively, our findings emphasize the pivotal roles of rhizosphere selection interacting with fertilization regimes in sustaining soil nitrogen cycling processes in response to decades-long fertilization, as well as the potential importance of keystone taxa in maintaining crop yield. These findings significantly facilitate our understanding of nitrogen cycling in diverse agricultural soils and lay a foundation for manipulating specific microorganisms to regulate N cycling and promote agroecosystem sustainability.
Collapse
Affiliation(s)
- Ruochen Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Chengyao Ren
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Likun Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Xinxin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Xinyi Mao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Zhen Fan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Weili Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Wu Zhang
- Heihe Branch, Heilongjiang Academy of Agricultural Sciences, Heihe, Heilongjiang, 150086, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| | - Duntao Shu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Riber L, Carstens AB, Dougherty PE, Roy C, Willenbücher K, Hille F, Franz CMAP, Hansen LH. Pheno- and Genotyping of Three Novel Bacteriophage Genera That Target a Wheat Phyllosphere Sphingomonas Genus. Microorganisms 2023; 11:1831. [PMID: 37513003 PMCID: PMC10385605 DOI: 10.3390/microorganisms11071831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Bacteriophages are viral agents that infect and replicate within bacterial cells. Despite the increasing importance of phage ecology, environmental phages-particularly those targeting phyllosphere-associated bacteria-remain underexplored, and current genomic databases lack high-quality phage genome sequences linked to specific environmentally important bacteria, such as the ubiquitous sphingomonads. Here, we isolated three novel phages from a Danish wastewater treatment facility. Notably, these phages are among the first discovered to target and regulate a Sphingomonas genus within the wheat phyllosphere microbiome. Two of the phages displayed a non-prolate Siphovirus morphotype and demonstrated a narrow host range when tested against additional Sphingomonas strains. Intergenomic studies revealed limited nucleotide sequence similarity within the isolated phage genomes and to publicly available metagenome data of their closest relatives. Particularly intriguing was the limited homology observed between the DNA polymerase encoding genes of the isolated phages and their closest relatives. Based on these findings, we propose three newly identified genera of viruses: Longusvirus carli, Vexovirus birtae, and Molestusvirus kimi, following the latest ICTV binomial nomenclature for virus species. These results contribute to our current understanding of phage genetic diversity in natural environments and hold promising implications for phage applications in phyllosphere microbiome manipulation strategies.
Collapse
Affiliation(s)
- Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Alexander Byth Carstens
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Peter Erdmann Dougherty
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Chayan Roy
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Katharina Willenbücher
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Strasse 1, 24103 Kiel, Germany
| | - Frank Hille
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Strasse 1, 24103 Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Strasse 1, 24103 Kiel, Germany
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
9
|
Mazuecos L, Alberdi P, Hernández-Jarguín A, Contreras M, Villar M, Cabezas-Cruz A, Simo L, González-García A, Díaz-Sánchez S, Neelakanta G, Bonnet SI, Fikrig E, de la Fuente J. Frankenbacteriosis targeting interactions between pathogen and symbiont to control infection in the tick vector. iScience 2023; 26:106697. [PMID: 37168564 PMCID: PMC10165458 DOI: 10.1016/j.isci.2023.106697] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Tick microbiota can be targeted for the control of tick-borne diseases such as human granulocytic anaplasmosis (HGA) caused by model pathogen, Anaplasma phagocytophilum. Frankenbacteriosis is inspired by Frankenstein and defined here as paratransgenesis of tick symbiotic/commensal bacteria to mimic and compete with tick-borne pathogens. Interactions between A. phagocytophilum and symbiotic Sphingomonas identified by metaproteomics analysis in Ixodes scapularis midgut showed competition between both bacteria. Consequently, Sphingomonas was selected for frankenbacteriosis for the control of A. phagocytophilum infection and transmission. The results showed that Franken Sphingomonas producing A. phagocytophilum major surface protein 4 (MSP4) mimic pathogen and reduce infection in ticks by competition and interaction with cell receptor components of infection. Franken Sphingomonas-MSP4 transovarial and trans-stadial transmission suggests that tick larvae with genetically modified Franken Sphingomonas-MSP4 could be produced in the laboratory and released in the field to compete and replace the wildtype populations with associated reduction in pathogen infection/transmission and HGA disease risks.
Collapse
Affiliation(s)
- Lorena Mazuecos
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pilar Alberdi
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Angélica Hernández-Jarguín
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Ladislav Simo
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Almudena González-García
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Sandra Díaz-Sánchez
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Sarah I. Bonnet
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, CNRS UMR 2000, Université de Paris, 75015 Paris, France
- Animal Health Department, INRAE, 37380 Nouzilly, France
| | - Erol Fikrig
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 208022, USA
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Corresponding author
| |
Collapse
|
10
|
Huang Y, Zhu N, Zheng X, Liu Y, Lu H, Yin X, Hao H, Tan Y, Wang D, Hu H, Liang Y, Li X, Hu Z, Yin Y. Intratumor Microbiome Analysis Identifies Positive Association Between Megasphaera and Survival of Chinese Patients With Pancreatic Ductal Adenocarcinomas. Front Immunol 2022; 13:785422. [PMID: 35145519 PMCID: PMC8821101 DOI: 10.3389/fimmu.2022.785422] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022] Open
Abstract
Human tumors harbor a plethora of microbiota. It has been shown that the composition and diversity of intratumor microbiome are significantly associated with the survival of patients with pancreatic ductal adenocarcinoma (PDAC). However, the association in Chinese patients as well as the effect of different microorganisms on inhibiting tumor growth are unclear. In this study, we collected tumor samples resected from long-term and short-term PDAC survivors and performed 16S rRNA amplicon sequencing. We found that the microbiome in samples with different survival time were significantly different, and the differential bacterial composition was associated with the metabolic pathways in the tumor microenvironment. Furthermore, administration of Megasphaera, one of the differential bacteria, induced a better tumor growth inhibition effect when combined with the immune checkpoint inhibitor anti-programmed cell death-1 (anti-PD-1) treatment in mice bearing 4T1 tumor. These results indicate that specific intratumor microbiome can enhance the anti-tumor effect in the host, laying a foundation for further clarifying the underlying detailed mechanism.
Collapse
Affiliation(s)
- Yu Huang
- Department of General Surgery, No.903 Hospital of People’s Liberation Army Joint Logistic Support Forcel, Hangzhou, China
| | - Ning Zhu
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Xing Zheng
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Yanhong Liu
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Haopeng Lu
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Xiaochen Yin
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Huaijie Hao
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Yan Tan
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Dongjie Wang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Han Hu
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Yong Liang
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Xinxing Li
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiqian Hu
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Yiming Yin
- Department of Research and Development, Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| |
Collapse
|
11
|
Fan H, Wu S, Dong W, Li X, Dong Y, Wang S, Zhu YG, Zhuang X. Characterization of tetracycline-resistant microbiome in soil-plant systems by combination of H 218O-based DNA-Stable isotope probing and metagenomics. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126440. [PMID: 34280721 DOI: 10.1016/j.jhazmat.2021.126440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 05/12/2023]
Abstract
The emergence and spread of antibiotic resistance have been considered as a global health threat. However, effective methods to identify antibiotic-resistant bacteria (ARB) in complex microbial community are lacking, and the potential transmission pathways of ARB and antibiotic resistance genes (ARGs) in the soil-plant system remain scarce. Here in this study, tetracycline was chosen as the target antibiotic due to its globally wide usage and clinical significance. DNA-based stable isotope probing with H218O was applied to identify the tetracycline-resistant bacteria from soil-plant systems. Eighteen-year organic fertilization significantly changed the composition of the tetracycline-resistant microbiome in the soil-wheat system and resulted in a higher relative abundance of ARGs in the wheat endophyte. Rhizosphere harboring the most diverse ARGs and mobile genetic elements was identified as a hot spot for horizontal gene transfer and an important bridge between bulk soil and wheat endophyte. Micrococcaceae and Sphingomonadaceae carrying ARGs associated with abundant mobile genetic elements, were identified as the core bacterial taxa in long-term manure-amended and untreated soil-wheat systems, respectively. This method contributes to a more precise track of ARB in the environment, and our work depicts the high potential of ARG transfer in the rhizosphere mediated by the core species.
Collapse
Affiliation(s)
- Haonan Fan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxu Dong
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Xianglong Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Dong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Guo Y, Rene ER, Han B, Ma W. Enhanced fluoroglucocorticoid removal from groundwater in a bio-electrochemical system with polyaniline-loaded activated carbon three-dimensional electrodes: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126197. [PMID: 34492961 DOI: 10.1016/j.jhazmat.2021.126197] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/14/2020] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the removal performance and mechanisms of dexamethasone (DEX), a representative fluoroglucocorticoid (FGC), from micro-polluted oligotrophic groundwater in a bio-electrochemical system amended with polyaniline-loaded activated carbon (PANI@AC) as three-dimensional particle electrodes (BES-3D). The BES-3D achieved a DEX removal efficiency of 95.7%, which was 39.0% and 14.1% higher than that of a single biological system (SBIO) and two-dimensional bio-electrochemical system (BES-2D), respectively. The preliminary metabolic mechanism of defluorination accounted for 53.5%, 41.1%, and 16.3% in BES-3D, BES-2D, and SBIO, respectively, which was accompanied by demethylation, side-chain fracture, and hydroxyl oxidation for ketone formation and final-ring opening. The main mechanism by which removal was improved in BES-3D was the enrichment of functional microbes and enhancement of the expression of dehalogenation genes. The relative abundance of functional microbes with electron transfer ability and reductive dehalogenating genera, i.e., Pseudomonas, Methylotenera, Desulfuromonas, Sphingomonas, and Microbacterium, in BES-3D was 3.7-6.1 times higher and the copy number of functional genes was 1.9 times higher than those of SBIO, which contributed to the high DEX removal.
Collapse
Affiliation(s)
- Yating Guo
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Eldon R Rene
- IHE Delft Institute for Water Education, Department of Water Supply, Sanitary and Environmental Engineering, Westvest 7, 2611AX Delft, the Netherlands
| | - Bingyi Han
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
13
|
Cultivation and characterization of snowbound microorganisms from the South Pole. Extremophiles 2021; 25:159-172. [PMID: 33590336 DOI: 10.1007/s00792-021-01218-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/28/2021] [Indexed: 02/03/2023]
Abstract
Little is known about microbial ecosystems of interior Antarctica, if indeed such ecosystems exist. Although considerable research has assessed microorganisms indigenous to coastal regions of Antarctica, particularly their lakes, ponds, and soils, to our knowledge only one characterized bacterium, a strain of Pseudomonas, has been isolated from South Pole ice or snow. Metagenomic community analyses described in this work and elsewhere reveal that a diversity of bacteria exists in inland polar snows, yet attempts to culture and characterize these microbes from this extreme environment have been few to date. In this molecular and culture-dependent investigation of the microbiology of inland Antarctica, we enriched and isolated two new strains of bacteria and one strain of yeast (Fungi) from South Pole snow samples. The bacteria were of the genera Methylobacterium and Sphingomonas, and the yeast grouped with species of Naganishia (class Tremellocytes). In addition to phylogenetic analyses, characterization of these isolates included determinations of cell morphology, growth as a function of temperature, salinity tolerance, and carbon and energy source versatility. All organisms were found to be cold-adapted, and the yeast strain additionally showed considerable halotolerance. These descriptions expand our understanding of the diversity and metabolic activities of snowbound microorganisms of interior Antarctica.
Collapse
|
14
|
Yang S, Li X, Xiao X, Zhuang G, Zhang Y. Sphingomonas profundi sp. nov., isolated from deep-sea sediment of the Mariana Trench. Int J Syst Evol Microbiol 2020; 70:3809-3815. [PMID: 32496177 DOI: 10.1099/ijsem.0.004235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, short rod-shaped, yellow bacterium (strain LMO-1T) was isolated from deep-sea sediment of the Mariana Trench, Challenger Deep. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain LMO-1T belonged to genus Sphingomonas, with the highest sequence similarity to Sphingomonas formosensis CC-Nfb-2T (96.3 %), followed by Sphingomonas prati W18RDT (96.1 %), Sphingomonas arantia 6PT (96.0 %) and Sphingomonas montana W16RDT (95.9 %). The predominant polar lipids were phosphatidylethanolamine, sphingoglycolipid, phosphatidylglycerol and phosphatidylcholine. The main cellular fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0 and C14 : 0 2-OH. The major polyamine was sym-homospermidine and the predominant isoprenoid quinone was ubiquinone-10. The genome DNA G+C content of strain LMO-1T was 69.2 mol%. The average nucleotide identity and DNA-DNA hybridization values between strain LMO-1T and CC-Nfb-2T were 75.9 and 20.5 %, respectively. Based on these data, LMO-1T should be classified as representing a novel species of the genus Sphingomonas, for which the name Sphingomonas profundi sp. nov. is proposed. The type strain is LMO-1T (=MCCC 1K04066T=JCM 33666T).
Collapse
Affiliation(s)
- Shanshan Yang
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.,State Key Laboratory of Ocean Engineering, State Key Laboratory of Microbial Metabolism, Shanghai, PR China.,School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xuegong Li
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, PR China
| | - Xiang Xiao
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.,State Key Laboratory of Ocean Engineering, State Key Laboratory of Microbial Metabolism, Shanghai, PR China
| | - Guangjiao Zhuang
- State Key Laboratory of Ocean Engineering, State Key Laboratory of Microbial Metabolism, Shanghai, PR China
| | - Yu Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China.,State Key Laboratory of Ocean Engineering, State Key Laboratory of Microbial Metabolism, Shanghai, PR China
| |
Collapse
|
15
|
Xiang Y, Rene ER, Lun X, Ma W. Enhanced reductive defluorination and inhibited infiltration of fluoroglucocorticoids in a river receiving reclaimed water amended by nano zero-valent iron-modified biochar: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2020; 306:123127. [PMID: 32172094 DOI: 10.1016/j.biortech.2020.123127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
The main aim of this study was to investigate the effect of a nano zero-valent iron-modified biochar-amended composite riverbed (nZVI@BC-R) on inhibited infiltration and enhanced biodegradation of fluoroglucocorticoids (FGCs) in a river receiving reclaimed water. The results demonstrated that the removal efficiency of triamcinolone acetonide (TA), a representative FGC, increased from 38.40% and 77.91% to 91.60% in the nZVI@BC-R compared with that of a natural soil riverbed (S-R) and biochar-amended soil riverbed (BC-R). The main removal mechanismwas attributedto adsorption and biodegradation, of which the contribution rates were 32.2% and 59.4% in nZVI@BC-R, 18.9% and 19.5% in S-R, and 24.4% and 53.5% in BC-R, respectively. The removal process could be described by a two-compartment, first-order dynamic model with decay rate constants for adsorption and biodegradation of 4.02700, 22.44400, and 29.07300 d-1 and 0.00286, 0.01562, and 0.03484 d-1 in the S-R, BC-R and nZVI@BC-R, respectively. The mechanism of defluorination accounted for 42.2% of biodegradation in the nZVI@BC-R, which was accompanied by side-chain rupture, oxidation, and ringopening. Functional microbes with iron oxidizing ability and reductive dehalogenating genera, namely Pseudoxanthomonas, Pedobacter, and Bosea, contributed to the high removal rate of TA, particularly in the nZVI@BC-R. Overall, the nZVI@BC-R provided an effective method to inhibit glucocorticoids infiltration into groundwater.
Collapse
Affiliation(s)
- Yayun Xiang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Eldon R Rene
- IHE-Delft, Institute for Water Education, Department of Environmental Engineering and Water Technology, Westvest 7, 2611AX Delft, The Netherlands
| | - Xiaoxiu Lun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
16
|
Feng GD, Chen MB, Zhang XJ, Wang DD, Zhu HH. Whole genome sequences reveal the presence of 11 heterotypic synonyms in the genus Sphingobium and emended descriptions of Sphingobium indicum, Sphingobium fuliginis, Sphingobium xenophagum and Sphingobium cupriresistens. Int J Syst Evol Microbiol 2019; 69:2161-2165. [DOI: 10.1099/ijsem.0.003432] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Guang-Da Feng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Mei-Biao Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Xian-Jiao Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Dong-Dong Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Hong-Hui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| |
Collapse
|
17
|
de Vries HJ, Beyer F, Jarzembowska M, Lipińska J, van den Brink P, Zwijnenburg A, Timmers PHA, Stams AJM, Plugge CM. Isolation and characterization of Sphingomonadaceae from fouled membranes. NPJ Biofilms Microbiomes 2019; 5:6. [PMID: 30701078 PMCID: PMC6347639 DOI: 10.1038/s41522-018-0074-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/11/2018] [Indexed: 11/09/2022] Open
Abstract
Membrane filtration systems are widely applied for the production of clean drinking water. However, the accumulation of particles on synthetic membranes leads to fouling. Biological fouling (i.e., biofouling) of reverse osmosis and nanofiltration membranes is difficult to control by existing cleaning procedures. Improved strategies are therefore needed. The bacterial diversity on fouled membranes has been studied, especially to identify bacteria with specialized functions and to develop targeted approaches against these microbes. Previous studies have shown that Sphingomonadaceae are initial membrane colonizers that remain dominant while the biofilm develops. Here, we characterized 21 Sphingomonadaceae isolates, obtained from six different fouled membranes, to determine which physiological traits could contribute to colonization of membrane surfaces. Their growth conditions ranged from temperatures between 8 and 42 oC, salinity between 0.0 and 5.0% w/v NaCl, pH from 4 and 10, and all isolates were able to metabolize a wide range of substrates. The results presented here show that Sphingomonadaceae membrane isolates share many features that are uncommon for other members of the Sphingomonadaceae family: all membrane isolates are motile and their tolerance for different temperatures, salt concentrations, and pH is high. Although relative abundance is an indicator of fitness for a whole group, for the Sphingomonadaceae it does not reveal the specific physiological traits that are required for membrane colonization. This study, therefore, adds to more fundamental insights in membrane biofouling.
Collapse
Affiliation(s)
- Hendrik J. de Vries
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Florian Beyer
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Monika Jarzembowska
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Joanna Lipińska
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Paula van den Brink
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Arie Zwijnenburg
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Peer H. A. Timmers
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Caroline M. Plugge
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|
18
|
Lin SY, Hameed A, Hsu YH, Liu YC, Hung MH, Lai WA, Young CC. Sphingomonas colocasiae sp. nov., isolated from taro (Colocasia esculanta). Int J Syst Evol Microbiol 2017; 68:133-140. [PMID: 29116039 DOI: 10.1099/ijsem.0.002471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A polyphasic approach was used to characterize an aerobic, Gram-stain-negative, rod-shaped bacterium (designed as strain CC-MHH0539T) isolated from the chopped tuber of taro (Colocasia esculanta) in Taiwan. Strain CC-MHH0539T was able to grow at 15-30 °C (optimum, 25 °C), at pH 6.0-9.0 (optimum, 7.0) and with 0-1 % (w/v) NaCl. Strain CC-MHH0539T showed highest 16S rRNA gene sequence similarity to Sphingomonas laterariae LNB2T (96.8 %), Sphingobium boeckii 469T (96.5 %), Sphingomonas faucium E62-3T (96.4 %) and Sphingosinicella vermicomposti YC7378T (96.2 %) and <96.1 % similarity to other sphingomonads. Strain CC-MHH0539T was found to cluster mainly with the clade that accommodated members of the genus Sphingomonas. The dominant cellular fatty acids were C16 : 0, C16 : 1ω5c, C14 : 0 2-OH, C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, two sphingoglycolipids and two unidentified phospholipids were detected in strain CC-MHH0539T. The DNA G+C content was 69.5 mol%. The respiratory quinone system and predominant polyamine was ubiquinone 10 (Q-10) and sym-homospermidine, respectively, which is in line with Sphingomonas representatives. Based on the distinct phylogenetic, phenotypic and chemotaxonomic traits, strain CC-MHH0539T is considered to represent a novel species of the genus Sphingomonas, for which the name Sphingomonas colocasiae sp. nov. is proposed. The type strain is CC-MHH0539T (=BCRC 80933T=JCM 31229T).
Collapse
Affiliation(s)
- Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Asif Hameed
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yi-Han Hsu
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC
| | - You-Cheng Liu
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Mei-Hua Hung
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Wei-An Lai
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chiu-Chung Young
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC.,Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC
| |
Collapse
|
19
|
Nielsen TK, Carstens AB, Browne P, Lametsch R, Neve H, Kot W, Hansen LH. The first characterized phage against a member of the ecologically important sphingomonads reveals high dissimilarity against all other known phages. Sci Rep 2017; 7:13566. [PMID: 29051555 PMCID: PMC5648845 DOI: 10.1038/s41598-017-13911-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/29/2017] [Indexed: 01/26/2023] Open
Abstract
This study describes the first molecular characterization of a bacteriophage infecting a member of the environmentally important Sphingomonadaceae family. Both bacteriophage Lacusarx and its host Sphingobium sp. IP1 were isolated from activated sludge from a wastewater treatment plant. Genome sequencing revealed that the phage genes display little similarity to other known phages, despite a remarkable conservation of the synteny in which the functional genes occur among distantly related phages. Phylogenetic analyses confirmed that Lacusarx represents a hitherto undescribed genus of phages. A classical lysis cassette could not be identified in Lacusarx, suggesting that the genes encoding endolysin, holin, and spanin are host-specific and not found in phages infecting other bacteria. The virus harbors 24 tRNA genes corresponding to 18 different amino acids and furthermore has a significantly different codon usage than its host. Proteomic analysis of Lacusarx revealed the protein components of the phage particle. A lysogeny test indicated that Lacusarx is not a temperate phage.
Collapse
Affiliation(s)
- Tue Kjærgaard Nielsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, 4000, Roskilde, Denmark
| | - Alexander Byth Carstens
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, 4000, Roskilde, Denmark
| | - Patrick Browne
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, 4000, Roskilde, Denmark
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Straße 1, 24103, Kiel, Germany
| | - Witold Kot
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, 4000, Roskilde, Denmark
| | - Lars Hestbjerg Hansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399C, 4000, Roskilde, Denmark.
| |
Collapse
|
20
|
Gulati P, Ghosh M. Biofilm forming ability of Sphingomonas paucimobilis isolated from community drinking water systems on plumbing materials used in water distribution. JOURNAL OF WATER AND HEALTH 2017; 15:942-954. [PMID: 29215358 DOI: 10.2166/wh.2017.294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sphingomonas paucimobilis, an oligotroph, is well recognized for its potential for biofilm formation. The present study explored the biofilm forming ability of a strain isolated from municipal drinking water on plumbing materials. The intensity of biofilm formation of this strain on different plumbing materials was examined by using 1 × 1 cm2 pieces of six different pipe materials, i.e. polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), aluminium (Al), copper (Cu) and rubber (R) and observing by staining with the chemical chromophore, Calcofluor. To understand whether biofilm formation occurs under flow through conditions, a laboratory-scale simulated distribution system, comprised of the above materials was fabricated. Biofilm samples were collected from the designed system at different biofilm ages (10, 40 and 90 hours old) and enumerated. The results indicated that the biofilm formation occurred on all plumbing materials with Cu and R as exceptions. The intensity of biofilm formation was found to be maximum on PVC followed by PP and PE. We also demonstrated the chemical chromophore (Calcofluor) successfully for rapid and easy visual detection of biofilms, validated by scanning electron microscope (SEM) analysis of the plumbing materials. Chlorination has little effect in preventing biofilm development.
Collapse
Affiliation(s)
- Parul Gulati
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India E-mail:
| | - Moushumi Ghosh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India E-mail:
| |
Collapse
|
21
|
Lee H, Kim DU, Lee S, Yun J, Park S, Yoon JH, Park SY, Ka JO. Sphingomonas carri sp. nov., isolated from a car air-conditioning system. Int J Syst Evol Microbiol 2017; 67:4069-4074. [PMID: 28905694 DOI: 10.1099/ijsem.0.002250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, yellow-pigmented bacterial strain, designated PR0302T, was isolated from a car evaporator core collected in Korea. The cells were strictly aerobic, non-spore-forming and rod-shaped. The strain grew at 15-37 °C (optimum, 25 °C), at pH 6.0-8.0 (optimum, 7.0) and in the presence of 0-1 % (w/v) NaCl. Phylogenetically, the strain was closely related to members of the genus Sphingomonas(97.04-91.22 % 16S rRNA gene sequence similarities) and showed the highest sequence similarity of 97.04 % to Sphingomonas kyeonggiensis THG-DT81T. It contained C16 : 0, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C14 : 0 2-OH as the predominant fatty acids and Q-10 as the major ubiquinone. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and sphingoglycolipid. The major polyamine was sym-homospermidine. The serine palmitoyl transferase gene (spt) was detected and sphingolipid synthesis was confirmed. The mean DNA G+C content of the strain was 67.8±0.5 mol%. DNA-DNA relatedness between strain PR0302T and closely related type strains of Sphingomonas species was less than 30 %. The low levels of DNA-DNA relatedness identified strain PR0302T as a member of a novel species in the genus Sphingomonas. Based on phenotypic, genotypic and chemotaxonomic data, strain PR0302T represents a novel species in the genus Sphingomonas, for which the name Sphingomonas carri sp. nov. is proposed. The type strain is PR0302T (=KACC 18487T=NBRC 111532T).
Collapse
Affiliation(s)
- Hyosun Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dong-Uk Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Suyeon Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jungpyo Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - So Yoon Park
- Research & Development Division, Hyundai Motor Group, Uiwang, 437-815, Republic of Korea
| | - Jong-Ok Ka
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
22
|
Gulati P, Singh P, Chatterjee AK, Ghosh M. Monitoring of biofilm aging in a Sphingomonas sp. strain from public drinking water sites through changes in capacitance. ENVIRONMENTAL TECHNOLOGY 2017; 38:2344-2351. [PMID: 27838956 DOI: 10.1080/09593330.2016.1260164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
This study reports the applicability of a capacitance-based technique for evaluating the biofilm progression of Sphingomonas sp. One hundred and forty isolates of Sphingomonas were screened from public drinking water sites, and one potential strain with biofilm-forming ability was used for the study. The biofilm production by this strain was established in microtiter plates and aluminum coupons. The standard biofilm-forming strain Sphingomonas terrae MTCC 7766 was used for comparison. Changes in biofilm were analyzed by energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscope (SEM). Capacitance values were measured at 1, 100 and 200 kHz frequency; however, 1 kHz was selected since resulted in reproducible values, which could be correlated to biofilm age measured as dry weight over a time of 96 h (4 days) depicting the biofilm growth/progression over time. The EDX, SEM and capacitance values obtained in parallel indicated the related physiological profile usually displayed by biofilms upon growth, suggesting authenticity to the observed capacitance profile. The results of this study demonstrated the feasibility of a capacitance-based method for analyzing biofilm development/progression by Sphingomonas sp. and suggested a simple approach for developing an online system to detect biofilms by this opportunistic pathogen of concern in drinking water.
Collapse
Affiliation(s)
- Parul Gulati
- a Department of Biotechnology , Thapar University , Patiala , Punjab , India
| | - Pawandeep Singh
- a Department of Biotechnology , Thapar University , Patiala , Punjab , India
| | - Arun Kumar Chatterjee
- b Department of Electronics & Communication Engineering , Thapar University , Patiala , Punjab , India
| | - Moushumi Ghosh
- a Department of Biotechnology , Thapar University , Patiala , Punjab , India
| |
Collapse
|
23
|
Draft Genome Sequence of Sphingomonas sp. Strain Sph1(2015), Isolated from a Fouled Membrane Filter Used To Produce Drinking Water. GENOME ANNOUNCEMENTS 2017; 5:5/24/e00517-17. [PMID: 28619801 PMCID: PMC5473270 DOI: 10.1128/genomea.00517-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the high-quality draft genome sequence of Sphingomonas sp. strain Sph1(2015), isolated from a fouled reverse osmosis membrane used for the production of high-quality drinking water. The draft sequence provides insights into the modus operandi of this strain to form biofilms on membrane surfaces. This knowledge offers tools to develop novel antifouling strategies.
Collapse
|
24
|
Perruchon C, Chatzinotas A, Omirou M, Vasileiadis S, Menkissoglou-Spiroudi U, Karpouzas DG. Isolation of a bacterial consortium able to degrade the fungicide thiabendazole: the key role of a Sphingomonas phylotype. Appl Microbiol Biotechnol 2017; 101:3881-3893. [DOI: 10.1007/s00253-017-8128-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 11/30/2022]
|
25
|
Zhou L, Li H, Zhang Y, Han S, Xu H. Sphingomonas from petroleum-contaminated soils in Shenfu, China and their PAHs degradation abilities. Braz J Microbiol 2016; 47:271-8. [PMID: 26991271 PMCID: PMC4874584 DOI: 10.1016/j.bjm.2016.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 08/17/2015] [Indexed: 11/18/2022] Open
Abstract
Members of the Sphingomonas genus are often isolated from petroleum-contaminated soils due to their unique abilities to degrade polycyclic aromatic hydrocarbons (PAHs), which are important for in situ bioremediation. In this study, a combined phenotypic and genotypic approach using streptomycin-containing medium and Sphingomonas-specific PCR was developed to isolate and identify culturable Sphingomonas strains present in petroleum-contaminated soils in the Shenfu wastewater irrigation zone. Of the 15 soil samples examined, 12 soils yielded yellow streptomycin-resistant colonies. The largest number of yellow colony-forming units (CFUs) could reach 105 CFUs g−1 soil. The number of yellow CFUs had a significant positive correlation (p < 0.05) with the ratio of PAHs to total petroleum hydrocarbons (TPH), indicating that Sphingomonas may play a key role in degrading the PAH fraction of the petroleum contaminants at this site. Sixty yellow colonies were selected randomly and analyzed by colony PCR using Sphingomonas-specific primers, out of which 48 isolates had PCR-positive signals. The 48 positive amplicons generated 8 distinct restriction fragment length polymorphism (RFLP) patterns, and 7 out of 8 phylotypes were identified as Sphingomonas by 16S rRNA gene sequencing of the representative strains. Within these 7 Sphingomonas strains, 6 strains were capable of using fluorene as the sole carbon source, while 2 strains were phenanthrene-degrading Sphingomonas. To the best of our knowledge, this is the first report to evaluate the relationship between PAHs contamination levels and culturable Sphingomonas in environmental samples.
Collapse
Affiliation(s)
- Lisha Zhou
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Hui Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
| | - Ying Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Siqin Han
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Hui Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
26
|
Perruchon C, Patsioura V, Vasileiadis S, Karpouzas DG. Isolation and characterisation of a Sphingomonas strain able to degrade the fungicide ortho-phenylphenol. PEST MANAGEMENT SCIENCE 2016; 72:113-124. [PMID: 25556554 DOI: 10.1002/ps.3970] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/16/2014] [Accepted: 12/28/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Ortho-phenylphenol (OPP) is a fungicide used in fruit packaging plants for the control of fungal infestations during storage. Its application leads to the production of large wastewater volumes which according to the European legislation should be treated on site. In spite of this, no efficient treatment systems are currently available, and the development of biological systems based on tailored-made pesticide-degrading inocula for the treatment of these wastewaters is an appealing solution. RESULTS Enrichment cultures from a soil collected from a wastewater disposal site resulted in the isolation of a pure Sphingomonas haloaromaticamans strain P3 able to degrade rapidly OPP and use it as an energy source. Its degrading capacity was dependent on the external supply of amino acids or on the presence of other bacteria that did not contribute to fungicide degradation. The isolated S. haloaromaticamans strain was able to metabolise up to 150 mg L(-1) of OPP within 7 days, in a wide range of pH (4.5-9) and temperatures (4-37 °C), and in the presence of other pesticides (thiabendazole and diphenylamine) co-used in the fruit packaging industry. CONCLUSION Overall, the OPP-degrading bacterium isolated showed high potential for use in future biodepuration treatment systems and bioremediation strategies.
Collapse
Affiliation(s)
- Chiara Perruchon
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Vasiliki Patsioura
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Sotirios Vasileiadis
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, Australia
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
27
|
Jia L, Zheng Z, Feng X, Nogi Y, Yang A, Zhang Y, Han L, Lu Z, Lv J. Sphingomonas arantia sp. nov., isolated from Hoh Xil basin, China. Antonie van Leeuwenhoek 2015; 108:1341-1347. [PMID: 26363912 DOI: 10.1007/s10482-015-0586-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
A Gram-negative, rod-shaped, non-motile, non-spore forming, aerobic, orange-pigmented bacterium, designated strain 6P(T), was isolated from a soil sample collected from the Hoh Xil basin, China. Strain 6P(T) grew optimally at 25 °C, pH 7.0-7.5 and NaCl concentration of 0-1 % (w/v). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 6P(T) belongs to the genus Sphingomonas, with high sequence similarity (97.1 %) to Sphingomonas fennica. The DNA-DNA hybridization homology with S. fennica DSM 13665(T) was 45.3 %. The DNA G+C content of the novel strain is 65.3 mol%. The isolate contained Q-10 as the only respiratory quinone. The major polar lipids are diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC) and sphingoglycolipid (SGL). C18:1 ω7c and C16:1 ω7c are the major fatty acids. On the basis of the polyphasic evidence presented, strain 6P(T) represents a novel species of the genus Sphingomonas, for which the name Sphingomonas arantia sp. nov. is proposed. The type strain is 6P(T) (=CGMCC 1.12702(T) = JCM 19855(T)).
Collapse
Affiliation(s)
- Li Jia
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhong Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaomin Feng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yuichi Nogi
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-EarthScience and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Aichen Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yali Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lu Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- College of Resources and Environmental Science, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Zhenquan Lu
- Oil and Gas Survey, China Geological Survey, Beijing, 100029, People's Republic of China
| | - Jie Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
28
|
Akter S, Du J, Won K, Yin CS, Kook M, Yi TH. Sphingosinicella cucumeris sp. nov., isolated from soil of a cucumber garden. Antonie van Leeuwenhoek 2015; 108:1181-8. [PMID: 26315363 DOI: 10.1007/s10482-015-0572-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/21/2015] [Indexed: 12/01/2022]
Abstract
A novel bacterial strain, THG-sc1(T), was isolated from a soil sample of a cucumber garden and was characterised by using a polyphasic approach. Cells were observed to be Gram-stain negative, non-motile and rod-shaped. The strain was found to be aerobic, catalase and oxidase positive, esculin and starch negative, and to have an optimum growth temperature and pH of 28 °C and 7.5, respectively. On the basis of 16S rRNA gene sequence analysis, strain THG-sc1(T) was found to belong to the genus Sphingosinicella and to be closely related to Sphingosinicella vermicomposti KCTC 22446(T), followed by Sphingosinicella xenopeptidilytica DSM 17130(T) and Sphingosinicella microcystinivorans KCTC 12019(T). The DNA G+C content was determined to be 60.8 mol% and the predominant respiratory quinone was identified as ubiquinone-10. The major polyamine was found to be sym-homospermidine. The major polar lipids were identified as sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid. The major fatty acids were identified as C(18:1)ω7c, C(16:0) and summed feature 3 (C(16:1)ω7c and/or iso-C(15:0) 2-OH, as defined by MIDI). The results of the genotypic analysis, in combination with chemotaxonomic and physiological data, demonstrated that strain THG-sc1(T) represents a novel species within the genus Sphingosinicella, for which the name Sphingosinicella cucumeris is proposed. The type strain is THG-sc1(T) (=KACC 18279(T) = CCTCC AB 2015120(T)).
Collapse
Affiliation(s)
- Shahina Akter
- Department of Oriental Medicinal Material & Processing College of Life Science, Kyung Hee University, 1 Seocheon, Kihung Yongin, Kyunggi, 446-701, Republic of Korea
| | - Juan Du
- Department of Oriental Medicinal Material & Processing College of Life Science, Kyung Hee University, 1 Seocheon, Kihung Yongin, Kyunggi, 446-701, Republic of Korea
| | - KyungHwa Won
- Department of Oriental Medicinal Material & Processing College of Life Science, Kyung Hee University, 1 Seocheon, Kihung Yongin, Kyunggi, 446-701, Republic of Korea
| | - Chang Shik Yin
- Department of Acupuncture Merdian Science Research Center, College of Korean Medicine, Kyung Hee University, Yongin, Republic of Korea
| | - MooChang Kook
- Department of Marine Biotechnology, Anyang University, Incheon, 417-833, Republic of Korea
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Material & Processing College of Life Science, Kyung Hee University, 1 Seocheon, Kihung Yongin, Kyunggi, 446-701, Republic of Korea.
| |
Collapse
|
29
|
Sphingomonas flavus sp. nov. isolated from road soil. Arch Microbiol 2015; 197:883-8. [DOI: 10.1007/s00203-015-1123-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/29/2015] [Accepted: 05/19/2015] [Indexed: 11/25/2022]
|
30
|
Bulgari D, Casati P, Quaglino F, Bianco PA. Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process. BMC Microbiol 2014; 14:198. [PMID: 25048741 PMCID: PMC4223760 DOI: 10.1186/1471-2180-14-198] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 07/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endophytic bacteria benefit host plant directly or indirectly, e.g. by biocontrol of the pathogens. Up to now, their interactions with the host and with other microorganisms are poorly understood. Consequently, a crucial step for improving the knowledge of those relationships is to determine if pathogens or plant growing season influence endophytic bacterial diversity and dynamic. RESULTS Four healthy, four phytoplasma diseased and four recovered (symptomatic plants that spontaneously regain a healthy condition) grapevine plants were sampled monthly from June to October 2010 in a vineyard in north-western Italy. Metagenomic DNA was extracted from sterilized leaves and the endophytic bacterial community dynamic and diversity were analyzed by taxon specific real-time PCR, Length-Heterogeneity PCR and genus-specific PCR. These analyses revealed that both sampling date and phytoplasma infection influenced the endophytic bacterial composition. Interestingly, in June, when the plants are symptomless and the pathogen is undetectable (i) the endophytic bacterial community associated with diseased grapevines was different from those in the other sampling dates, when the phytoplasmas are detectable inside samples; (ii) the microbial community associated with recovered plants differs from that living inside healthy and diseased plants. Interestingly, LH-PCR database identified bacteria previously reported as biocontrol agents in the examined grapevines. Of these, Burkholderia, Methylobacterium and Pantoea dynamic was influenced by the phytoplasma infection process and seasonality. CONCLUSION Results indicated that endophytic bacterial community composition in grapevine is correlated to both phytoplasma infection and sampling date. For the first time, data underlined that, in diseased plants, the pathogen infection process can decrease the impact of seasonality on community dynamic. Moreover, based on experimental evidences, it was reasonable to hypothesize that after recovery the restructured microbial community could maintain the main structure between seasons.
Collapse
Affiliation(s)
- Daniela Bulgari
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi, via Celoria 2, 20133 Milan, Italy
| | - Paola Casati
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi, via Celoria 2, 20133 Milan, Italy
| | - Fabio Quaglino
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi, via Celoria 2, 20133 Milan, Italy
| | - Piero A Bianco
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi, via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
31
|
Gutman J, Kaufman Y, Kawahara K, Walker SL, Freger V, Herzberg M. Interactions of glycosphingolipids and lipopolysaccharides with silica and polyamide surfaces: adsorption and viscoelastic properties. Biomacromolecules 2014; 15:2128-37. [PMID: 24835578 DOI: 10.1021/bm500245z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bacterial outer membrane components play a critical role in bacteria-surface interactions (adhesion and repulsion). Sphingomonas species (spp.) differ from other Gram-negative bacteria in that they lack lipopolysaccharides (LPSs) in their outer membrane. Instead, Sphingomonas spp. outer membrane consists of glycosphingolipids (GSLs). To delineate the properties of the outer membrane of Sphingomonas spp. and to explain the adhesion of these cells to surfaces, we employed a single-component-based approach of comparing GSL vesicles to LPS vesicles. This is the first study to report the formation of vesicles containing 100% GSL. Significant physicochemical differences between GSL and LPS vesicles are reported. Composition-dependent vesicle adherence to different surfaces using quartz crystal microbalance with dissipation monitoring (QCM-D) technology was observed, where higher GSL content resulted in higher mass accumulation on the sensor. Additionally, the presence of 10% GSL and above was found to promote the relative rigidity of the vesicle obtaining viscoelastic ratio of 30-70% higher than that of pure LPS vesicles.
Collapse
Affiliation(s)
- Jenia Gutman
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev , Sede-Boqer Campus, Midreshet Ben Gurion 84990, Israel
| | | | | | | | | | | |
Collapse
|
32
|
Feng GD, Yang SZ, Wang YH, Zhang XX, Zhao GZ, Deng MR, Zhu HH. Description of a Gram-negative bacterium, Sphingomonas guangdongensis sp. nov. Int J Syst Evol Microbiol 2014; 64:1697-1702. [DOI: 10.1099/ijs.0.056853-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative bacterial strain, designated 9NM-8T, was isolated from an abandoned lead-zinc ore in Mei county, Meizhou, Guangdong province, PR China. The isolate was orange-pigmented, aerobic, oxidase- and catalase-positive, motile with lophotrichous flagella and rod-shaped. Strain 9NM-8T grew optimally at pH 7.0 and 30 °C and in the absence of NaCl on R2A agar. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 9NM-8T belongs to the genus
Sphingomonas
, with highest sequence similarities to
Sphingomonas azotifigens
KACC 14484T (96.1 %),
Sphingomonas trueperi
DSM 7225T (96.0 %) and
Sphingomonas pituitosa
DSM 13101T (95.6 %). Strain 9NM-8T contained Q-10 as the predominant ubiquinone. The major fatty acids included C18 : 1ω7c, C16 : 0, C16 : 1ω7c and/or C16 : 1ω6c (summed feature 3) and 11-methyl C18 : 1ω7c. The DNA G+C content was 69.6±1.3 mol%. The major component in the polyamine pattern was sym-homospermidine and the polar lipid profile contained sphingoglycolipid, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, an unidentified glycolipid and two unidentified phospholipids. Based on comparative analysis of physiological, chemotaxonomic and phylogenetic characteristics, strain 9NM-8T should be considered to represent a novel species of the genus
Sphingomonas
, for which the name Sphingomonas guangdongensis sp. nov. is proposed. The type strain is 9NM-8T ( = GIMCC 1.653T = CGMCC 1.12672T = DSM 27570T).
Collapse
Affiliation(s)
- Guang-Da Feng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Song-Zhen Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Yong-Hong Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Xiu-Xiu Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Guo-Zhen Zhao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Ming-Rong Deng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Hong-Hui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| |
Collapse
|
33
|
Zhang L, Gao G, Tang X, Shao K. Impacts of different salinities on bacterial biofilm communities in fresh water. Can J Microbiol 2014; 60:319-26. [DOI: 10.1139/cjm-2013-0808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural and anthropogenic salinization continuously impacts inland aquatic ecosystems. Associated bacterial biofilms respond rapidly to environmental conditions and are potential bioindicators for changes in water quality. This study evaluates the effects of different salinity concentrations (0.3‰–10‰) on bacterial biofilms communities grown in fresh water from Lake Bosten. Bacterial communities associated with biofilms were analyzed using terminal restriction fragment length polymorphism and clone library analyses of 16S rRNA genes. Results indicated that the attached bacterial community composition (ABCC) changed over several weeks of biofilm growth, but all followed similar bacterial successional trends in the different salinity groups. Detailed analysis showed the following. (i) ABCC did not differ (P > 0.05) in the low-salinity groups (0.3‰–3.5‰), which may be related to the lower osmotic pressure and the shorter time scale (weeks) of their present habitats. (ii) There were significant differences between the oligosaline (3.5‰) and saline (10‰) groups (P < 0.05). In particular, genus Flavobacterium became dominant in attached bacterial communities in the saline groups. The higher abundance of genus Flavobacterium was possibly due to the biological and metabolic characteristics of the bacteria. (iii) Some bacterial taxa can maintain the higher abundance within attached bacteria in the entire process of biofilms growth, such as the genera Hydrogenophaga and Methyloversatilis in Betaproteobacteria and the family Sphingomonadaceae in Alphaproteobacteria. These data suggested that the bacterial successional trends within biofilms seem almost unaffected by salinity (0.3‰–10‰), but ABCC in saline groups (10‰) are notably changed.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People’s Republic of China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People’s Republic of China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People’s Republic of China
| |
Collapse
|
34
|
Sphingomonas gimensis sp. nov., a novel Gram-negative bacterium isolated from abandoned lead–zinc ore mine. Antonie van Leeuwenhoek 2014; 105:1091-7. [DOI: 10.1007/s10482-014-0167-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
|
35
|
Structural, mechanistic and regulatory studies of serine palmitoyltransferase. Biochem Soc Trans 2012; 40:547-54. [PMID: 22616865 DOI: 10.1042/bst20110769] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SLs (sphingolipids) are composed of fatty acids and a polar head group derived from L-serine. SLs are essential components of all eukaryotic and many prokaryotic membranes but S1P (sphingosine 1-phosphate) is also a potent signalling molecule. Recent efforts have sought to inventory the large and chemically complex family of SLs (LIPID MAPS Consortium). Detailed understanding of SL metabolism may lead to therapeutic agents specifically directed at SL targets. We have studied the enzymes involved in SL biosynthesis; later stages are species-specific, but all core SLs are synthesized from the condensation of L-serine and a fatty acid thioester such as palmitoyl-CoA that is catalysed by SPT (serine palmitoyltransferase). SPT is a PLP (pyridoxal 5'-phosphate)-dependent enzyme that forms 3-KDS (3-ketodihydrosphingosine) through a decarboxylative Claisen-like condensation reaction. Eukaryotic SPTs are membrane-bound multi-subunit enzymes, whereas bacterial enzymes are cytoplasmic homodimers. We use bacterial SPTs (e.g. from Sphingomonas) to probe their structure and mechanism. Mutations in human SPT cause a neuropathy [HSAN1 (hereditary sensory and autonomic neuropathy type 1)], a rare SL metabolic disease. How these mutations perturb SPT activity is subtle and bacterial SPT mimics of HSAN1 mutants affect the enzyme activity and structure of the SPT dimer. We have also explored SPT inhibition using various inhibitors (e.g. cycloserine). A number of new subunits and regulatory proteins that have a direct impact on the activity of eukaryotic SPTs have recently been discovered. Knowledge gained from bacterial SPTs sheds some light on the more complex mammalian systems. In the present paper, we review historical aspects of the area and highlight recent key developments.
Collapse
|
36
|
Hoang VA, Kim YJ, Nguyen NL, Yang DC. Sphingomonas ginsengisoli sp. nov., isolated from soil of a ginseng field. J GEN APPL MICROBIOL 2012; 58:421-8. [DOI: 10.2323/jgam.58.421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Lin SY, Shen FT, Lai WA, Zhu ZL, Chen WM, Chou JH, Lin ZY, Young CC. Sphingomonas formosensis sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 2011; 62:1581-1586. [PMID: 21873513 DOI: 10.1099/ijs.0.034728-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the present study, a yellow-pigmented, Gram-negative, short rod-shaped novel bacterium that was capable of degrading a wide range of polycyclic aromatic hydrocarbons (naphthalene, phenanthrene and pyrene) was isolated from agricultural soil located in Yunlin County, Taiwan. Comparative 16S rRNA gene sequence analysis positioned the novel strain in the genus Sphingomonas as an independent lineage adjacent to a subclade containing Sphingomonas fennica K101(T), Sphingomonas histidinilytica UM2(T), Sphingomonas wittichii RW1(T) and Sphingomonas haloaromaticamans A175(T). 16S rRNA gene sequence analysis of strain CC-Nfb-2(T) showed highest sequence similarity to S. fennica K101(T) (96.2%), S. histidinilytica UM2(T) (96.1%), S. wittichii RW1(T) (95.9%), S. haloaromaticamans A175(T) (95.7%), and Sphingobium ummariense RL-3(T) (94.7%); lower sequence similarities were observed with strains of all other Sphingomonas species. The strain contained phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid and diphosphatidylglycerol. The predominant fatty acids were summed feature 8 (C(18:1)ω7c and/or C(18:1)ω6c) C(16:0) and 11-methyl C(18:1)ω7c; C(14:0) 2-OH was the major 2-hydroxy fatty acid. Previously, these lipids have been found to be characteristic of members of the genus Sphingomonas. The serine palmitoyl transferase gene (spt) was also detected and sphingolipid synthesis was confirmed. The predominant isoprenoid quinone system was ubiquinone (Q-10) and the isolate contained sym-homospermidine as the major polyamine. The DNA G+C content of the isolate was 62.8±0.8 mol%. On the basis of chemotaxonomic, phenotypic and phylogenetic data, strain CC-Nfb-2(T) represents a novel species within the genus Sphingomonas, for which the name Sphingomonas formosensis sp. nov. is proposed; the type strain is CC-Nfb-2(T) (=BCRC 80272(T)=DSM 24164(T)).
Collapse
Affiliation(s)
- Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Fo-Ting Shen
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Wei-An Lai
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Zhi-Long Zhu
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan, ROC
| | - Jui-Hsing Chou
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan, ROC
| | - Zih-Yu Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chiu-Chung Young
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan, ROC
| |
Collapse
|
38
|
Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Appl Environ Microbiol 2011; 77:5697-706. [PMID: 21705522 DOI: 10.1128/aem.00579-11] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonadaceae (n = 86) were isolated from a drinking water treatment plant (n = 6), tap water (n = 55), cup fillers for dental chairs (n = 21), and a water demineralization filter (n = 4). The bacterial isolates were identified based on analysis of the 16S rRNA gene sequence, and intraspecies variation was assessed on the basis of atpD gene sequence analysis. The isolates were identified as members of the genera Sphingomonas (n = 27), Sphingobium (n = 28), Novosphingobium (n = 12), Sphingopyxis (n = 7), and Blastomonas (n = 12). The patterns of susceptibility to five classes of antibiotics were analyzed and compared for the different sites of isolation and taxonomic groups. Colistin resistance was observed to be intrinsic (92%). The highest antibiotic resistance prevalence values were observed in members of the genera Sphingomonas and Sphingobium and for beta-lactams, ciprofloxacin, and cotrimoxazole. In tap water and in water from dental chairs, antibiotic resistance was more prevalent than in the other samples, mainly due to the predominance of isolates of the genera Sphingomonas and Sphingobium. These two genera presented distinct patterns of association with antibiotic resistance, suggesting different paths of resistance development. Antibiotic resistance patterns were often related to the species rather than to the site or strain, suggesting the importance of vertical resistance transmission in these bacteria. This is the first study demonstrating that members of the family Sphingomonadaceae are potential reservoirs of antibiotic resistance in drinking water.
Collapse
|