1
|
Ajose DJ, Abolarinwa TO, Oluwarinde BO, Montso PK, Fayemi OE, Aremu AO, Ateba CN. Whole genome sequence analysis of multi-drug resistant and biofilm-forming Staphylococcus haemolyticus isolated from bovine milk. BMC Microbiol 2024; 24:426. [PMID: 39438820 PMCID: PMC11495027 DOI: 10.1186/s12866-024-03575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Milk is an excellent growth medium for microorganisms due to its nutritive composition. Microorganisms have been implicated in bovine mastitis (BM) in dairy cows as well as causing infections in animals and humans. Despite extensive endeavours to manage BM, this condition continues to persist as the most prevalent and economically burdensome problem affecting dairy cattle on a global scale. Non-aureus staphylococci (NAS) species such as Staphylococcus haemolyticus, S. epidermidis, and S. xylosus are currently the predominant microbiological agents identified as the main cause of subclinical udder infections and are also considered opportunistic pathogens in cases of clinical mastitis in dairy cows. Therefore, it is crucial to elucidate the genetic profile of these species. The primary objective of this study was to characterise three phenotypically determined multidrug-resistant NAS environmental strains (NWU MKU1, NWU MKU2, and NWU MKS3) obtained from dairy cows milk via whole-genome sequencing. RESULTS The results confirmed that the three isolates were S. haemolyticus with genome sizes of 2.44, 2.56, and 2.56 Mb and a G + C content of 32.8%. The genomes contained an array of antibiotic resistance genes that may potentially confer resistance to a range of antibiotic classes, such as macrolides, fluoroquinolones, aminoglycosides, cephalosporins, tetracyclines, peptides, and phenicol. Furthermore, all the genomes carried virulence genes, which are responsible for several functions, such as adhesion, enzyme and toxin production. The genomes of these organisms contained signatures encoding mobile genetic elements such as prophages and insertion sequences. CONCLUSION These findings indicate there is a need for diligent monitoring with improved management practices and quality control strategies on farms to safeguard milk production systems and human health.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| | - Tesleem Olatunde Abolarinwa
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Bukola Opeyemi Oluwarinde
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Peter Kotsoana Montso
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, 7600, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Omolola Esther Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems (IKS) Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
2
|
Shen Y, Yi J, Song M, Li D, Wu Y, Liu YJ, Yang M, Qiao L. Highly efficient enrichment and identification of pathogens using a herringbone microfluidic chip and by MALDI-TOF mass spectrometry. Analyst 2021; 146:4146-4153. [PMID: 33973585 DOI: 10.1039/d1an00335f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial infections cause considerable morbidity and expensive healthcare costs. The prescription of broad-spectrum antimicrobial drugs results in failure of treatment or overtreatment and exacerbates the spread of multidrug-resistant pathogens. There is an emergent demand for rapid and accurate methods to identify pathogens and conduct personalized therapy. Here, we develop a herringbone microfluidic chip integrated with vancomycin modified magnetic beads (herringbone-VMB microchip) to enrich pathogens. The enriched pathogens are identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The herringbone-VMB microchip applies passive mixing of bacterial samples by generating microvortices, which significantly enhances the interaction between bacteria and vancomycin modified magnetic beads and leads to more efficient enrichment compared to in-tube extraction. Four common pathogens in urinary tract infections are utilized to validate the method, and the capture efficiency of the bacteria from urine is up to 90%. The whole procedure takes 1.5 hours from enrichment to identification. This method shows potential in shortening the turnaround time in the clinical diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Yueqing Shen
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China. and Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | - Jia Yi
- Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | - Minghui Song
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China.
| | - Dandan Li
- Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | - Yi Wu
- Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | - Yan-Jun Liu
- Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | - Meicheng Yang
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China.
| | - Liang Qiao
- Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Zhao J, Ma M, Zeng Z, Yu P, Gong D, Deng S. Production, purification and biochemical characterisation of a novel lipase from a newly identified lipolytic bacterium Staphylococcus caprae NCU S6. J Enzyme Inhib Med Chem 2021; 36:248-256. [PMID: 33327795 PMCID: PMC7751408 DOI: 10.1080/14756366.2020.1861607] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A novel lipase, SCNL, was isolated from Staphylococcus caprae NCU S6 strain in the study. The lipase was purified to homogeneity with a yield of 6.13% and specific activity of 502.76 U/mg, and its molecular weight was determined to be approximately 87 kDa. SCNL maintained above 80% of its initial activity at a wide range of temperatures (20-50 °C) and pH values (6-11), with an optimal temperature at 40 °C and optimal pH at 9.0 with p-nitrophenyl palmitate as a substrate. SCNL exhibited a higher residual activity than the other staphylococcal lipases in the presence of common enzyme inhibitors and commercial detergents. The lipase activity was enhanced by organic solvents (isooctane, glycerol, DMSO and methanol) and metal ions (Na+, Ba2+, Ca2+, and Mn2+). The Km and Vmax values of SCNL were 0.695 mM and 262.66 s-1 mM-1, respectively. The enzyme showed a preference for p-NP stearate, tributyrin and canola oil. These biochemical features of SCNL suggested that it may be an excellent novel lipase candidate for industrial and biotechnological applications.
Collapse
Affiliation(s)
- Junxin Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China.,School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Maomao Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China.,School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China.,School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China.,School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China.,New Zealand Institute of Natural Medicine Research, Auckland, New Zealand
| | - Shuguang Deng
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China.,School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang, China.,School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
4
|
Prevalence of virulence genes in Staphylococcus saprophyticus isolated from women with urinary tract infections in Lagos State. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
5
|
Morkus P, Zolfaghari M, Kordkandi SA, Nease J, Filipe CDM, Latulippe DR. A Rapid Assay to Assess Nitrification Inhibition Using a Panel of Bacterial Strains and Partial Least Squares Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:184-194. [PMID: 31790215 DOI: 10.1021/acs.est.9b04453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a proof of concept, a rapid assay consisting of a cell-based biosensor (CBB) panel of pure bacterial strains, a fluorescent dye, and partial least squares (PLS) modeling was developed to assess the nitrification inhibition potential of industrial wastewater (WW) samples. The current standard method used to assess the nitrification inhibition potential is the specific nitrification rate (SNR) batch test, which requires approximately 4 h to complete under the watch of an experienced operator. In this study, we exposed the CBB panel of seven bacterial strains (nitrifying and non-nitrifying) to 28 different industrial WW samples and then probed both the membrane integrity and cellular activity using a commercially available "live/dead" fluorescent dye. The CBB panel response acts as a surrogate measurement for the performance of nitrification. Of the seven strains, four (Nitrospira, Escherichia coli, Bacillus subtilis, Bacillus cereus) were identified via the modeling technique to be the most significant contributors for predicting the nitrification inhibition potential. The key outcome from this work is that the CBB panel fluorescence data (collected in approximately 10 min) can accurately predict the outcome of an SNR batch test (that takes 4 h) when performed with the same WW samples and has a strong potential to approximate the chemical composition of these WW samples using PLS modeling. Overall, this is a powerful technique that can be used for point-of-use detection of nitrification inhibition.
Collapse
Affiliation(s)
- Patrick Morkus
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Mehdi Zolfaghari
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Salman Alizadeh Kordkandi
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Jake Nease
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - David R Latulippe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
6
|
Alegbeleye OO, Oyebisi Afolabi WA, Opeolu BO, Khaneghah AM. Impacts of Vending Practices on the Microbiological Quality of Bread in the Ojoo Area of Ibadan, Oyo-State, Nigeria. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401313666171016162832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Bacterial counts in ready-to-eat foods are a key factor in assessing the microbiological quality and safety of food. Periodic assessment of the microbiological quality of food is necessary to develop a robust database and help to ensure food safety. </P><P> Methods: The bacterial contamination of a total of 336 bread samples collected from two bakeries and 10 vendors in Ojoo Area of Ibadan, Oyo-State, Nigeria (December 2014 -June 2015) was evaluated. The microbiological quality of the bread loaves was investigated using standard microbiological methods (morphological, phenotypic and molecular characterization). </P><P> Results: The results showed that the number of contaminated samples among the vended bread samples was higher than the bakery bread samples and can be summarized as Bacillus megaterium (4.30%), Staphylococcus arlettae (0.005%), Staphylococcus saprophyticus (2.78%), Citrobacter freundii (2.40%), Bacillus flexus (1.64%), Bacillus species (49.59%), Pseudomonas aeruginosa (4.12%), Pseudomonas fluorescens (0.92%), Pseudomonas species (0.045%), Escherichia coli (30.44%) Klebsiella sp. (0.040%) and Aeromonas hydrophila (3.72%). </P><P> Conclusion: The findings demonstrate that the bread samples which become contaminated after transport and handling can be considered a potential hazard to human health in the area. More stringent adherence to food safety regulations should be encouraged and enforced by the appropriate authorities. The findings of this study may be adopted to improve the hygienic conditions of bread distribution chain in the area as well as in other regions of the World.
Collapse
Affiliation(s)
| | - Wasiu Akinloye Oyebisi Afolabi
- Department of Nutrition and Dietetics, College of Food Science and Human Ecology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Beatrice Oluwatoyin Opeolu
- Extended Curriculum Programmes, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| |
Collapse
|
7
|
Gricajeva A, Bikutė I, Kalėdienė L. Atypical organic-solvent tolerant bacterial hormone sensitive lipase-like homologue EstAG1 from Staphylococcus saprophyticus AG1: Synthesis and characterization. Int J Biol Macromol 2019; 130:253-265. [PMID: 30797006 DOI: 10.1016/j.ijbiomac.2019.02.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
Biocatalysts exerting activity against ester bonds have a broad range of applications in modern biotechnology. Some of the most industrially relevant enzymes of this type are lipolytic and their market is predicted to uphold leadership up till 2024. In this study, a novel bacterial hormone-sensitive lipase-like (bHSL) family homologue, designated EstAG1, was discovered by mining gDNA of bacteria isolated from fat contaminated soil in Lithuania. Putative lipolytic enzyme was cloned, overexpressed in E. coli, purified and characterized determining its biochemical properties. While the true physiological role of the discovered leaderless, ~36 kDa enzyme is unknown, metal-activated EstAG1 possessed optima at 45-47.5 °C, pH 7.5-8, with a generally intermediate activity profile between esterases and lipases. Furthermore, EstAG1 was hyperactivated by ethanol, dioxane and DMSO, implicating that it could be industrially applicable enzyme for the synthesis of valuable products such as biodiesel, flavor esters, etc. Sequence analysis and structure modeling revealed that the highest sequence homology of EstAG1 with the closest structurally and functionally described protein makes up only 26%. It was also revealed that EstAG1 has some differences in the bHSL family-characteristic conserved sequence motives. Therefore, EstAG1 presents interest both in terms of biotechnological applications and basic research.
Collapse
Affiliation(s)
- Alisa Gricajeva
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Ingrida Bikutė
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Lilija Kalėdienė
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
8
|
Martins KB, Ferreira AM, Mondelli AL, Rocchetti TT, Lr de S da Cunha MD. Evaluation of MALDI-TOF VITEK ®MS and VITEK ® 2 system for the identification of Staphylococcus saprophyticus. Future Microbiol 2018; 13:1603-1609. [PMID: 30421630 DOI: 10.2217/fmb-2018-0195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To compare two identification methods for coagulase-negative staphylococci (CoNS) isolated from patients with urinary tract infections, VITEK® 2 and MALDI-TOF VITEK®MS, with genotypic identification by internal transcribed spacer PCR (ITS-PCR). RESULTS A total of 217 CoNS isolates were studied. Agreement of the VITEK® 2 system with ITS-PCR was 84.8%, with 98% sensitivity and 100% specificity. Thirty-one of the 33 strains incorrectly identified by VITEK® 2 belonged to the species Staphylococcus saprophyticus. MALDI-TOF VITEK®MS showed an excellent correlation with ITS-PCR since it correctly identified all CoNS isolates. CONCLUSION MALDI-TOF VITEK®MS is more accurate than the automated VITEK® 2 system in identifying CoNS isolated from urinary tract infections to species level, particularly urinary isolates of S. saprophyticus.
Collapse
Affiliation(s)
- Katheryne B Martins
- Department of Microbiology & Immunology, Botucatu Biosciences Institute, UNESP - Univ. Estadual Paulista, Botucatu, SP, Brazil
| | - Adriano M Ferreira
- Laboratory of Microbiology, University Hospital of the Botucatu School of Medicine (HC-FMB), UNESP - Univ. Estadual Paulista, Botucatu, SP, Brasil
| | - Alessandro L Mondelli
- Department of Internal Medicine, Botucatu School of Medicine University Hospital, UNESP - Univ. Estadual Paulista, Botucatu, SP, Brazil
| | - Taisa T Rocchetti
- Department of Microbiology & Immunology, Botucatu Biosciences Institute, UNESP - Univ. Estadual Paulista, Botucatu, SP, Brazil
| | - Maria de Lr de S da Cunha
- Department of Microbiology & Immunology, Botucatu Biosciences Institute, UNESP - Univ. Estadual Paulista, Botucatu, SP, Brazil
| |
Collapse
|
9
|
SCCmec and spa Typing of Staphylococcus aureus Strains Isolated from Patients with Urinary Tract Infection: Emergence of spa Types t426 and t021 in Iran. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.62169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
10
|
Lenart-Boroń A, Wolny-Koładka K, Stec J, Kasprowic A. Phenotypic and Molecular Antibiotic Resistance Determination of Airborne Coagulase NegativeStaphylococcusspp. Strains from Healthcare Facilities in Southern Poland. Microb Drug Resist 2016; 22:515-522. [DOI: 10.1089/mdr.2015.0271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anna Lenart-Boroń
- Department of Microbiology, University of Agriculture, Kraków, Poland
| | | | - Joanna Stec
- Department of Microbiology, University of Agriculture, Kraków, Poland
| | - Andrzej Kasprowic
- Centre for Microbiological Research and Autovaccines, Kraków, Poland
| |
Collapse
|
11
|
Kooken J, Fox K, Fox A, Altomare D, Creek K, Wunschel D, Pajares-Merino S, Martínez-Ballesteros I, Garaizar J, Oyarzabal O, Samadpour M. Reprint of "Identification of staphylococcal species based on variations in protein sequences (mass spectrometry) and DNA sequence (sodA microarray)". Mol Cell Probes 2014; 28:73-82. [PMID: 24486297 DOI: 10.1016/j.mcp.2014.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 01/12/2023]
Abstract
This report is among the first using sequence variation in newly discovered protein markers for staphylococcal (or indeed any other bacterial) speciation. Variation, at the DNA sequence level, in the sodA gene (commonly used for staphylococcal speciation) provided excellent correlation. Relatedness among strains was also assessed using protein profiling using microcapillary electrophoresis and pulsed field electrophoresis. A total of 64 strains were analyzed including reference strains representing the 11 staphylococcal species most commonly isolated from man (Staphylococcus aureus and 10 coagulase negative species [CoNS]). Matrix assisted time of flight ionization/ionization mass spectrometry (MALDI TOF MS) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC ESI MS/MS) were used for peptide analysis of proteins isolated from gel bands. Comparison of experimental spectra of unknowns versus spectra of peptides derived from reference strains allowed bacterial identification after MALDI TOF MS analysis. After LC-MS/MS analysis of gel bands bacterial speciation was performed by comparing experimental spectra versus virtual spectra using the software X!Tandem. Finally LC-MS/MS was performed on whole proteomes and data analysis also employing X!tandem. Aconitate hydratase and oxoglutarate dehydrogenase served as marker proteins on focused analysis after gel separation. Alternatively on full proteomics analysis elongation factor Tu generally provided the highest confidence in staphylococcal speciation.
Collapse
Affiliation(s)
- Jennifer Kooken
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Karen Fox
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Alvin Fox
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA.
| | - Diego Altomare
- Department of Pharmaceutical and Biomedical Sciences, School of Pharmacy, University of South Carolina, Columbia, SC 29209, USA
| | - Kim Creek
- Department of Pharmaceutical and Biomedical Sciences, School of Pharmacy, University of South Carolina, Columbia, SC 29209, USA
| | - David Wunschel
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, PO Box 999 MS P7-50, Richland, WA 99354, USA
| | - Sara Pajares-Merino
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Ilargi Martínez-Ballesteros
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Javier Garaizar
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Omar Oyarzabal
- Poultry Division, Institute for Environmental Health, Inc, 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| | - Mansour Samadpour
- Poultry Division, Institute for Environmental Health, Inc, 15300 Bothell Way NE, Lake Forest Park, WA 98155, USA
| |
Collapse
|
12
|
Kooken J, Fox K, Fox A, Altomare D, Creek K, Wunschel D, Pajares-Merino S, Martínez-Ballesteros I, Garaizar J, Oyarzabal O, Samadpour M. Identification of staphylococcal species based on variations in protein sequences (mass spectrometry) and DNA sequence (sodA microarray). Mol Cell Probes 2013; 28:41-50. [PMID: 24184563 DOI: 10.1016/j.mcp.2013.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 01/31/2023]
Abstract
This report is among the first using sequence variation in newly discovered protein markers for staphylococcal (or indeed any other bacterial) speciation. Variation, at the DNA sequence level, in the sodA gene (commonly used for staphylococcal speciation) provided excellent correlation. Relatedness among strains was also assessed using protein profiling using microcapillary electrophoresis and pulsed field electrophoresis. A total of 64 strains were analyzed including reference strains representing the 11 staphylococcal species most commonly isolated from man (Staphylococcus aureus and 10 coagulase negative species [CoNS]). Matrix assisted time of flight ionization/ionization mass spectrometry (MALDI TOF MS) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC ESI MS/MS) were used for peptide analysis of proteins isolated from gel bands. Comparison of experimental spectra of unknowns versus spectra of peptides derived from reference strains allowed bacterial identification after MALDI TOF MS analysis. After LC-MS/MS analysis of gel bands bacterial speciation was performed by comparing experimental spectra versus virtual spectra using the software X!Tandem. Finally LC-MS/MS was performed on whole proteomes and data analysis also employing X!tandem. Aconitate hydratase and oxoglutarate dehydrogenase served as marker proteins on focused analysis after gel separation. Alternatively on full proteomics analysis elongation factor Tu generally provided the highest confidence in staphylococcal speciation.
Collapse
Affiliation(s)
- Jennifer Kooken
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|