1
|
Sousa LG, Muzny CA, Cerca N. Key bacterial vaginosis-associated bacteria influence each other's growth in biofilms in rich media and media simulating vaginal tract secretions. Biofilm 2025; 9:100247. [PMID: 39877232 PMCID: PMC11773214 DOI: 10.1016/j.bioflm.2024.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/19/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Bacterial vaginosis (BV) is a very common gynaecologic condition affecting women of reproductive age worldwide. BV is characterized by a depletion of lactic acid-producing Lactobacillus species and an increase in strict and facultative anaerobic bacteria that develop a polymicrobial biofilm on the vaginal epithelium. Despite multiple decades of research, the etiology of this infection is still not clear. However, some BV-associated bacteria (BVAB) may play a key role in the development of this infection, namely Gardnerella species, Prevotella bivia, and Fannyhessea vaginae. In this work, we aimed to characterize the growth of these three species in a rich medium and in a medium simulating vaginal tract secretions (mGTS). We first assessed planktonic growth in New York City (NYCIII) medium and mGTS and observed that the three species showed distinct capacities to grow in the two media. Surprisingly, despite the ability of all three species to grow in single-species in NYCIII, in a triple-species consortium P. bivia was not able to increase its concentration after 48 h, as assessed by qPCR. Furthermore, when using the more restrictive mGTS media, G. vaginalis was the only BVAB able to grow in the triple-species consortia. Interestingly, we found that P. bivia growth in NYCIII was influenced by the cell-free supernatant (CFS) of F. vaginae and by the CFS of G. vaginalis in mGTS. This antimicrobial activity appears to happen due to the acidification of the media. Single- and triple-species biofilms were then formed, and the growth of each species was further quantified by qPCR. While G. vaginalis had a high capacity to form biofilms in both media, F. vaginae and P. bivia biofilm growth was favored when cultured in rich media. Differences were also found in the structure of triple-species biofilms formed in both media, as assessed by confocal laser scanning microscopy. In conclusion, while all three species were able to grow in single-species biofilms in rich media, in mGTS the growth of G. vaginalis was essential for incorporation of the other species in the biofilm.
Collapse
Affiliation(s)
- Lúcia G.V. Sousa
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Christina A. Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Portugal
| |
Collapse
|
2
|
Sousa LGV, França A, Pinheiro V, Muzny CA, Cerca N. Adaptation of key bacterial vaginosis-associated bacteria to a medium simulating genital tract secretions: a transcriptomic analysis. Front Genet 2025; 16:1552307. [PMID: 40206505 PMCID: PMC11979175 DOI: 10.3389/fgene.2025.1552307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Affiliation(s)
- Lúcia G. V. Sousa
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Angela França
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Portugal
| | - Vânia Pinheiro
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Christina A. Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Portugal
| |
Collapse
|
3
|
Kondakala S, Yoon S, Daddy Gaoh S, Kweon O, Kim SJ, Hart ME. Directional and Strain-Specific Interaction Between Lactobacillus plantarum and Staphylococcus aureus. Microorganisms 2024; 12:2432. [PMID: 39770635 PMCID: PMC11677646 DOI: 10.3390/microorganisms12122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
The interaction between Lactobacillus plantarum and Staphylococcus aureus strains FRI-1169 and MN8, two original isolated strains from menstrual toxic shock syndrome (mTSS) cases, is a key focus for developing non-antibiotic strategies to control S. aureus-related infections. While the antagonistic effects of Lactobacilli species on S. aureus through mechanisms like organic acid and bacteriocin production are known, the molecular dynamics of these interactions remain underexplored. This study employs a proteomic approach to analyze the interactions between L. plantarum WCFS1 and S. aureus strains, FRI-1169 and MN8, during co-culture. We profiled differentially expressed proteins (DEPs) found in the spent media and cytosols of both bacteria, revealing distinct directional and strain-specific responses. The findings demonstrate that L. plantarum exerts a more pronounced effect on S. aureus, with more DEPs and upregulated proteins, while S. aureus showed fewer DEPs and more downregulated proteins. These strain-specific interactions highlight the complex metabolic and regulatory adjustments between these bacterial species. This research provides valuable insights into the molecular mechanisms of Lactobacillus-S. aureus antagonism and underscores the potential of proteomic analysis as a powerful tool for studying bacterial dynamics in co-culture systems.
Collapse
Affiliation(s)
- Sandeep Kondakala
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.K.); (S.Y.); (S.D.G.); (O.K.); (S.-J.K.)
| | - Sunghyun Yoon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.K.); (S.Y.); (S.D.G.); (O.K.); (S.-J.K.)
| | - Soumana Daddy Gaoh
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.K.); (S.Y.); (S.D.G.); (O.K.); (S.-J.K.)
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.K.); (S.Y.); (S.D.G.); (O.K.); (S.-J.K.)
| | - Seong-Jae Kim
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.K.); (S.Y.); (S.D.G.); (O.K.); (S.-J.K.)
| | - Mark E. Hart
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.K.); (S.Y.); (S.D.G.); (O.K.); (S.-J.K.)
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Matsui A, Yoshifuji A, Irie J, Tajima T, Uchiyama K, Itoh T, Wakino S, Itoh H. Canagliflozin protects the cardiovascular system through effects on the gut environment in non-diabetic nephrectomized rats. Clin Exp Nephrol 2023; 27:295-308. [PMID: 36611128 DOI: 10.1007/s10157-022-02312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/30/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND The gut produces toxins that contribute to the cardiovascular complications of chronic kidney disease. Canagliflozin, a sodium glucose cotransporter (SGLT) 2 inhibitor that is used as an anti-diabetic drug, has a weak inhibitory effect against SGLT1 and may affect the gut glucose concentration and environment. METHODS Here, we determined the effect of canagliflozin on the gut microbiota and the serum gut-derived uremic toxin concentrations in 5/6th nephrectomized (Nx) rats. RESULTS Canagliflozin increased the colonic glucose concentration and restored the number of Lactobacillus bacteria, which was low in Nx rats. In addition, the expression of tight junction proteins in the ascending colon was low in Nx rats, and this was partially restored by canagliflozin. Furthermore, the serum concentrations of gut-derived uremic toxins were significantly increased by Nx and reduced by canagliflozin. Finally, the wall of the thoracic aorta was thicker and there was more cardiac interstitial fibrosis in Nx rats, and these defects were ameliorated by canagliflozin. CONCLUSIONS The increases in colonic glucose concentration, Lactobacillus numbers and tight junction protein expression, and the decreases in serum uremic toxin concentrations and cardiac interstitial fibrosis may have been caused by the inhibition of SGLT1 by canagliflozin because similar effects were not identified in tofogliflozin-treated rats.
Collapse
Affiliation(s)
- Ayumi Matsui
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
| | - Ayumi Yoshifuji
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
| | - Junichiro Irie
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Takaya Tajima
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
| | - Kiyotaka Uchiyama
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
| | - Tomoaki Itoh
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan.
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
5
|
Glucose Mediates Niche-Specific Repression of Staphylococcus aureus Toxic Shock Syndrome Toxin-1 through the Activity of CcpA in the Vaginal Environment. J Bacteriol 2022; 204:e0026922. [PMID: 36106854 PMCID: PMC9578429 DOI: 10.1128/jb.00269-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus chronically colonizes up to 30% of the human population on the skin or mucous membranes, including the nasal tract or vaginal canal. While colonization is often benign, this bacterium also has the capability to cause serious infections. Menstrual toxic shock syndrome (mTSS) is a serious toxinosis associated with improper use of tampons, which can induce an environment that is favorable to the production of the superantigen known as toxic shock syndrome toxin-1 (TSST-1). To better understand environmental signaling that influences TSST-1 production, we analyzed expression in the prototype mTSS strain S. aureus MN8. Using transcriptional and protein-based analysis in two niche-related media, we observed that TSST-1 expression was significantly higher in synthetic nasal medium (SNM) than in vaginally defined medium (VDM). One major divergence in medium composition was high glucose concentration in VDM. The glucose-dependent virulence regulator gene ccpA was deleted in MN8, and, compared with wild-type MN8, we observed increased TSST-1 expression in the ΔccpA mutant when grown in VDM, suggesting that TSST-1 is repressed by catabolite control protein A (CcpA) in the vaginal environment. We were able to relieve CcpA-mediated repression by modifying the glucose level in vaginal conditions, confirming that changes in nutritional conditions contribute to the overexpression of TSST-1 that can lead to mTSS. We also compared CcpA-mediated repression to other key regulators of tst, finding that CcpA regulation is dominant compared to other characterized regulatory mechanisms. This study underlines the importance of environmental signaling for S. aureus pathogenesis in the context of mTSS. IMPORTANCE Menstrual toxic shock syndrome (mTSS) is caused by strains of Staphylococcus aureus that overproduce a toxin known as toxic shock syndrome toxin-1 (TSST-1). This work studied how glucose levels in a model vaginal environment could influence the amount of TSST-1 that is produced by S. aureus. We found that high levels of glucose repress TSST-1 production, and this is done by a regulatory protein called catabolite control protein A (CcpA). The research also demonstrated that, compared with other regulatory proteins, the CcpA regulator appears to be the most important for maintaining low levels of TSST-1 in the vaginal environment, and this information helps to understand how changes in the vaginal environmental can lead to mTSS.
Collapse
|
6
|
Rosca AS, Castro J, Sousa LGV, França A, Cavaleiro C, Salgueiro L, Cerca N. Six Bacterial Vaginosis-Associated Species Can Form an In Vitro and Ex Vivo Polymicrobial Biofilm That Is Susceptible to Thymbra capitata Essential Oil. Front Cell Infect Microbiol 2022; 12:824860. [PMID: 35601098 PMCID: PMC9114774 DOI: 10.3389/fcimb.2022.824860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Bacterial vaginosis (BV) is associated with serious gynaecologic and obstetric complications. The hallmark of BV is the presence of a polymicrobial biofilm on the vaginal epithelium, but BV aetiology is still a matter of debate. We have previously developed an in vitro biofilm model that included three BV-associated species, but, up to now, no studies are available whereby more bacterial species are grown together to better mimic the in vivo situation. Herein, we characterized the first polymicrobial BV biofilm consisting of six cultivable BV-associated species by using both in vitro and ex vivo vaginal tissue models. Both models revealed that the six species were able to incorporate the polymicrobial biofilm, at different bacterial concentrations. As it has been thought that this polymicrobial biofilm may increase the survival of BV-associated species when exposed to antibiotics, we also assessed if the Thymbra capitata essential oil (EO), which has recently been shown to be highly bactericidal against several Gardnerella species, could maintain its anti-biofilm activity against this polymicrobial biofilm. Under our experimental conditions, T. capitata EO exhibited a high antibacterial effect against polymicrobial biofilms, in both tested models, with a significant reduction in the biofilm biomass and the number of culturable cells. Overall, this study shows that six BV-associated species can grow together and form a biofilm both in vitro and when using an ex vivo model. Moreover, the data obtained herein should be considered in further applications of T. capitata EO as an antimicrobial agent fighting BV.
Collapse
Affiliation(s)
- Aliona S. Rosca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Joana Castro
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Lúcia G. V. Sousa
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS –Associate Laboratory , Braga/Guimarães, Portugal
| | - Angela França
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS –Associate Laboratory , Braga/Guimarães, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- The Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- The Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS –Associate Laboratory , Braga/Guimarães, Portugal
- *Correspondence: Nuno Cerca,
| |
Collapse
|
7
|
Sousa LGV, Castro J, Cavaleiro C, Salgueiro L, Tomás M, Palmeira-Oliveira R, Martinez-Oliveira J, Cerca N. Synergistic effects of carvacrol, α-terpinene, γ-terpinene, ρ-cymene and linalool against Gardnerella species. Sci Rep 2022; 12:4417. [PMID: 35292704 PMCID: PMC8924259 DOI: 10.1038/s41598-022-08217-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
Bacterial vaginosis (BV) is the most common vaginal infection affecting women worldwide. This infection is characterized by the loss of the dominant Lactobacillus community in the vaginal microbiota and an increase of anaerobic bacteria, that leads to the formation of a polymicrobial biofilm, mostly composed of Gardnerella spp. Treatment of BV is normally performed using broad-spectrum antibiotics, such as metronidazole and clindamycin. However, the high levels of recurrence of infection after treatment cessation have led to a demand for new therapeutic alternatives. Thymbra capitata essential oils (EOs) are known to have a wide spectrum of biological properties, including antibacterial activity. Thus, herein, we characterized two EOs of T. capitata and tested their antimicrobial activity as well as some of their main components, aiming to assess possible synergistic effects. Our findings showed that carvacrol and ρ-cymene established a strong synergistic antimicrobial effect against planktonic cultures of Gardnerella spp. On biofilm, carvacrol and linalool at sub-MIC concentrations proved more efficient in eliminating biofilm cells, while showing no cytotoxicity observed in a reconstituted human vaginal epithelium. The antibiofilm potential of the EOs and compounds was highlighted by the fact cells were not able to recover culturability after exposure to fresh medium.
Collapse
Affiliation(s)
- Lúcia G V Sousa
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal.,LABBELS -Associate Laboratory, Braga, Portugal
| | - Joana Castro
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Mariana Tomás
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Rita Palmeira-Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - José Martinez-Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal. .,LABBELS -Associate Laboratory, Braga, Portugal.
| |
Collapse
|
8
|
Mieux informer pour prévenir le syndrome du choc toxique. ACTUALITES PHARMACEUTIQUES 2021. [DOI: 10.1016/j.actpha.2021.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Rosca AS, Castro J, Cerca N. Evaluation of different culture media to support in vitro growth and biofilm formation of bacterial vaginosis-associated anaerobes. PeerJ 2020; 8:e9917. [PMID: 32974104 PMCID: PMC7487148 DOI: 10.7717/peerj.9917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/20/2020] [Indexed: 01/01/2023] Open
Abstract
Background Bacterial vaginosis (BV) is one of the most common vaginal infections worldwide. It is associated with the presence of a dense polymicrobial biofilm on the vaginal epithelium, formed mainly by Gardnerella species. The biofilm also contains other anaerobic species, but little is known about their role in BV development. Aim To evaluate the influence of different culture media on the planktonic and biofilm growth of six cultivable anaerobes frequently associated with BV, namely Gardnerella sp., Atopobium vaginae, Lactobacillus iners, Mobiluncus curtisii, Peptostreptococcus anaerobius and Prevotella bivia. Methods A total of nine different culture media compositions, including commercially available and chemically defined media simulating genital tract secretions, were tested in this study. Planktonic cultures and biofilms were grown under anaerobic conditions (10% carbon dioxide, 10% helium and 80% nitrogen). Planktonic growth was assessed by optical density measurements, and biofilm formation was quantified by crystal violet staining. Results Significant planktonic growth was observed for Gardnerella sp., A. vaginae and L. iners in New York City III broth, with or without ascorbic acid supplementation. Biofilm quantification showed high in vitro biofilm growth for Gardnerella sp., P. anaerobius and P. bivia in almost all culture media excluding Brucella broth. Contrary, only New York City III broth was able to promote biofilm formation for A. vaginae, L. iners and M. curtisii. Conclusions Our data demonstrate that New York City III broth relative to the other tested media is the most conducive for future studies addressing polymicrobial biofilms development as this culture medium allowed the formation of significant levels of single-species biofilms.
Collapse
Affiliation(s)
- Aliona S Rosca
- Laboratory of Research in Biofilms Rosário Oliveira-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Joana Castro
- Laboratory of Research in Biofilms Rosário Oliveira-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira-Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
10
|
Castro J, Jefferson KK, Cerca N. Innate immune components affect growth and virulence traits of bacterial-vaginosis-associated and non-bacterial-vaginosis-associated Gardnerella vaginalis strains similarly. Pathog Dis 2018; 76:5289865. [PMID: 30649289 DOI: 10.1093/femspd/fty089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022] Open
Abstract
Mucosal surfaces of the female reproductive tract contain a variety of antimicrobial components that provide the first line of defense against bacteria involved in the development of bacterial vaginosis (BV). Microbiological analysis of BV has shown Gardnerella vaginalis to be a prominent species in BV development. However, G. vaginalis colonization does not always lead to BV. Over the last decade, phenotypic and genotypic studies have demonstrated the existence of strain variants. Therefore, this study aimed to investigate if the major components of the vaginal immune response, specifically lysozyme, lactoferrin and β-defensin 2, differently affected virulence traits of G. vaginalis strains isolated from healthy women or from women with BV. Gardnerella vaginalis strains were first genotyped by the clade classification system and then phenotypically characterized. Our results revealed that key differences in initial adhesion existed among the isolates but that these differences could not be predicted using the clade-genotyping approach. Importantly, we found that growth, initial adhesion and biofilm formation were strongly affected by lysozymes, but at similar levels in both groups, suggesting that the response to host immune components is not a distinguishing characteristic of isolates from women with BV versus those from healthy women.
Collapse
Affiliation(s)
- Joana Castro
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Kimberly K Jefferson
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Castro J, Martins AP, Rodrigues ME, Cerca N. Lactobacillus crispatus represses vaginolysin expression by BV associated Gardnerella vaginalis and reduces cell cytotoxicity. Anaerobe 2018; 50:60-63. [PMID: 29427630 DOI: 10.1016/j.anaerobe.2018.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 01/09/2023]
Abstract
Using a chemically-defined medium simulating genital tract secretions, we have shown that pre-adhering Lactobacillus crispatus to Hela epithelial cells reduced cytotoxicity caused by Gardnerella vaginalis. This effect was associated to the expression of vaginolysin and was specific to L. crispatus interference, as other vaginal facultative anaerobes had no protective effect.
Collapse
Affiliation(s)
- Joana Castro
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, Braga, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Ana Paula Martins
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Maria Elisa Rodrigues
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, Braga, Portugal.
| |
Collapse
|
12
|
Antibacterial Activity of Polyphenols: Structure-Activity Relationship and Influence of Hyperglycemic Condition. Molecules 2017; 22:molecules22111913. [PMID: 29113147 PMCID: PMC6150409 DOI: 10.3390/molecules22111913] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/12/2023] Open
Abstract
Polyphenols are plant-derived natural products with well-documented health benefits to human beings, such as antibacterial activities. However, the antibacterial activities of polyphenols under hyperglycemic conditions have been rarely studied, which could be relevant to their antibacterial efficacy in disease conditions, such as in diabetic patients. Herein, the antibacterial activities of 38 polyphenols under mimicked hyperglycemic conditions were evaluated. The structure-antibacterial activity relationships of polyphenols were also tested and analyzed. The presence of glucose apparently promoted the growth of the bacterial strains tested in this study. The OD600 values of tested bacteria strains increased from 1.09-fold to 1.49-fold by adding 800 mg/dL glucose. The polyphenols showed structurally dependent antibacterial activities, which were significantly impaired under the hyperglycemic conditions. The results from this study indicated that high blood glucose might promote bacterial infection, and the hyperglycemic conditions resulting from diabetes were likely to suppress the antibacterial benefits of polyphenols.
Collapse
|
13
|
Marton M. Staphylococcal Toxic Shock Syndrome Caused by an Intravaginal Product. A Case Report. ACTA ACUST UNITED AC 2016; 2:51-55. [PMID: 29967837 DOI: 10.1515/jccm-2016-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/15/2015] [Indexed: 11/15/2022]
Abstract
Staphylococcal toxic shock syndrome (STSS) represents a potentially lethal disease, and survival depends primarily on the early initiation of appropriate treatment. As the clinical picture at presentation is usually common, frequently this could lead to misdiagnosis and delays in the initiation of the proper therapy. The case of a 43-years old female who developed a staphylococcal septic shock syndrome caused by a forgotten intravaginal tampon is reported.
Collapse
Affiliation(s)
- Monica Marton
- Swedish Medical Center, Department of Anesthesiology and Critical Care, Seattle, USA
| |
Collapse
|