1
|
Sridapan T, Jaturapaktrarak C, Rujirawat T, Jiaranaikulwanich A, Yurayart C, Krajaejun T. A colorimetric loop-mediated isothermal amplification assay (c-LAMP) for rapid detection of Pythium insidiosum. Heliyon 2024; 10:e40478. [PMID: 39641085 PMCID: PMC11617755 DOI: 10.1016/j.heliyon.2024.e40478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Pythiosis, caused by Pythium insidiosum, is a severe infectious disease affecting humans and animals worldwide. There is an urgent need for a simple and rapid detection method for pythiosis, especially in remote areas where this disease is prevalent. To address this, a colorimetric loop-mediated isothermal amplification assay (c-LAMP) using hydroxynaphthol blue dye as a color indicator has been developed. This method utilized a one-step closed-tube system under a single temperature reaction to detect P. insidiosum, minimizing DNA carry-over contamination and eliminating the need for expensive tools. The test result can be easily read through the color change from violet (negative) to sky blue (positive). When tested with DNA samples from P. insidiosum (n = 51) and other fungi (n = 70), c-LAMP showed a detection sensitivity, specificity, and accuracy of 100.0 %, 95.7 %, and 97.5 %, respectively. The assay detection limit was 1 x 10-5 ng of DNA template, 10,000 times lower than the reference multiplex PCR assay (m-PCR). c-LAMP also showed a faster assay turnaround time, taking only 65 min, as opposed to the 180 min required for m-PCR. This newly established c-LAMP is rapid, cost-effective, and efficient, making it a promising tool for detecting P. insidiosum in resource-limited laboratories.
Collapse
Affiliation(s)
- Thanawat Sridapan
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Chalisa Jaturapaktrarak
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Thidarat Rujirawat
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Atisak Jiaranaikulwanich
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Chompoonek Yurayart
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Theerapong Krajaejun
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
2
|
Adewusi OO, Waldner CL, Hanington PC, Hill JE, Freeman CN, Otto SJG. Laboratory tools for the direct detection of bacterial respiratory infections and antimicrobial resistance: a scoping review. J Vet Diagn Invest 2024; 36:400-417. [PMID: 38456288 PMCID: PMC11110769 DOI: 10.1177/10406387241235968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Rapid laboratory tests are urgently required to inform antimicrobial use in food animals. Our objective was to synthesize knowledge on the direct application of long-read metagenomic sequencing to respiratory samples to detect bacterial pathogens and antimicrobial resistance genes (ARGs) compared to PCR, loop-mediated isothermal amplification, and recombinase polymerase amplification. Our scoping review protocol followed the Joanna Briggs Institute and PRISMA Scoping Review reporting guidelines. Included studies reported on the direct application of these methods to respiratory samples from animals or humans to detect bacterial pathogens ±ARGs and included turnaround time (TAT) and analytical sensitivity. We excluded studies not reporting these or that were focused exclusively on bioinformatics. We identified 5,636 unique articles from 5 databases. Two-reviewer screening excluded 3,964, 788, and 784 articles at 3 levels, leaving 100 articles (19 animal and 81 human), of which only 7 studied long-read sequencing (only 1 in animals). Thirty-two studies investigated ARGs (only one in animals). Reported TATs ranged from minutes to 2 d; steps did not always include sample collection to results, and analytical sensitivity varied by study. Our review reveals a knowledge gap in research for the direct detection of bacterial respiratory pathogens and ARGs in animals using long-read metagenomic sequencing. There is an opportunity to harness the rapid development in this space to detect multiple pathogens and ARGs on a single sequencing run. Long-read metagenomic sequencing tools show potential to address the urgent need for research into rapid tests to support antimicrobial stewardship in food animal production.
Collapse
Affiliation(s)
- Olufunto O. Adewusi
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Cheryl L. Waldner
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Janet E. Hill
- Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Claire N. Freeman
- Departments of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J. G. Otto
- HEAT-AMR (Human-Environment-Animal Transdisciplinary Antimicrobial Resistance) Research Group, University of Alberta, Edmonton, AB, Canada
- Healthy Environments Thematic Area Lead, Centre for Healthy Communities, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Jee H, Park S, Lee J, Lim CS, Jang WS. Comparative Clinical Evaluation of a Novel FluA/FluB/SARS-CoV-2 Multiplex LAMP and Commercial FluA/FluB/SARS-CoV-2/RSV RT-qPCR Assays. Diagnostics (Basel) 2023; 13:diagnostics13081432. [PMID: 37189533 DOI: 10.3390/diagnostics13081432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Influenza and coronaviruses cause highly contagious respiratory diseases that cause millions of deaths worldwide. Public health measures implemented during the current coronavirus disease (COVID-19) pandemic have gradually reduced influenza circulation worldwide. As COVID-19 measures have relaxed, it is necessary to monitor and control seasonal influenza during this COVID-19 pandemic. In particular, the development of rapid and accurate diagnostic methods for influenza and COVID-19 is of paramount importance because both diseases have significant public health and economic impacts. To address this, we developed a multi-loop-mediated isothermal amplification (LAMP) kit capable of simultaneously detecting influenza A/B and SARS-CoV-2. The kit was optimized by testing various ratios of primer sets for influenza A/B (FluA/FluB) and SARS-CoV-2 and internal control (IC). The FluA/FluB/SARS-CoV-2 multiplex LAMP assay showed 100% specificity for uninfected clinical samples and sensitivities of 90.6%, 86.89%, and 98.96% for LAMP kits against influenza A, influenza B, and SARS-CoV-2 clinical samples, respectively. Finally, the attribute agreement analysis for clinical tests indicated substantial agreement between the multiplex FluA/FluB/SARS-CoV-2/IC LAMP and commercial AllplexTM SARS-CoV-2/FluA/FluB/RSV assays.
Collapse
Affiliation(s)
- Hyunseul Jee
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Seoyeon Park
- Department of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Junmin Lee
- Department of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Woong Sik Jang
- Emergency Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| |
Collapse
|
4
|
Bumbrah GS, Jain S, Fatima Z, Hameed S. Efficacy of LAMP assay for Mycobacterial spp. detection to prevent treatment delays and onset of drug resistance: a systematic review and meta-analysis. Drug Target Insights 2023; 17:78-89. [PMID: 37304408 PMCID: PMC10249090 DOI: 10.33393/dti.2023.2596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Background Tuberculosis (TB) remains a deadly disease affecting one-third population globally. Long turnaround time and poor sensitivity of the conventional diagnostics are the major impediments for faster diagnosis of Mycobacterial spp to prevent drug resistance. To overcome these issues, molecular diagnostics have been developed. They offer enhanced sensitivity but require sophisticated infrastructure, skilled manpower and remain expensive. Methods In that context, loop-mediated isothermal amplification (LAMP) assay, recommended by the WHO in 2016 for TB diagnosis, sounds as a promising alternative that facilitates visual read outs. Therefore, the aim of the present study is to conduct a meta-analysis to assess the diagnostic efficiency of LAMP for the detection of a panel of Mycobacterium spp. following PRISMA guidelines using scientific databases. From 1600 studies reported on the diagnosis of Mycobacterium spp., a selection of 30 articles were identified as eligible to meet the criteria of LAMP based diagnosis. Results It was found that most of the studies were conducted in high disease burden nations such as India, Thailand, and Japan with sputum as the most common specimen to be used for LAMP assay. Furthermore, IS6110 gene and fluorescence-based detections ranked as the most used target and method respectively. The accuracy and precision rates mostly varied between 79.2% to 99.3% and 73.9% to 100%, respectively. Lastly, a quality assessment based on QUADAS-2 of bias and applicability was conducted. Conclusion LAMP technology could be considered as a feasible alternative to current diagnostics considering high burden for rapid testing in low resource regions.
Collapse
Affiliation(s)
- Gurvinder Singh Bumbrah
- Department of Forensic Sciences, Amity School of Applied Sciences, Amity University Haryana, Gurugram, Manesar - India
| | - Sarika Jain
- Department of Mathematics, Amity School of Applied Sciences, Amity University Haryana, Gurugram, Manesar - India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Manesar - India
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha - Saudi Arabia
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Manesar - India
| |
Collapse
|
5
|
Van Ngoc H, Quyen TL, Vinayaka AC, Bang DD, Wolff A. Point-of-care system for rapid real-time detection of SARS-CoV-2 virus based on commercially available Arduino platforms. Front Bioeng Biotechnol 2022; 10:917573. [PMID: 35992344 PMCID: PMC9385952 DOI: 10.3389/fbioe.2022.917573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic emphasized the importance of rapid, portable, and on-site testing technologies necessary for resource-limited settings for effective testing and screening to reduce spreading of the infection. Realizing this, we developed a fluorescence-based point-of-care (fPOC) detection system with real-time reverse transcriptase loop-mediated isothermal amplification for rapid and quantitative detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The system is built based on the Arduino platform compatible with commercially available open-source hardware-software and off-the-shelf electronic components. The fPOC system comprises of three main components: 1) an instrument with integrated heaters, 2) optical detection components, and 3) an injection-molded polymeric cartridge. The system was tested and experimentally proved to be able to use for fast detection of the SARS-CoV-2 virus in real-time in less than 30 min. Preliminary results of testing the performance of the fPOC revealed that the fPOC could detect the SARS-CoV-2 virus at a limit of detection (LOD50%) at two to three copies/microliter (15.36 copies/reaction), which was comparable to reactions run on a standard commercial thermocycler. The performance of the fPOC was evaluated with 12 SARS-CoV-2 clinical throat swab samples that included seven positive and five negative samples, as confirmed by reverse transcription-polymerase chain reaction. The fPOC showed 100% agreement with the commercial thermocycler. This simple design of the fPOC system demonstrates the potential to greatly enhance the practical applicability to develop a totally integrated point-of-care system for rapid on-site screening of the SARS-CoV-2 virus in the management of the pandemic.
Collapse
Affiliation(s)
- Huynh Van Ngoc
- BioLabChip Group, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU-Bioengineering), Lyngby, Denmark
| | - Than Linh Quyen
- BioLabChip Group, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU-Bioengineering), Lyngby, Denmark
| | - Aaydha Chidambara Vinayaka
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU-Bioengineering), Lyngby, Denmark
| | - Dang Duong Bang
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU-Bioengineering), Lyngby, Denmark
| | - Anders Wolff
- BioLabChip Group, Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU-Bioengineering), Lyngby, Denmark
| |
Collapse
|
6
|
Quyen TL, Ngo TA, Bang DD, Madsen M, Wolff A. Classification of Multiple DNA Dyes Based on Inhibition Effects on Real-Time Loop-Mediated Isothermal Amplification (LAMP): Prospect for Point of Care Setting. Front Microbiol 2019; 10:2234. [PMID: 31681184 PMCID: PMC6803449 DOI: 10.3389/fmicb.2019.02234] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
LAMP has received great interest and is widely utilized in life sciences for nucleic acid analysis. To monitor a real-time LAMP assay, a fluorescence DNA dye is an indispensable component and therefore the selection of a suitable dye for real-time LAMP is a need. To aid this selection, we investigated the inhibition effects of twenty-three DNA dyes on real-time LAMP. Threshold time (Tt) values of each real-time LAMP were determined and used as an indicator of the inhibition effect. Based on the inhibition effects, the dyes were classified into four groups: (1) non-inhibition effect, (2) medium inhibition effect, (3) high inhibition effect, and (4) very high inhibition effect. The signal to noise ratio (SNR) and the limit of detection (LOD) of the dyes in groups 1, 2, and 3 were further investigated, and possible inhibition mechanisms of the DNA dyes on the real-time LAMP are suggested and discussed. Furthermore, a comparison of SYTO 9 in different LAMP reactions and different systems is presented. Of the 23 dyes tested, SYTO 9, SYTO 82, SYTO 16, SYTO 13, and Miami Yellow were the best dyes with no inhibitory effect, low LOD and high SNR in the real-time LAMP reactions. The present classification of the dyes will simplify the selection of fluorescence dye for real-time LAMP assays in point of care setting.
Collapse
Affiliation(s)
- Than Linh Quyen
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU-Bioengineering), Lyngby, Denmark
| | - Tien Anh Ngo
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), National Food Institute, Technical University of Denmark (DTU-Food), Lyngby, Denmark
| | - Dang Duong Bang
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), National Food Institute, Technical University of Denmark (DTU-Food), Lyngby, Denmark
| | - Mogens Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU-Bioengineering), Lyngby, Denmark
| | - Anders Wolff
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU-Bioengineering), Lyngby, Denmark
| |
Collapse
|
7
|
Yang HL, Wei S, Gooneratne R, Mutukumira AN, Ma XJ, Tang SZ, Wu XY. Development of a recombinase polymerase amplification assay for Vibrio parahaemolyticus detection with an internal amplification control. Can J Microbiol 2018; 64:223-230. [PMID: 29351385 DOI: 10.1139/cjm-2017-0504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A novel RPA-IAC assay using recombinase polymerase and an internal amplification control (IAC) for Vibrio parahaemolyticus detection was developed. Specific primers were designed based on the coding sequence for the toxR gene in V. parahaemolyticus. The recombinase polymerase amplification (RPA) reaction was conducted at a constant low temperature of 37 °C for 20 min. Assay specificity was validated by using 63 Vibrio strains and 10 non-Vibrio bacterial species. In addition, a competitive IAC was employed to avoid false-negative results, which co-amplified simultaneously with the target sequence. The sensitivity of the assay was determined as 3 × 103 CFU/mL, which is decidedly more sensitive than the established PCR method. This method was then used to test seafood samples that were collected from local markets. Seven out of 53 different raw seafoods were detected as V. parahaemolyticus-positive, which were consistent with those obtained using traditional culturing method and biochemical assay. This novel RPA-IAC assay provides a rapid, specific, sensitive, and more convenient detection method for V. parahaemolyticus.
Collapse
Affiliation(s)
- Huan-Lan Yang
- a Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Shuang Wei
- b Guangdong Entry-Exit Inspection and Quarantine Bureau, Guangzhou 510632, China
| | - Ravi Gooneratne
- c Centre for Food Research and Innovation, Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch 7647, New Zealand
| | - Anthony N Mutukumira
- d Massey Institute of Food Science and Technology, Institute of Food and Nutrition, Massey University, Albany Campus, New Zealand
| | - Xue-Jun Ma
- e Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shu-Ze Tang
- a Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xi-Yang Wu
- a Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Gosselin D, Gougis M, Baque M, Navarro FP, Belgacem MN, Chaussy D, Bourdat AG, Mailley P, Berthier J. Screen-Printed Polyaniline-Based Electrodes for the Real-Time Monitoring of Loop-Mediated Isothermal Amplification Reactions. Anal Chem 2017; 89:10124-10128. [DOI: 10.1021/acs.analchem.7b02394] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David Gosselin
- University of Grenoble Alpes, F-38000 Grenoble, France
- CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
- University of Grenoble
Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Maxime Gougis
- University of Grenoble Alpes, F-38000 Grenoble, France
- CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - Mélissa Baque
- University of Grenoble Alpes, F-38000 Grenoble, France
- CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - Fabrice P. Navarro
- University of Grenoble Alpes, F-38000 Grenoble, France
- CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - Mohamed N. Belgacem
- University of Grenoble
Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Didier Chaussy
- University of Grenoble
Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Anne-Gaëlle Bourdat
- University of Grenoble Alpes, F-38000 Grenoble, France
- CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - Pascal Mailley
- University of Grenoble Alpes, F-38000 Grenoble, France
- CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - Jean Berthier
- University of Grenoble Alpes, F-38000 Grenoble, France
- CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| |
Collapse
|
9
|
Joon D, Nimesh M, Varma-Basil M, Saluja D. Evaluation of improved IS 6110 LAMP assay for diagnosis of pulmonary and extra pulmonary tuberculosis. J Microbiol Methods 2017; 139:87-91. [DOI: 10.1016/j.mimet.2017.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 11/16/2022]
|
10
|
Bates M, Zumla A. The development, evaluation and performance of molecular diagnostics for detection of Mycobacterium tuberculosis. Expert Rev Mol Diagn 2016; 16:307-22. [PMID: 26735769 DOI: 10.1586/14737159.2016.1139457] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The unique pathogenesis of tuberculosis (TB) poses several barriers to the development of accurate diagnostics: a) the establishment of life-long latency by Mycobacterium tuberculosis (M.tb) after primary infection confounds the development of classical antibody or antigen based assays; b) our poor understanding of the molecular pathways that influence progression from latent to active disease; c) the intracellular nature of M.tb infection in tissues means that M.tb and/or its components, are not readily detectable in peripheral specimens; and d) the variable presence of M.tb bacilli in specimens from patients with extrapulmonary TB or children. The literature on the current portfolio of molecular diagnostics tests for TB is reviewed here and the developmental pipeline is summarized. Also reviewed are data from recently published operational research on the GeneXpert MTB/RIF assay and discussed are the lessons that can be taken forward for the design of studies to evaluate the impact of TB diagnostics.
Collapse
Affiliation(s)
- Matthew Bates
- a UNZA-UCLMS Research & Training Programme , University Teaching Hospital , Lusaka , Zambia.,b Centre for Clinical Microbiology, Division of Infection and Immunity , University College London , London , UK
| | - Alimuddin Zumla
- a UNZA-UCLMS Research & Training Programme , University Teaching Hospital , Lusaka , Zambia.,b Centre for Clinical Microbiology, Division of Infection and Immunity , University College London , London , UK.,c NIHR Biomedical Research Centre , University College London Hospitals , London , UK
| |
Collapse
|
11
|
|