Xue Z, He H, Han Y, Tian W, Li S, Guo J, Yu P, Qiao L, Zhang W. Relic DNA obscures bacterial diversity and interactions in ballast tank sediment.
ENVIRONMENTAL RESEARCH 2025;
267:120715. [PMID:
39733986 DOI:
10.1016/j.envres.2024.120715]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 12/31/2024]
Abstract
The dark and anoxic environment of ballast tank sediment (BTS) harbors substantial amounts of relic DNA, yet its impact on microbial diversity estimates in BTS management remains poorly understood. This study employed propidium monoazide (PMA) treatment to eliminate relic DNA and used 16S amplicon high-throughput sequencing to characterize both total and viable bacteria. Our findings revealed that relic DNA is abundant in BTS. When removed, it led to variable reductions in species richness, which fluctuated from a 3.15% increase to a 37.52% decrease. Additionally, 6.27%-15.79% of OTUs were absent in the PMA-treated samples. These findings indicate that relic DNA has diverse effects on microbial diversity estimates. Moreover, relic DNA removal altered the relative abundances of a wide range of taxa, thereby facilitating the detection of rare taxa. Furthermore, the absence of relic DNA resulted in an overestimation of co-occurrence network size, complexity, and competitiveness, which could lead to misinterpretations of community assembly processes. In conclusion, our findings indicate that relic DNA obscures microbial diversity estimates and risk assessments in BTS, highlighting the critical need for monitoring viable bacteria in ballast sediment management.
Collapse