1
|
Zioga E, Holdt SL, Gröndahl F, Bang-Berthelsen CH. Screening approaches and potential of isolated lactic acid bacteria for improving fermentation of Saccharina latissima. BMC Biotechnol 2025; 25:2. [PMID: 39757166 DOI: 10.1186/s12896-024-00926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND With the growing interest in applying fermentation to seaweed biomasses, there is a need for fast and efficient selection of microbial strains that have the ability to 1) acidify quickly, 2) utilize seaweed constituents and c) exhibit some proteolytic activity. The present study aims to provide a fast methodology to screen large bacterial collections for potential applications in optimized seaweed fermentations, as well as investigate and assess the performance of a selected bacterial collection of the National Food Institute Culture Collection (NFICC) in seaweed fermentation. This approach is directed toward high-throughput (HT) methodologies, employing microwell assays for different phenotypical characteristics of lactic acid bacteria isolated from different sources. The overarching aim is the deeper understanding of the selection criteria when designing starter cultures for seaweed fermentation. RESULTS By employing high-throughput analytical workflows, the screening processing time is minimized, and among the different strains from a well-characterized strain collection, it was possible to distinguish between strong acidifiers and to replicate similar results when the volumes were scaled from 96-well plates to lab-scale fermentations (40 mL) of whole seaweed. Lactiplantibacillus plantarum, Lacticaseibacillus paracasei and, to a lesser extent, Lacticaseibacillus rhamnosus were among the fastest strains to reach the lowest endpoint pH values (< 4.5) in less than 48 h. Although the results regarding proteolytic capacity were not sufficient to prove that the candidates can also provide some flavor generation by the cleavage of proteins, NFICC1746 and NFICC2041 exhibited potential in releasing free alanine, glutamate and asparate as free amino acids. CONCLUSIONS With the described methodology, a large number of terrestrial lactic acid bacteria (LAB) isolates were screened for their performance and possible application for fermentation of brown sewaeeds. With a a fast conversion of sugars to organic acids, three potential new plant-isolated strains from NFICC, specifically Lactiplantibacillus plantarum ssp. argentoratensis (NFICC983), Lacticaseibacillus paracasei (NFICC1746) and Lacticaseibacillus rhamnosus (NFICC2041), were identified as promising candidates for future synthetic consortia aimed at application in bioprocessed seaweed. The combination of such strains will be the future focus to further optimize robust seaweed fermentations.
Collapse
Affiliation(s)
- Evangelia Zioga
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden.
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
| | - Susan Løvstad Holdt
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Fredrik Gröndahl
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | | |
Collapse
|
2
|
de Carvalho Maquiné L, Dos Santos Almeida Coelho KW, da Silva Gomes MF, Vieira JR, Cavalcante TF, de Souza Carvalho EB, Rufino JPF, de Oliveira AT, de Queiroz Costa Neto P, Pereira JO. In vitro probiotic potential of lactic acid bacteria isolated from the intestines of Muscovy ducks. Braz J Microbiol 2024; 55:4115-4128. [PMID: 39080108 PMCID: PMC11711415 DOI: 10.1007/s42770-024-01474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/23/2024] [Indexed: 01/11/2025] Open
Abstract
The current study was conducted to isolate, test and characterize molecularly and physiologically lactic acid bacteria from the intestines of Muscovy ducks to evaluate their probiotic potential for poultry farming. Three hundred lactic acid bacteria from the gastrointestinal tract of Muscovy ducks were isolated. The strains were phenotypically characterized by observing cell morphology, performing Gram staining, catalase production, and testing their ability to grow in MRS broth at different temperatures, pH values, NaCl concentrations, bile concentration, and in compatibility tests between strains. Nine strains were selected based on their resilience. Eight strains were identified using molecular techniques. These strains exhibited significant tolerance to acidic pH, bile salts, and NaCl, essential for probiotic function. All isolates inhibited the growth of Salmonella enterica serotype Typhimurium (DT104) and Enteropathogenic Escherichia coli serotype O86:H34 (EPEC), showcasing their antimicrobial potential. Antibiotic susceptibility testing revealed 100% resistance to clindamycin and erythromycin but high susceptibility to ampicillin and vancomycin. Growth was observed at various temperatures, indicating mesophilic characteristics. Compatibility tests confirmed their suitability for probiotic formulations. Genomic analysis identified the strains primarily as Enterococcus. Conclusively, the study identified eight out of nine selected lactic acid bacteria strains from Muscovy ducks as autochthonous probiotics, showing resilience to treatments and compatibility for consortium formulation. These strains are suitable for in vivo testing for potential poultry farming applications. Further research on their molecular mechanisms and in vivo effects is needed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Adriano Teixeira de Oliveira
- Science, and Technology of Amazonas - Center Campus of Manaus, Federal Institute of Education, Manaus City, Amazonas State, Brazil
| | | | - José Odair Pereira
- Faculty of Agrarian Sciences, Federal University of Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
3
|
Rampanti G, Cantarini A, Cardinali F, Milanović V, Garofalo C, Aquilanti L, Osimani A. Technological and Enzymatic Characterization of Autochthonous Lactic Acid Bacteria Isolated from Viili Natural Starters. Foods 2024; 13:1115. [PMID: 38611419 PMCID: PMC11011773 DOI: 10.3390/foods13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Viili, a Finnish ropy fermented milk, is traditionally manufactured through spontaneous fermentation, by mesophilic lactic acid bacteria and yeast-like fungi, or back-slopping. This study evaluated four natural viili starters as sources of lactic acid bacteria for dairy production. Back-slopping activation of the studied viili samples was monitored through pH and titratable acidity measurements and enumeration of mesophilic lactic acid bacteria. Sixty lactic acid bacteria isolates were collected, molecularly identified, and assayed for acidification performance, enzymatic activities, production of exopolysaccharides (EPSs), presence of the histidine decarboxylase (hdcA) gene of Gram-positive bacteria, and production of bacteriocins. A neat predominance of Lactococcus lactis emerged among the isolates, followed by Enterococcus faecalis, Enterococcus faecium, Enterococcus durans, Enterococcus lactis, and Lactococcus cremoris. Most isolates exhibited proteolytic activity, whereas only a few enterococci showed lipase activity. Five isolates identified as L. cremoris, L. lactis, and E. faecalis showed a good acidification performance. Most of the isolates tested positive for leucine arylamidase, whereas only one E. durans and two L. lactis isolates were positive for valine arylamidase. A few isolates also showed a positive reaction for beta-galactosidase and alpha- and beta-glucosidase. None of the isolates produced EPSs or bacteriocins. The hdcA gene was detected in five isolates identified as L. lactis and E. faecium. A few L. cremoris and L. lactis isolates for potential use as starter or adjunct cultures for dairy processing were finally identified.
Collapse
Affiliation(s)
| | | | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (G.R.); (A.C.); (V.M.); (C.G.); (L.A.); (A.O.)
| | | | | | | | | |
Collapse
|
4
|
Moussaid S, El Alaoui MA, Ounine K, Benali A, Bouhlal O, Rkhaila A, Hami H, El Maadoudi EH. In-vitro evaluation of the probiotic potential and the fermentation profile of Pediococcus and Enterococcus strains isolated from Moroccan camel milk. Arch Microbiol 2023; 205:144. [PMID: 36967406 DOI: 10.1007/s00203-023-03489-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
The promotion of human health through natural approaches like functional foods and probiotics is in high demand. The medicinal plants are the major feed of Moroccan dromedary, which improves the functional properties of their milk. A few studies have reported the probiotic and functional aptitudes of lactic acid bacteria (LAB) of this milk. In this context, our study aimed to identify LAB isolated from Moroccan raw camel milk and investigate their probiotic features and their fermentation profile. The molecular identification of twelve isolates indicated that they belong to Pediococcus pentosaceus, Enterococcus faecium, and Enterococcus durans. All LAB strains displayed high tolerance to gastrointestinal conditions (survival rate of 31.85-96.52% in pH 2.5, 35.23-99.05% in 0.3 bile salts, and 26.9-90.96% in pepsin), strong attachment abilities (auto-aggregation and hydrophobicity ranged from 28.75 to 95.9% and from 80.47 to 96.37%, respectively), and high co-aggregation ability with pathogenic bacteria. Importantly, they did not present antibiotic resistance or hemolytic activity. Our LAB strains demonstrated antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, and Salmonella enterica. Moreover, they could acidify cow milk (ΔpH of 2.55 after 24 h) and improve its antioxidant ability (inhibition of 36.77% of DPPH). Based on the multivariate analysis, Pediococcus pentosaceus Pd24, Pd29, Pd38, Enterococcus faecium Ef18, and Enterococcus durans Ed22 were selected as the most promising probiotics. Therefore, we propose that Pediococcus pentosaceus isolated from camel milk could be used as potential probiotic strains and/or starter cultures in functional milk fermentation.
Collapse
Affiliation(s)
- Siham Moussaid
- Laboratory of Plants, Animals, and Agro-Industry Productions, Faculty of Sciences B.P. 133, Ibn Tofail University, 1400, Kenitra, Morocco.
- RU Animal Production and Forage, Food Technology Laboratory, INRA, RCAR-Rabat, Institutes Rabat, 6570, 10101, Rabat, PB, Morocco.
| | - Moulay Abdelaziz El Alaoui
- Laboratory of Plants, Animals, and Agro-Industry Productions, Faculty of Sciences B.P. 133, Ibn Tofail University, 1400, Kenitra, Morocco
| | - Khadija Ounine
- Laboratory of Plants, Animals, and Agro-Industry Productions, Faculty of Sciences B.P. 133, Ibn Tofail University, 1400, Kenitra, Morocco
| | - Aouatif Benali
- RU Animal Production and Forage, Food Technology Laboratory, INRA, RCAR-Rabat, Institutes Rabat, 6570, 10101, Rabat, PB, Morocco
| | - Outmane Bouhlal
- Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco
| | - Amine Rkhaila
- Laboratory of Plants, Animals, and Agro-Industry Productions, Faculty of Sciences B.P. 133, Ibn Tofail University, 1400, Kenitra, Morocco
| | - Hinde Hami
- Biology and Health Laboratory, Faculty of Sciences B.P. 133, Ibn Tofail University, 1400, Kenitra, Morocco
| | - El Haj El Maadoudi
- Regional Center of Agronomic Research of Rabat, Avenue Mohamed Belarbi Alaoui, B.P:6356-Instituts.10101, Rabat, Morocco
| |
Collapse
|
5
|
Gao C, Wang R, Zhang F, Sun Z, Meng X. The process monitors of probiotic fermented sour cherry juice based on the HS-GC-IMS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Meruvu H, Harsa ST. Lactic acid bacteria: isolation-characterization approaches and industrial applications. Crit Rev Food Sci Nutr 2022; 63:8337-8356. [PMID: 35348017 DOI: 10.1080/10408398.2022.2054936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The current state-of-art research pertaining to lactic acid bacteria (LAB) calls for the screening and isolation of robust LAB strains to achieve holistic exploitation of LAB and their metabolites of marketable importance. Hence it is imperative to comprehend LAB sources, growth requisites, isolation and characterization strategies necessary for featured cataloging and appropriate culturing. This review comprehensively describes various growth media and biomasses used for supporting LAB sustenance, assay procedures needed for the isolation and characterization of LAB strains, and their application in diverse sectors. The various industrial patents and their summarized claims about novel LAB strains isolated and identified, methods and media (used for detection/screening, isolation, adaptation, culturing, preservation, growth improvement), the techniques and/or methodologies supporting LAB fermentation, and applications of produced industrial metabolites in various market scenarios are detailed.
Collapse
Affiliation(s)
- Haritha Meruvu
- CEO, Revathi Hospital, Revathi Firm, Rajahmundry, Andhra Pradesh, India
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sebnem Tellioglu Harsa
- Faculty of Engineering, Department of Food Engineering, İzmir Institute of Technology, Gulbahçe Campus, Urla, İzmir, Turkey
| |
Collapse
|