1
|
Vikramdeo KS, Anand S, Sudan SK, Pramanik P, Singh S, Godwin AK, Singh AP, Dasgupta S. Profiling mitochondrial DNA mutations in tumors and circulating extracellular vesicles of triple-negative breast cancer patients for potential biomarker development. FASEB Bioadv 2023; 5:412-426. [PMID: 37810173 PMCID: PMC10551276 DOI: 10.1096/fba.2023-00070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Early detection and recurrence prediction are challenging in triple-negative breast cancer (TNBC) patients. We aimed to develop mitochondrial DNA (mtDNA)-based liquid biomarkers to improve TNBC management. Mitochondrial genome (MG) enrichment and next-generation sequencing mapped the entire MG in 73 samples (64 tissues and 9 extracellular vesicles [EV] samples) from 32 metastatic TNBCs. We measured mtDNA and cardiolipin (CL) contents, NDUFB8, and SDHB protein expression in tumors and in corresponding circulating EVs. We identified 168 nonsynonymous mtDNA mutations, with 73% (123/186) coding and 27% (45/168) noncoding in nature. Twenty percent of mutations were nucleotide transversions. Respiratory complex I (RCI) was the key target, which harbored 44% (74/168) of the overall mtDNA mutations. A panel of 11 hotspot mtDNA mutations was identified among 19%-38% TNBCs, which were detectable in the serum-derived EVs with 82% specificity. Overall, 38% of the metastatic tumor-signature mtDNA mutations were traceable in the EVs. An appreciable number of mtDNA mutations were homoplasmic (18%, 31/168), novel (14%, 23/168), and potentially pathogenic (9%, 15/168). The overall and RCI-specific mtDNA mutational load was higher in women with African compared to European ancestry accompanied by an exclusive abundance of respiratory complex (RC) protein NDUFB8 (RCI) and SDHB (RCII) therein. Increased mtDNA (p < 0.0001) content was recorded in both tumors and EVs along with an abundance of CL (p = 0.0001) content in the EVs. Aggressive tumor-signature mtDNA mutation detection and measurement of mtDNA and CL contents in the EVs bear the potential to formulate noninvasive early detection and recurrence prediction strategies.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Mitchell Cancer Institute, University of South AlabamaMobileAlabamaUSA
- Department of Pathology, College of MedicineUniversity of South AlabamaMobileAlabamaUSA
| | - Shashi Anand
- Mitchell Cancer Institute, University of South AlabamaMobileAlabamaUSA
- Department of Pathology, College of MedicineUniversity of South AlabamaMobileAlabamaUSA
| | - Sarabjeet Kour Sudan
- Mitchell Cancer Institute, University of South AlabamaMobileAlabamaUSA
- Department of Pathology, College of MedicineUniversity of South AlabamaMobileAlabamaUSA
| | - Paramahansa Pramanik
- Department of Mathematics and StatisticsUniversity of South AlabamaMobileAlabamaUSA
| | - Seema Singh
- Mitchell Cancer Institute, University of South AlabamaMobileAlabamaUSA
- Department of Pathology, College of MedicineUniversity of South AlabamaMobileAlabamaUSA
- Department of Biochemistry and Molecular BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
- The University of Kansas Cancer Center, University of Kansas Medical CenterKansas CityKansasUSA
- Kansas Institute for Precision Medicine, University of Kansas Medical CenterKansas CityKansasUSA
| | - Ajay Pratap Singh
- Mitchell Cancer Institute, University of South AlabamaMobileAlabamaUSA
- Department of Pathology, College of MedicineUniversity of South AlabamaMobileAlabamaUSA
- Department of Biochemistry and Molecular BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Santanu Dasgupta
- Mitchell Cancer Institute, University of South AlabamaMobileAlabamaUSA
- Department of Pathology, College of MedicineUniversity of South AlabamaMobileAlabamaUSA
- Department of Biochemistry and Molecular BiologyUniversity of South AlabamaMobileAlabamaUSA
| |
Collapse
|
2
|
Smullen M, Olson MN, Murray LF, Suresh M, Yan G, Dawes P, Barton NJ, Mason JN, Zhang Y, Fernandez-Fontaine AA, Church GM, Mastroeni D, Wang Q, Lim ET, Chan Y, Readhead B. Modeling of mitochondrial genetic polymorphisms reveals induction of heteroplasmy by pleiotropic disease locus 10398A>G. Sci Rep 2023; 13:10405. [PMID: 37369829 DOI: 10.1038/s41598-023-37541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondrial (MT) dysfunction has been associated with several neurodegenerative diseases including Alzheimer's disease (AD). While MT-copy number differences have been implicated in AD, the effect of MT heteroplasmy on AD has not been well characterized. Here, we analyzed over 1800 whole genome sequencing data from four AD cohorts in seven different tissue types to determine the extent of MT heteroplasmy present. While MT heteroplasmy was present throughout the entire MT genome for blood samples, we detected MT heteroplasmy only within the MT control region for brain samples. We observed that an MT variant 10398A>G (rs2853826) was significantly associated with overall MT heteroplasmy in brain tissue while also being linked with the largest number of distinct disease phenotypes of all annotated MT variants in MitoMap. Using gene-expression data from our brain samples, our modeling discovered several gene networks involved in mitochondrial respiratory chain and Complex I function associated with 10398A>G. The variant was also found to be an expression quantitative trait loci (eQTL) for the gene MT-ND3. We further characterized the effect of 10398A>G by phenotyping a population of lymphoblastoid cell-lines (LCLs) with and without the variant allele. Examination of RNA sequence data from these LCLs reveal that 10398A>G was an eQTL for MT-ND4. We also observed in LCLs that 10398A>G was significantly associated with overall MT heteroplasmy within the MT control region, confirming the initial findings observed in post-mortem brain tissue. These results provide novel evidence linking MT SNPs with MT heteroplasmy and open novel avenues for the investigation of pathomechanisms that are driven by this pleiotropic disease associated loci.
Collapse
Affiliation(s)
- Molly Smullen
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Meagan N Olson
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Liam F Murray
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Madhusoodhanan Suresh
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guang Yan
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Pepper Dawes
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Nathaniel J Barton
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jivanna N Mason
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yucheng Zhang
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Aria A Fernandez-Fontaine
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Diego Mastroeni
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Qi Wang
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Elaine T Lim
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yingleong Chan
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| | - Benjamin Readhead
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
3
|
Vila-Sanjurjo A, Mallo N, Elson JL, Smith PM, Blakely EL, Taylor RW. Structural analysis of mitochondrial rRNA gene variants identified in patients with deafness. Front Physiol 2023; 14:1163496. [PMID: 37362424 PMCID: PMC10285412 DOI: 10.3389/fphys.2023.1163496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/18/2023] [Indexed: 06/28/2023] Open
Abstract
The last few years have witnessed dramatic advances in our understanding of the structure and function of the mammalian mito-ribosome. At the same time, the first attempts to elucidate the effects of mito-ribosomal fidelity (decoding accuracy) in disease have been made. Hence, the time is right to push an important frontier in our understanding of mitochondrial genetics, that is, the elucidation of the phenotypic effects of mtDNA variants affecting the functioning of the mito-ribosome. Here, we have assessed the structural and functional role of 93 mitochondrial (mt-) rRNA variants thought to be associated with deafness, including those located at non-conserved positions. Our analysis has used the structural description of the human mito-ribosome of the highest quality currently available, together with a new understanding of the phenotypic manifestation of mito-ribosomal-associated variants. Basically, any base change capable of inducing a fidelity phenotype may be considered non-silent. Under this light, out of 92 previously reported mt-rRNA variants thought to be associated with deafness, we found that 49 were potentially non-silent. We also dismissed a large number of reportedly pathogenic mtDNA variants, 41, as polymorphisms. These results drastically update our view on the implication of the primary sequence of mt-rRNA in the etiology of deafness and mitochondrial disease in general. Our data sheds much-needed light on the question of how mt-rRNA variants located at non-conserved positions may lead to mitochondrial disease and, most notably, provide evidence of the effect of haplotype context in the manifestation of some mt-rRNA variants.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Grupo GIBE. Departamento de Bioloxía e Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Natalia Mallo
- Grupo GIBE. Departamento de Bioloxía e Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Joanna L. Elson
- The Bioscience Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Paul M. Smith
- Department of Paediatrics, Raigmore Hospital, Inverness, United Kingdom
| | - Emma L. Blakely
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
4
|
Watts A, Chalise P, Hu J, Hui D, Pa J, Andrews SJ, Michaelis EK, Swerdlow RH. A Mitochondrial DNA Haplogroup Defines Patterns of Five-Year Cognitive Change. J Alzheimers Dis 2022; 89:913-922. [PMID: 35964186 PMCID: PMC10015634 DOI: 10.3233/jad-220298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) may play a role in Alzheimer's disease (AD) and cognitive decline. A particular haplogroup of mtDNA, haplogroup J, has been observed more commonly in patients with AD than in cognitively normal controls. OBJECTIVE We used two mtDNA haplogroups, H and J, to predict change in cognitive performance over five years. We hypothesized that haplogroup J carriers would show less cognitive resilience. METHODS We analyzed data from 140 cognitively normal older adults who participated in the University of Kansas Alzheimer's Disease Research Center clinical cohort between 2011 and 2020. We used factor analysis to create three composite scores (verbal memory, attention, and executive function) from 11 individual cognitive tests. We performed latent growth curve modeling to describe trajectories of cognitive performance and change adjusting for age, sex, years of education, and APOE ɛ4 allele carrier status. We compared haplogroup H, the most common group, to haplogroup J, the potential risk group. RESULTS Haplogroup J carriers had significantly lower baseline performance and slower rates of improvement on tests of verbal memory compared to haplogroup H carriers. We did not observe differences in executive function or attention. CONCLUSION Our results reinforce the role of mtDNA in changes to cognitive function in a domain associated with risk for dementia, verbal memory, but not with other cognitive domains. Future research should investigate the distinct mechanisms by which mtDNA might affect performance on verbal memory as compared to other cognitive domains across haplogroups.
Collapse
Affiliation(s)
- Amber Watts
- University of Kansas Alzheimer’s Disease Research Center
- Department of Psychology, University of Kansas
| | - Prabhakar Chalise
- University of Kansas Alzheimer’s Disease Research Center
- Department of Biostatistics and Data Science, University of Kansas Medical Center
| | - Jinxiang Hu
- University of Kansas Alzheimer’s Disease Research Center
- Department of Biostatistics and Data Science, University of Kansas Medical Center
| | - Dongwei Hui
- University of Kansas Alzheimer’s Disease Research Center
- Department of Pharmacology and Toxicology, University of Kansas
| | - Judy Pa
- Department of Neurosciences, University of California San Diego
| | - Shea J Andrews
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai
| | - Elias K Michaelis
- University of Kansas Alzheimer’s Disease Research Center
- Department of Pharmacology and Toxicology, University of Kansas
| | - Russell H Swerdlow
- University of Kansas Alzheimer’s Disease Research Center
- Department of Neurology, University of Kansas Medical Center
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center
| |
Collapse
|
5
|
Wang Y, Zhao G, Fang Z, Pan H, Zhao Y, Wang Y, Zhou X, Wang X, Luo T, Zhang Y, Wang Z, Chen Q, Dong L, Huang Y, Zhou Q, Xia L, Li B, Guo J, Xia K, Tang B, Li J. Genetic landscape of human mitochondrial genome using whole genome sequencing. Hum Mol Genet 2021; 31:1747-1761. [PMID: 34897451 DOI: 10.1093/hmg/ddab358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 11/12/2022] Open
Abstract
Increasing evidences suggest that mitochondrial dysfunction is implicated in diseases and aging, and whole-genome sequencing (WGS) is the most unbiased method in analyzing the mitochondrial genome (mtDNA). However, the genetic landscape of mtDNA in the Chinese population has not been fully examined. Here, we described the genetic landscape of mtDNA using WGS data from Chinese individuals (n = 3241). We identified 3892 mtDNA variants, of which 3349 (86%) were rare variants. Interestingly, we observed a trend toward extreme heterogeneity of mtDNA variants. Our study observed a distinct purifying selection on mtDNA, which inhibits the accumulation of harmful heteroplasmies at the individual level: (1) mitochondrial dN/dS ratios were much less than 1; (2) the dN/dS ratio of heteroplasmies was higher than homoplasmies; (3) heteroplasmies had more indels and predicted deleterious variants than homoplasmies. Furthermore, we found that haplogroup M (20.27%) and D (20.15%) had the highest frequencies in the Chinese population, followed by B (18.51%) and F (16.45%). The number of variants per individual differed across haplogroup groups, with a higher number of homoplasmies for the M lineage. Meanwhile, mtDNA copy number was negatively correlated with age but positively correlated with the female sex. Finally, we developed an mtDNA variation database of Chinese populations called MTCards (http://genemed.tech/mtcards/) to facilitate the query of mtDNA variants in this study. In summary, these findings contribute to different aspects of understanding mtDNA, providing a better understanding of the genetic basis of mitochondrial-related diseases.
Collapse
Affiliation(s)
- Yijing Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenghuan Fang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Hongxu Pan
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuwen Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yige Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xun Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaomeng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Tengfei Luo
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Yi Zhang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qian Chen
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lijie Dong
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Yuanfeng Huang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiao Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jifeng Guo
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
6
|
Jang YH, Ahn SR, Shim JY, Lim KI. Engineering Genetic Systems for Treating Mitochondrial Diseases. Pharmaceutics 2021; 13:810. [PMID: 34071708 PMCID: PMC8227772 DOI: 10.3390/pharmaceutics13060810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are intracellular energy generators involved in various cellular processes. Therefore, mitochondrial dysfunction often leads to multiple serious diseases, including neurodegenerative and cardiovascular diseases. A better understanding of the underlying mitochondrial dysfunctions of the molecular mechanism will provide important hints on how to mitigate the symptoms of mitochondrial diseases and eventually cure them. In this review, we first summarize the key parts of the genetic processes that control the physiology and functions of mitochondria and discuss how alterations of the processes cause mitochondrial diseases. We then list up the relevant core genetic components involved in these processes and explore the mutations of the components that link to the diseases. Lastly, we discuss recent attempts to apply multiple genetic methods to alleviate and further reverse the adverse effects of the core component mutations on the physiology and functions of mitochondria.
Collapse
Affiliation(s)
- Yoon-ha Jang
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-h.J.); (J.-y.S.)
| | - Sae Ryun Ahn
- Industry Collaboration Center, Industry-Academic Cooperation Foundation, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea;
| | - Ji-yeon Shim
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-h.J.); (J.-y.S.)
| | - Kwang-il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-h.J.); (J.-y.S.)
- Industry Collaboration Center, Industry-Academic Cooperation Foundation, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea;
| |
Collapse
|
7
|
Hoogmartens J, Cacace R, Van Broeckhoven C. Insight into the genetic etiology of Alzheimer's disease: A comprehensive review of the role of rare variants. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12155. [PMID: 33665345 PMCID: PMC7896636 DOI: 10.1002/dad2.12155] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Early-onset Alzheimer's disease (EOAD) is generally known as a dominant disease due to highly penetrant pathogenic mutations in the amyloid precursor protein, presenilin 1 and 2. However, they explain only a fraction of EOAD patients (5% to 10%). Furthermore, only 10% to 15% of EOAD families present with clear autosomal dominant inheritance. Studies showed that only 35% to 60% of EOAD patients have at least one affected first-degree relative. Parent-offspring concordance in EOAD was estimated to be <10%, indicating that full penetrant dominant alleles are not the sole players in EOAD. We aim to summarize current knowledge of rare variants underlying familial and seemingly sporadic Alzheimer's disease (AD) patients. Genetic findings indicate that in addition to the amyloid beta pathway, other pathways are of importance in AD pathophysiology. We discuss the difficulties in interpreting the influence of rare variants on disease onset and we underline the value of carefully selected ethnicity-matched cohorts in AD genetic research.
Collapse
Affiliation(s)
- Julie Hoogmartens
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Rita Cacace
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain DiseasesVIB Center for Molecular NeurologyAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
8
|
Swerdlow RH, Hui D, Chalise P, Sharma P, Wang X, Andrews SJ, Pa J, Mahnken JD, Morris J, Wilkins HM, Burns JM, Michaelis ML, Michaelis EK, Alzheimer’s Disease Neuroimaging Initiative (ADNI). Exploratory analysis of mtDNA haplogroups in two Alzheimer's longitudinal cohorts. Alzheimers Dement 2020; 16:1164-1172. [PMID: 32543785 PMCID: PMC9847473 DOI: 10.1002/alz.12119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/06/2020] [Accepted: 04/29/2020] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Inherited mitochondrial DNA (mtDNA) variants may influence Alzheimer's disease (AD) risk. METHODS We sequenced mtDNA from 146 AD and 265 cognitively normal (CN) subjects from the University of Kansas AD Center (KUADC) and assigned haplogroups. We further considered 244 AD and 242 CN AD Neuroimaging Initiative (ADNI) subjects with equivalent data. RESULTS Without applying multiple comparisons corrections, KUADC haplogroup J AD and CN frequencies were 16.4% versus 7.6% (P = .007), and haplogroup K AD and CN frequencies were 4.8% versus 10.2% (P = .063). ADNI haplogroup J AD and CN frequencies were 10.7% versus 7.0% (P = .20), and haplogroup K frequencies were 4.9% versus 8.7% (P = .11). For the combined 390 AD and 507 CN cases haplogroup J frequencies were 12.8% versus 7.3% (P = .006), odds ratio (OR) = 1.87, and haplogroup K frequencies were 4.9% versus 9.5% (P = .010), OR = 0.49. Associations remained significant after adjusting for apolipoprotein E, age, and sex. CONCLUSION This exploratory analysis suggests inherited mtDNA variants influence AD risk.
Collapse
Affiliation(s)
- Russell H. Swerdlow
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Dongwei Hui
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Prabhakar Chalise
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Palash Sharma
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xinkun Wang
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shea J. Andrews
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Judy Pa
- Alzheimer’s Disease Research Center, Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern California, Los Angeles, California, USA
| | - Jonathan D. Mahnken
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jill Morris
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Heather M. Wilkins
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey M. Burns
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mary L. Michaelis
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Elias K. Michaelis
- Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | |
Collapse
|
9
|
Ikekpeazu JE, Orji OC, Uchendu IK, Ezeanyika LU. Mitochondrial and Oxidative Impacts of Short and Long-term Administration of HAART on HIV Patients. CURRENT CLINICAL PHARMACOLOGY 2020; 15:110-124. [PMID: 31486756 PMCID: PMC7579318 DOI: 10.2174/1574884714666190905162237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/05/2019] [Accepted: 07/11/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND There may be a possible link between the use of HAART and oxidative stress-related mitochondrial dysfunction in HIV patients. We evaluated the mitochondrial and oxidative impacts of short and long-term administration of HAART on HIV patients attending the Enugu State University Teaching (ESUT) Hospital, Enugu, Nigeria following short and long-term therapy. METHODS 96 patients categorized into four groups of 24 individuals were recruited for the study. Group 1 comprised of age-matched, apparently healthy, sero-negative individuals (the No HIV group); group 2 consisted of HIV sero-positive individuals who had not started any form of treatment (the Treatment naïve group). Individuals in group 3 were known HIV patients on HAART for less than one year (Short-term treatment group), while group 4 comprised of HIV patients on HAART for more than one year (Long-term treatment group). All patients were aged between 18 to 60 years and attended the HIV clinic at the time of the study. Determination of total antioxidant status (TAS in nmol/l), malondialdehyde (MDA in mmol/l), CD4+ count in cells/μl, and genomic studies were all done using standard operative procedures. RESULTS We found that the long-term treatment group had significantly raised the levels of MDA, as well as significantly diminished TAS compared to the Short-term treatment and No HIV groups (P<0.05). In addition, there was significantly elevated variation in the copy number of mitochondrial genes (mtDNA: D-loop, ATPase 8, TRNALEU uur) in the long-term treatment group. CONCLUSION Long-term treatment with HAART increases oxidative stress and causes mitochondrial alterations in HIV patients.
Collapse
Affiliation(s)
| | | | - Ikenna K. Uchendu
- Address correspondence to this author at the Department of Medical Laboratory Science, Faculty of Health Science and Technology, College of Medicine, University of Nigeria Enugu Campus, Enugu State, Nigeria;, Tel: +2347068199556; E-mail:
| | | |
Collapse
|
10
|
Mitochondrial DNA Variants and Common Diseases: A Mathematical Model for the Diversity of Age-Related mtDNA Mutations. Cells 2019; 8:cells8060608. [PMID: 31216686 PMCID: PMC6627076 DOI: 10.3390/cells8060608] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/30/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022] Open
Abstract
The mitochondrion is the only organelle in the human cell, besides the nucleus, with its own DNA (mtDNA). Since the mitochondrion is critical to the energy metabolism of the eukaryotic cell, it should be unsurprising, then, that a primary driver of cellular aging and related diseases is mtDNA instability over the life of an individual. The mutation rate of mammalian mtDNA is significantly higher than the mutation rate observed for nuclear DNA, due to the poor fidelity of DNA polymerase and the ROS-saturated environment present within the mitochondrion. In this review, we will discuss the current literature showing that mitochondrial dysfunction can contribute to age-related common diseases such as cancer, diabetes, and other commonly occurring diseases. We will then turn our attention to the likely role that mtDNA mutation plays in aging and senescence. Finally, we will use this context to develop a mathematical formula for estimating for the accumulation of somatic mtDNA mutations with age. This resulting model shows that almost 90% of non-proliferating cells would be expected to have at least 100 mutations per cell by the age of 70, and almost no cells would have fewer than 10 mutations, suggesting that mtDNA mutations may contribute significantly to many adult onset diseases.
Collapse
|
11
|
Nday CM, Eleftheriadou D, Jackson G. Shared pathological pathways of Alzheimer's disease with specific comorbidities: current perspectives and interventions. J Neurochem 2018; 144:360-389. [PMID: 29164610 DOI: 10.1111/jnc.14256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) belongs to one of the most multifactorial, complex and heterogeneous morbidity-leading disorders. Despite the extensive research in the field, AD pathogenesis is still at some extend obscure. Mechanisms linking AD with certain comorbidities, namely diabetes mellitus, obesity and dyslipidemia, are increasingly gaining importance, mainly because of their potential role in promoting AD development and exacerbation. Their exact cognitive impairment trajectories, however, remain to be fully elucidated. The current review aims to offer a clear and comprehensive description of the state-of-the-art approaches focused on generating in-depth knowledge regarding the overlapping pathology of AD and its concomitant ailments. Thorough understanding of associated alterations on a number of molecular, metabolic and hormonal pathways, will contribute to the further development of novel and integrated theranostics, as well as targeted interventions that may be beneficial for individuals with age-related cognitive decline.
Collapse
Affiliation(s)
- Christiane M Nday
- Department of Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Eleftheriadou
- Department of Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Graham Jackson
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
12
|
Zaia A, Maponi P, Di Stefano G, Casoli T. Biocomplexity and Fractality in the Search of Biomarkers of Aging and Pathology: Focus on Mitochondrial DNA and Alzheimer's Disease. Aging Dis 2017; 8:44-56. [PMID: 28197358 PMCID: PMC5291006 DOI: 10.14336/ad.2016.0629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) represents one major health concern for our growing elderly population. It accounts for increasing impairment of cognitive capacity followed by loss of executive function in late stage. AD pathogenesis is multifaceted and difficult to pinpoint, and understanding AD etiology will be critical to effectively diagnose and treat the disease. An interesting hypothesis concerning AD development postulates a cause-effect relationship between accumulation of mitochondrial DNA (mtDNA) mutations and neurodegenerative changes associated with this pathology. Here we propose a computerized method for an easy and fast mtDNA mutations-based characterization of AD. The method has been built taking into account the complexity of living being and fractal properties of many anatomic and physiologic structures, including mtDNA. Dealing with mtDNA mutations as gaps in the nucleotide sequence, fractal lacunarity appears a suitable tool to differentiate between aging and AD. Therefore, Chaos Game Representation method has been used to display DNA fractal properties after adapting the algorithm to visualize also heteroplasmic mutations. Parameter β from our fractal lacunarity method, based on hyperbola model function, has been measured to quantitatively characterize AD on the basis of mtDNA mutations. Results from this pilot study to develop the method show that fractal lacunarity parameter β of mtDNA is statistically different in AD patients when compared to age-matched controls. Fractal lacunarity analysis represents a useful tool to analyze mtDNA mutations. Lacunarity parameter β is able to characterize individual mutation profile of mitochondrial genome and appears a promising index to discriminate between AD and aging.
Collapse
Affiliation(s)
- Annamaria Zaia
- 1Laboratory of Bioinformatics, Bioengineering and Domotics, Italian National Research Center on Aging - INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Pierluigi Maponi
- 2School of Science and Technology, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino (MC), Italy
| | - Giuseppina Di Stefano
- 3Research, Innovation and Technology Transfer Office, Italian National Research Center on Aging - INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Tiziana Casoli
- 4Scientific and Technological Area, Italian National Research Center on Aging - INRCA, via Birarelli 8, 60121 Ancona, Italy
| |
Collapse
|
13
|
Mitochondria, Cybrids, Aging, and Alzheimer's Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:259-302. [PMID: 28253988 DOI: 10.1016/bs.pmbts.2016.12.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial and bioenergetic function change with advancing age and may drive aging phenotypes. Mitochondrial and bioenergetic changes are also documented in various age-related neurodegenerative diseases, including Alzheimer's disease (AD). In some instances AD mitochondrial and bioenergetic changes are reminiscent of those observed with advancing age but are greater in magnitude. Mitochondrial and bioenergetic dysfunction could, therefore, link neurodegeneration to brain aging. Interestingly, mitochondrial defects in AD patients are not brain-limited, and mitochondrial function can be linked to classic AD histologic changes including amyloid precursor protein processing to beta amyloid. Also, transferring mitochondria from AD subjects to cell lines depleted of endogenous mitochondrial DNA (mtDNA) creates cytoplasmic hybrid (cybrid) cell lines that recapitulate specific biochemical, molecular, and histologic AD features. Such findings have led to the formulation of a "mitochondrial cascade hypothesis" that places mitochondrial dysfunction at the apex of the AD pathology pyramid. Data pertinent to this premise are reviewed.
Collapse
|
14
|
Lin X, Zheng HX, Davie A, Zhou S, Wen L, Meng J, Zhang Y, Aladaer Q, Liu B, Liu WJ, Yao XK. Association of low race performance with mtDNA haplogroup L3b of Australian thoroughbred horses. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:323-330. [PMID: 28129729 DOI: 10.1080/24701394.2016.1278535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mitochondrial DNA (mtDNA) encodes the genes for respiratory chain sub-units that determine the efficiency of oxidative phosphorylation in mitochondria. The aim of this study was to determine if there were any haplogroups and variants in mtDNA that could be associated with athletic performance of Thoroughbred horses. The whole mitochondrial genomes of 53 maternally unrelated Australian Thoroughbred horses were sequenced and an association study was performed with the competition histories of 1123 horses within their maternal lineages. A horse mtDNA phylogenetic tree was constructed based on a total of 195 sequences (including 142 from previous reports). The association analysis showed that the sample groups with poor racing performance history were enriched in haplogroup L3b (p = .0003) and its sub-haplogroup L3b1a (p = .0007), while those that had elite performance appeared to be not significantly associated with haplogroups G2 and L3a1a1a (p > .05). Haplogroup L3b and L3b1a bear two and five specific variants of which variant T1458C (site 345 in 16s rRNA) is the only potential functional variant. Furthermore, secondary reconstruction of 16s RNA showed considerable differences between two types of 16s RNA molecules (with and without T1458C), indicating a potential functional effect. The results suggested that haplogroup L3b, could have a negative association with elite performance. The T1458C mutation harboured in haplogroup L3b could have a functional effect that is related to poor athletic performance.
Collapse
Affiliation(s)
- Xiang Lin
- a Tianjin Key Laboratory of Exercise Physiology and Sports Medicine , Tianjin University of Sports , Tianjin , P.R. China
| | - Hong-Xiang Zheng
- b State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences , Fudan University , Shanghai , P.R.China
| | - Allan Davie
- c School of Health and Human Sciences , Southern Cross University , Lismore , New South Wales , Australia
| | - Shi Zhou
- c School of Health and Human Sciences , Southern Cross University , Lismore , New South Wales , Australia
| | - Li Wen
- a Tianjin Key Laboratory of Exercise Physiology and Sports Medicine , Tianjin University of Sports , Tianjin , P.R. China
| | - Jun Meng
- d College of Animal Sciences , Xinjiang Agricultural University , Urumuqi , China
| | - Yong Zhang
- a Tianjin Key Laboratory of Exercise Physiology and Sports Medicine , Tianjin University of Sports , Tianjin , P.R. China
| | - Qimude Aladaer
- e Center of Systematic Genomics, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences , Urumqi , China
| | - Bin Liu
- e Center of Systematic Genomics, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences , Urumqi , China
| | - Wu-Jun Liu
- d College of Animal Sciences , Xinjiang Agricultural University , Urumuqi , China
| | - Xin-Kui Yao
- d College of Animal Sciences , Xinjiang Agricultural University , Urumuqi , China
| |
Collapse
|
15
|
Gao W, Wang X, Wang X, Cai Y, Luan Q. Association of cognitive function with tooth loss and mitochondrial variation in adult subjects: a community-based study in Beijing, China. Oral Dis 2016; 22:697-702. [PMID: 27353124 DOI: 10.1111/odi.12529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/12/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Cognitive impairment is a common neurological problem in elderly people. In this study, we investigated whether tooth loss, periodontal parameters, and gene variations in the mitochondrial DNA displacement loop region are potential influencing factors on cognitive function. DESIGN We employed a linear regression model to estimate cross-sectional association between number of teeth lost, periodontal parameters and Mini-mental State Examination score, adjusting for demographic factors, socioeconomic factors, general health status, smoking, drinking, and life habits. PARTICIPANTS A total of 905 Han Chinese people, ≥50 years of age, with complete data, were enrolled. Blood samples of 567 of the subjects were analyzed for correlation between mitochondrial DNA variants and Mini-mental State Examination score. RESULTS The number of teeth lost (β = -0.042, 95% CI: -0.061, -0.024, P < 0.001), two single nucleotide polymorphism (SNP) points: A189G (β = -1.540, 95% CI: -2.818, -0.263, P = 0.018) and A16164G (β = -1.053, 95% CI: -2.054, -0.052, P = 0.039) in the mitochondrial DNA displacement loop region, and haplogroup Y (β = -2.152, 95% CI: -4.062, -0.242, P = 0.027) were found to be negatively associated with Mini-mental State Examination scores in the fully adjusted model. No correlation was found between periodontal parameters and Mini-mental State Examination scores. CONCLUSION Number of teeth lost, mitochondrial SNPs, and haplogroup Y were correlated with cognitive function in this study population.
Collapse
Affiliation(s)
- W Gao
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - X Wang
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - X Wang
- Department of Genetics, Beijing Hypertension League Institute, Beijing, China
| | - Y Cai
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Q Luan
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
16
|
Li Y, Li X, Wang Z, Feng Z, Li L, Ke X. Subhaplogroup D4b1 enhances the risk of cervical cancer initiation: A case-control study in southern China. J Obstet Gynaecol Res 2016; 42:325-30. [PMID: 26818773 DOI: 10.1111/jog.12879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/28/2015] [Accepted: 09/01/2015] [Indexed: 12/16/2022]
Abstract
AIM To investigate whether mitochondrial DNA (mtDNA) background (haplogroup) is associated with cervical cancer in patients in southern China. METHODS A case-control study of 150 patients with cervical cancer and 217 geographically matched controls was conducted in Wenzhou, a southern Chinese city in the Zhejiang province. DNA from peripheral blood was extracted and sequenced. Sequences were aligned to the mtDNA revised Cambridge Reference Sequence (GenBank number NC_012920) to determine mtDNA single nucleotide polymorphisms (SNPs) and haplogroups. RESULTS We found that both M and N haplogroups and their diagnostic SNPs (A10398G and C10400T) are not associated with the risk of cervical cancer. However, individuals with haplogroup D4b1/D4b1*, an M subhaplogroup, exhibited an increased risk of cervical cancer (odds ratio [OR] = 1.034; 95% confidence interval [CI] 1.004, 1.066; P = 0.011/OR =1.027; 95% CI 1.001, 1.055; P = 0.027). Individuals with SNPs C10181T/A10136G (OR =1.034; 95% CI 1.004, 1.066; P = 0.011/OR =1.027; 95% CI 1.001, 1.055; P = 0.027) were more susceptible to cervical cancer than individuals without. Furthermore, we determined that mtDNA background is not associated with the progression of cervical cancer. CONCLUSIONS Our results indicate that mtDNA haplogroups play a role in cervical cancer initiation.
Collapse
Affiliation(s)
- Yuanyan Li
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, China
| | - Ximei Li
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, China
| | - Zhihui Wang
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, China
| | - Zejiao Feng
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, China
| | - Lijiao Li
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, China
| | - Xiaohui Ke
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
17
|
Katzman SM, Strotmeyer ES, Nalls MA, Zhao Y, Mooney S, Schork N, Newman AB, Harris TB, Yaffe K, Cummings SR, Liu Y, Tranah GJ. Mitochondrial DNA Sequence Variation Associated With Peripheral Nerve Function in the Elderly. J Gerontol A Biol Sci Med Sci 2014; 70:1400-8. [PMID: 25394619 DOI: 10.1093/gerona/glu175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/19/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction is a prominent hallmark of many sensory neuropathies. The purpose of this study was to assess the influence of mitochondrial DNA sequence variation on peripheral nerve function in the population-based Health, Aging, and Body Composition Study. METHODS We investigated the role of common mitochondrial DNA variation (n = 1,580) and complete mitochondrial DNA sequences (n = 138) on peroneal motor nerve conduction velocity and amplitude, average vibration detection threshold, and monofilament sensitivity. RESULTS Nominal associations among common mitochondrial DNA variants and haplogroups were identified but were not statistically significant after adjustment for multiple comparisons. Sequence-based approaches were used to identify aggregate variant associations across the 16S rRNA (weighted-sum, p = 2E-05 and variable threshold, p = 9E-06) for nerve conduction velocity. Several of these rare 16S variants occurred at or near sites with earlier disease associations and are also in close proximity to the peptidyl transferase center, which is the catalytic center of the 16S rRNA CONCLUSIONS: These results suggest that sequence variation related to mitochondrial protein synthesis/assembly is associated with peripheral nerve function and may provide insight into targets for intervention or new clinical strategies to preserve nerve function in late life.
Collapse
Affiliation(s)
- Shana M Katzman
- Department of Innovation, Technology, and Alliances, University of California, San Francisco and
| | - Elsa S Strotmeyer
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania and
| | - Michael A Nalls
- Laboratory of Neurogenetics, Intramural Research Program, National Institute on Aging, Bethesda, Maryland and
| | - Yiqiang Zhao
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China and
| | - Sean Mooney
- Department of Bioinformatics, Buck Institute for Research on Aging, Novato, California and
| | - Nik Schork
- Department of Human Biology, J. Craig Venter Institute, La Jolla, California and
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania and
| | - Tamara B Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland and
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology, University of California, and Department of Geriatric Psychiatry, San Francisco VA Medical Center and
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco and
| | - Yongmei Liu
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco and
| | | |
Collapse
|
18
|
Fang H, Liu X, Shen L, Li F, Liu Y, Chi H, Miao H, Lu J, Bai Y. Role of mtDNA haplogroups in the prevalence of knee osteoarthritis in a southern Chinese population. Int J Mol Sci 2014; 15:2646-59. [PMID: 24534808 PMCID: PMC3958873 DOI: 10.3390/ijms15022646] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 01/15/2014] [Accepted: 01/22/2014] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial DNA (mtDNA) has been implicated in various human degenerative diseases. However, the role of mtDNA in Osteoarthritis (OA) is less known. To investigate whether mtDNA haplogroups contribute to the prevalence of knee OA, we have carried out a comprehensive case-control study on 187 knee OA patients and 420 geographically matched controls in southern China. OA patients were classified on the Kellgren/Lawrence scale from two to four for the disease severity study and the data were analyzed by adjusting for age and sex. We found that patients with haplogroup G (OR = 3.834; 95% CI 1.139, 12.908; p = 0.03) and T16362C (OR = 1.715; 95% CI 1.174, 2.506; p = 0.005) exhibited an increased risk of OA occurrence. Furthermore, patients carrying haplogroup G had a higher severity progression of knee OA (OR = 10.870; 95% CI 1.307, 90.909; p = 0.007). On the other hand, people with haplogroup B/B4 (OR = 0.503; 95% CI 0.283, 0.893; p = 0.019)/(OR = 0.483; 95% CI 0.245, 0.954; p = 0.036) were less susceptible for OA occurrence. Interestingly, we found OA patients also exhibited a general increase in mtDNA content. Our study indicates that the mtDNA haplogroup plays a role in modulating OA development.
Collapse
Affiliation(s)
- Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Xinwei Liu
- Department of Orthopedics and Rescue Center of Severe Wound and Trauma of Chinese PLA, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang 110016, Liaoning, China.
| | - Lijun Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Fengjie Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Yihong Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Hongbo Chi
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Huikai Miao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Jianxin Lu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Yidong Bai
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
19
|
Mousavizadeh K, Rajabi P, Alaee M, Dadgar S, Houshmand M. Usage of mitochondrial D-loop variation to predict risk for Huntington disease. ACTA ACUST UNITED AC 2014; 26:579-82. [PMID: 24471944 DOI: 10.3109/19401736.2013.878902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Huntington's disease (HD) is an inherited autosomal neurodegenerative disease caused by the abnormal expansion of the CAG repeats in the Huntingtin (Htt) gene. It has been proven that mitochondrial dysfunction is contributed to the pathogenesis of Huntington's disease. The mitochondrial displacement loop (D-loop) is proven to accumulate mutations at a higher rate than other regions of mtDNA. Thus, we hypothesized that specific SNPs in the D-loop may contribute to the pathogenesis of Huntington's disease. In the present study, 30 patients with Huntington's disease and 463 healthy controls were evaluated for mitochondrial mutation sites within the D-loop region using PCR-sequencing method. Sequence analysis revealed 35 variations in HD group from Cambridge Mitochondrial Sequences. A significant difference (p < 0.05) was seen between patients and control group in eight SNPs. Polymorphisms at C16069T, T16126C, T16189C, T16519C and C16223T were correlated with an increased risk of HD while SNPs at C16150T, T16086C and T16195C were associated with a decreased risk of Huntington's disease.
Collapse
Affiliation(s)
- Kazem Mousavizadeh
- Department of Molecular Medicine, Iran University of Medical Sciences , Tehran , Iran
| | | | | | | | | |
Collapse
|
20
|
Pinto M, Moraes CT. Mitochondrial genome changes and neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2013; 1842:1198-207. [PMID: 24252612 DOI: 10.1016/j.bbadis.2013.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 12/12/2022]
Abstract
Mitochondria are essential organelles within the cell where most of the energy production occurs by the oxidative phosphorylation system (OXPHOS). Critical components of the OXPHOS are encoded by the mitochondrial DNA (mtDNA) and therefore, mutations involving this genome can be deleterious to the cell. Post-mitotic tissues, such as muscle and brain, are most sensitive to mtDNA changes, due to their high energy requirements and non-proliferative status. It has been proposed that mtDNA biological features and location make it vulnerable to mutations, which accumulate over time. However, although the role of mtDNA damage has been conclusively connected to neuronal impairment in mitochondrial diseases, its role in age-related neurodegenerative diseases remains speculative. Here we review the pathophysiology of mtDNA mutations leading to neurodegeneration and discuss the insights obtained by studying mouse models of mtDNA dysfunction.
Collapse
Affiliation(s)
- Milena Pinto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
21
|
Mikami E, Fuku N, Kong QP, Takahashi H, Ohiwa N, Murakami H, Miyachi M, Higuchi M, Tanaka M, Pitsiladis YP, Kawahara T. Comprehensive analysis of common and rare mitochondrial DNA variants in elite Japanese athletes: a case–control study. J Hum Genet 2013; 58:780-7. [DOI: 10.1038/jhg.2013.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 12/26/2022]
|
22
|
Dhillon VS, Fenech M. Mutations that affect mitochondrial functions and their association with neurodegenerative diseases. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2013; 759:1-13. [PMID: 24055911 DOI: 10.1016/j.mrrev.2013.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/05/2013] [Accepted: 09/08/2013] [Indexed: 12/20/2022]
Abstract
Mitochondria are essential for mammalian and human cell function as they generate ATP via aerobic respiration. The proteins required in the electron transport chain are mainly encoded by the circular mitochondrial genome but other essential mitochondrial proteins such as DNA repair genes, are coded in the nuclear genome and require transport into the mitochondria. In this review we summarize current knowledge on the association of point mutations and deletions in the mitochondrial genome that are detrimental to mitochondrial function and are associated with accelerated ageing and neurological disorders including Alzheimer's, Parkinson's, Huntington's and Amyotrophic lateral sclerosis (ALS). Mutations in the nuclear encoded genes that disrupt mitochondrial functions are also discussed. It is evident that a greater understanding of the causes of mutations that adversely affect mitochondrial metabolism is required to develop preventive measures against accelerated ageing and neurological disorders caused by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Varinderpal S Dhillon
- Preventative-Health Flagship, Gate 13, Kintore Avenue, Adelaide, SA 5000, Australia; CSIRO Animal, Food and Health Sciences, Gate 13, Kintore Avenue, Adelaide, SA 5000, Australia.
| | - Michael Fenech
- Preventative-Health Flagship, Gate 13, Kintore Avenue, Adelaide, SA 5000, Australia; CSIRO Animal, Food and Health Sciences, Gate 13, Kintore Avenue, Adelaide, SA 5000, Australia
| |
Collapse
|
23
|
Mitochondrial NADH:ubiquinone oxidoreductase alterations are associated with endometriosis. Mitochondrion 2013; 13:782-90. [PMID: 23685242 DOI: 10.1016/j.mito.2013.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/09/2013] [Accepted: 05/07/2013] [Indexed: 01/14/2023]
Abstract
Genetic alterations and aberrant expression of 'mitochondrial membrane complex I' (MMC-I) underlie several complex human disorders, but no reports are documented to date in endometriosis. Sequencing of mitochondrially encoded MMC-I subunits revealed 72 mutations of which 2 missense (G10398A; A13603A/G) mutations and 1 synonymous (T10400C) mutation showed higher prevalence in patients. In silico functional analysis predicted A13603A/G, a novel heteroplasmy as a 'damaging variant'. Our results indicate higher endometriosis risk for haplotype '10398A/10400C/13603AG' and haplogroup 'N'. Immunohistochemical analysis revealed elevated MMC-I expression in eutopic endometria of patients compared to controls. In conclusion, MMC-I alterations may constitute an inheritable risk factor for endometriosis.
Collapse
|
24
|
Scheffler K, Krohn M, Dunkelmann T, Stenzel J, Miroux B, Ibrahim S, von Bohlen und Halbach O, Heinze HJ, Walker LC, Gsponer JA, Pahnke J. Mitochondrial DNA polymorphisms specifically modify cerebral β-amyloid proteostasis. Acta Neuropathol 2012; 124:199-208. [PMID: 22526016 DOI: 10.1007/s00401-012-0980-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 03/01/2012] [Accepted: 03/29/2012] [Indexed: 01/28/2023]
Abstract
Several lines of evidence link mutations and deletions in mitochondrial DNA (mtDNA) and its maternal inheritance to neurodegenerative diseases in the elderly. Age-related mutations of mtDNA modulate the tricarboxylic cycle enzyme activity, mitochondrial oxidative phosphorylation capacity and oxidative stress response. To investigate the functional relevance of specific mtDNA polymorphisms of inbred mouse strains in the proteostasis regulation of the brain, we established novel mitochondrial congenic mouse lines of Alzheimer's disease (AD). We crossed females from inbred strains (FVB/N, AKR/J, NOD/LtJ) with C57BL/6 males for at least ten generations to gain specific mitochondrial conplastic strains with pure C57BL/6 nuclear backgrounds. We show that specific mtDNA polymorphisms originating from the inbred strains differentially influence mitochondrial energy metabolism, ATP production and ATP-driven microglial activity, resulting in alterations of cerebral β-amyloid (Aβ) accumulation. Our findings demonstrate that mtDNA-related increases in ATP levels and subsequently in microglial activity are directly linked to decreased Aβ accumulation in vivo, implicating reduced mitochondrial function in microglia as a causative factor in the development of age-related cerebral proteopathies such as AD.
Collapse
|
25
|
Swerdlow RH. Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer's disease. Antioxid Redox Signal 2012; 16:1434-55. [PMID: 21902597 PMCID: PMC3329949 DOI: 10.1089/ars.2011.4149] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 07/28/2011] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE Mitochondria and brain bioenergetics are increasingly thought to play an important role in Alzheimer's disease (AD). RECENT ADVANCES Data that support this view are discussed from the perspective of the amyloid cascade hypothesis, which assumes beta-amyloid perturbs mitochondrial function, and from an opposite perspective that assumes mitochondrial dysfunction promotes brain amyloidosis. A detailed review of cytoplasmic hybrid (cybrid) studies, which argue mitochondrial DNA (mtDNA) contributes to sporadic AD, is provided. Recent AD endophenotype data that further suggest an mtDNA contribution are also summarized. CRITICAL ISSUES AND FUTURE DIRECTIONS Biochemical, molecular, cybrid, biomarker, and clinical data pertinent to the mitochondria-bioenergetics-AD nexus are synthesized and the mitochondrial cascade hypothesis, which represents a mitochondria-centric attempt to conceptualize sporadic AD, is discussed.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
26
|
Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 2012; 322:254-62. [PMID: 22669122 DOI: 10.1016/j.jns.2012.05.030] [Citation(s) in RCA: 551] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 02/06/2023]
Abstract
Mitochondria are involved in ATP supply to cells through oxidative phosphorylation (OXPHOS), synthesis of key molecules and response to oxidative stress, as well as in apoptosis. They contain many redox enzymes and naturally occurring inefficiencies of oxidative phosphorylation generate reactive oxygen species (ROS). CNS functions depend heavily on efficient mitochondrial function, since brain tissue has a high energy demand. Mutations in mitochondrial DNA (mtDNA), generation and presence of ROS and environmental factors may contribute to energy failure and lead to neurodegenerative diseases. Many rare metabolic disorders have been associated with mitochondrial dysfunction. More than 300 pathogenic mtDNA mutations involve proteins that regulate OXPHOS and mitochondrial structural integrity, and have also been described in neurodegenerative diseases with autosomal inheritance. Mitochondria may have an important role in ageing-related neurodegenerative disorders like Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). In primary mitochondrial and neurodegenerative disorders, there is strong evidence that mitochondrial dysfunction occurs early and has a primary role in pathogenesis. In the present review, we discuss several mitochondrial diseases as models of neurodegeneration.
Collapse
Affiliation(s)
- Antonio Federico
- Department of Neurological, Neurosurgical and Behavioural Sciences, Medical School, University of Siena, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Coskun P, Wyrembak J, Schriner S, Chen HW, Marciniack C, LaFerla F, Wallace DC. A mitochondrial etiology of Alzheimer and Parkinson disease. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:553-64. [PMID: 21871538 PMCID: PMC3270155 DOI: 10.1016/j.bbagen.2011.08.008] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/10/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND The genetics and pathophysiology of Alzheimer Disease (AD) and Parkinson Disease (PD) appears complex. However, mitochondrial dysfunction is a common observation in these and other neurodegenerative diseases. SCOPE OF REVIEW We argue that the available data on AD and PD can be incorporated into a single integrated paradigm based on mitochondrial genetics and pathophysiology. MAJOR CONCLUSIONS Rare chromosomal cases of AD and PD can be interpreted as affecting mitochondrial function, quality control, and mitochondrial DNA (mtDNA) integrity. mtDNA lineages, haplogroups, such haplogroup H5a which harbors the mtDNA tRNA(Gln) A8336G variant, are important risk factors for AD and PD. Somatic mtDNA mutations are elevated in AD, PD, and Down Syndrome and Dementia (DSAD) both in brains and also systemically. AD, DS, and DSAD brains also have reduced mtDNA ND6 mRNA levels, altered mtDNA copy number, and perturbed Aβ metabolism. Classical AD genetic changes incorporated into the 3XTg-AD (APP, Tau, PS1) mouse result in reduced forebrain size, life-long reduced mitochondrial respiration in 3XTg-AD males, and initially elevated respiration and complex I and IV activities in 3XTg-AD females which markedly declines with age. GENERAL SIGNIFICANCE Therefore, mitochondrial dysfunction provides a unifying genetic and pathophysiology explanation for AD, PD, and other neurodegenerative diseases. This article is part of a Special Issue entitled Biochemistry of Mitochondria.
Collapse
Affiliation(s)
- Pinar Coskun
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), Department of Biological Chemistry, Hewitt Hall, Irvine, CA 92697-3940
- Institute for Memory Impairments and Neurological Disorders, Department of Neurobiology and Behavior, School of Biological Sciences, 3212 Biological Sciences III, University of California, Irvine, Irvine, CA 92697-4545
| | - Joanne Wyrembak
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), Department of Biological Chemistry, Hewitt Hall, Irvine, CA 92697-3940
| | - Sam Schriner
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), Department of Biological Chemistry, Hewitt Hall, Irvine, CA 92697-3940
| | - Hsiao-Wen Chen
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), Department of Biological Chemistry, Hewitt Hall, Irvine, CA 92697-3940
| | - Christine Marciniack
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), Department of Biological Chemistry, Hewitt Hall, Irvine, CA 92697-3940
| | - Frank LaFerla
- Institute for Memory Impairments and Neurological Disorders, Department of Neurobiology and Behavior, School of Biological Sciences, 3212 Biological Sciences III, University of California, Irvine, Irvine, CA 92697-4545
| | - Douglas C. Wallace
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), Department of Biological Chemistry, Hewitt Hall, Irvine, CA 92697-3940
- Center of Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, 3501 Civic Center Boulevard, CTRB 6060, Philadelphia, PA 19104-4302
| |
Collapse
|
28
|
Chien M, Huang W, Wang P, Liou C, Lin T, Hsieh C, Weng S. Role of mitochondrial DNA variants and copy number in diabetic atherogenesis. GENETICS AND MOLECULAR RESEARCH 2012; 11:3339-48. [DOI: 10.4238/2012.september.17.4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Filosto M, Scarpelli M, Cotelli MS, Vielmi V, Todeschini A, Gregorelli V, Tonin P, Tomelleri G, Padovani A. The role of mitochondria in neurodegenerative diseases. J Neurol 2011; 258:1763-74. [PMID: 21604203 DOI: 10.1007/s00415-011-6104-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/07/2011] [Accepted: 05/10/2011] [Indexed: 12/12/2022]
Abstract
Mitochondria are implicated in several metabolic pathways including cell respiratory processes, apoptosis, and free radical production. Mitochondrial abnormalities have been documented in neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases, and amyotrophic lateral sclerosis. Several studies have demonstrated that mitochondrial impairment plays an important role in the pathogenesis of this group of disorders. In this review, we discuss the role of mitochondria in the main neurodegenerative diseases and review the updated knowledge in this field.
Collapse
Affiliation(s)
- Massimiliano Filosto
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital Spedali Civili, Pz.le Spedali Civili 1, 25100, Brescia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Maruszak A, Żekanowski C. Mitochondrial dysfunction and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:320-30. [PMID: 20624441 DOI: 10.1016/j.pnpbp.2010.07.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/31/2010] [Accepted: 07/05/2010] [Indexed: 01/16/2023]
Abstract
To date, one of the most discussed hypotheses for Alzheimer's disease (AD) etiology implicates mitochondrial dysfunction and oxidative stress as one of the primary events in the course of AD. In this review we focus on the role of mitochondria and mitochondrial DNA (mtDNA) variation in AD and discuss the rationale for the involvement of mitochondrial abnormalities in AD pathology. We summarize the current data regarding the proteins involved in mitochondrial function and pathology observed in AD, and discuss the role of somatic mutations and mitochondrial haplogroups in AD development.
Collapse
Affiliation(s)
- Aleksandra Maruszak
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warszawa, Poland.
| | | |
Collapse
|
31
|
Ienco EC, Simoncini C, Orsucci D, Petrucci L, Filosto M, Mancuso M, Siciliano G. May "mitochondrial eve" and mitochondrial haplogroups play a role in neurodegeneration and Alzheimer's disease? Int J Alzheimers Dis 2011; 2011:709061. [PMID: 21423558 PMCID: PMC3056451 DOI: 10.4061/2011/709061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/29/2010] [Indexed: 12/26/2022] Open
Abstract
Mitochondria, the powerhouse of the cell, play a critical role in several metabolic processes and apoptotic pathways. Multiple evidences suggest that mitochondria may be crucial in ageing-related neurodegenerative diseases. Moreover, mitochondrial haplogroups have been linked to multiple area of medicine, from normal ageing to diseases, including neurodegeneration. Polymorphisms within the mitochondrial genome might lead to impaired energy generation and to increased amount of reactive oxygen species, having either susceptibility or protective role in several diseases. Here, we highlight the role of the mitochondrial haplogroups in the pathogenetic cascade leading to diseases, with special attention to Alzheimer's disease.
Collapse
Affiliation(s)
- Elena Caldarazzo Ienco
- Department of Neuroscience, Neurological Clinic, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Douglas KC, Halbert ND, Kolenda C, Childers C, Hunter DL, Derr JN. Complete mitochondrial DNA sequence analysis of Bison bison and bison-cattle hybrids: function and phylogeny. Mitochondrion 2010; 11:166-75. [PMID: 20870040 DOI: 10.1016/j.mito.2010.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 09/05/2010] [Accepted: 09/14/2010] [Indexed: 01/15/2023]
Abstract
Complete mitochondrial DNA (mtDNA) genomes from 43 bison and bison-cattle hybrids were sequenced and compared with other bovids. Selected animals reflect the historical range and current taxonomic structure of bison. This study identified regions of potential nuclear-mitochondrial incompatibilities in hybrids, provided a complete mtDNA phylogenetic tree for this species, and uncovered evidence of bison population substructure. Seventeen bison haplotypes defined by 66 polymorphic sites were discovered, whereas 728 fixed differences and 86 non-synonymous mutations were identified between bison and bison-cattle hybrid sequences. The potential roles of the mtDNA genome in the function of hybrid animals and bison taxonomy are discussed.
Collapse
Affiliation(s)
- Kory C Douglas
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Fang H, Shen L, Chen T, He J, Ding Z, Wei J, Qu J, Chen G, Lu J, Bai Y. Cancer type-specific modulation of mitochondrial haplogroups in breast, colorectal and thyroid cancer. BMC Cancer 2010; 10:421. [PMID: 20704735 PMCID: PMC2933623 DOI: 10.1186/1471-2407-10-421] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 08/12/2010] [Indexed: 01/26/2023] Open
Abstract
Background Mitochondrial DNA (mtDNA) haplogroups and single nucleotide polymorphisms (mtSNP) have been shown to play a role in various human conditions including aging and some neurodegenerative diseases, metabolic diseases and cancer. Methods To investigate whether mtDNA haplogroups contribute to the occurrence of cancer in a specific Chinese population, we have carried out a comprehensive case-control study of mtDNA from large cohorts of patients with three common cancer types, namely, colorectal cancer (n = 108), thyroid cancer (n = 100) and breast cancer (n = 104), in Wenzhou, a southern Chinese city in the Zhejiang Province. Results We found that patients with mtDNA haplogroup M exhibited an increased risk of breast cancer occurrence [OR = 1.77; 95% CI (1.03-3.07); P = 0.040], and that this risk was even more pronounced in a sub-haplogroup of M, D5 [OR = 3.11; 95%CI (1.07-9.06); p = 0.030]. In spite of this, in patients with breast cancer, haplogroup M was decreased in the metastatic group. On the other hand, our results also showed that haplogroup D4a was associated with an increased risk of thyroid cancer [OR = 3.00; 95%CI (1.09-8.29); p = 0.028]. However, no significant correlation has been detected between any mtDNA haplogroups and colorectal cancer occurrence. Conclusion Our investigation indicates that mitochondrial haplogroups could have a tissue-specific, population-specific and stage-specific role in modulating cancer development.
Collapse
Affiliation(s)
- Hezhi Fang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou 325035, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Krüger J, Hinttala R, Majamaa K, Remes AM. Mitochondrial DNA haplogroups in early-onset Alzheimer's disease and frontotemporal lobar degeneration. Mol Neurodegener 2010; 5:8. [PMID: 20181062 PMCID: PMC2830999 DOI: 10.1186/1750-1326-5-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 02/02/2010] [Indexed: 05/26/2023] Open
Abstract
Background Mitochondrial dysfunction, oxidative damage and the accumulation of somatic mutations in mitochondrial DNA (mtDNA) have been associated with certain neurodegenerative disorders. Previous studies have also provided controversial results on the association of mtDNA haplogroups with susceptibility to Alzheimer's disease (AD), but possible relationships between mtDNA and frontotemporal lobar degeneration (FTLD) have been less frequently studied. Methods We analysed the role of mtDNA and its maintenance enzymes in 128 early-onset AD (eoAD) and in 66 FTLD cases. Patients and 99 controls were collected from a defined region of Finland, that of Northern Ostrobothnia, for the determination of mtDNA haplogroups and the analysis of two common mtDNA mutations (m.3243A>G, m.8344A>G). In addition, screening was performed for five common POLG1 mutations (T251I, A467T, P587L, W748S and Y955C) and all the coding exons of the PEO1 and ANT1 genes were screened for mutations. Results The frequency of haplogroup cluster IWX was 2.3 fold higher among the FTLD cases than in the controls (OR 2.69, 95% CI 1.09-6.65, p = 0.028). The frequency of mtDNA haplogroups or clusters did not differ between the eoAD cases and controls. The two mtDNA mutations and five POLG1 mutations were absent in the eoAD and FTLD patients. No pathogenic mutations were found in the PEO1 or ANT1 genes. Conclusions We conclude that the haplogroup cluster IWX was associated with FTLD in our cohort. Further studies in other ethnically distinct cohorts are needed to clarify the contribution of mtDNA haplogroups to FTLD and AD.
Collapse
Affiliation(s)
- Johanna Krüger
- Institute of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland.
| | | | | | | |
Collapse
|