1
|
Yu F, Zhao X, Zhang S, Lu W, Li P, Yang W, Zhao Z. Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration. Adv Healthc Mater 2025; 14:e2404015. [PMID: 39764719 DOI: 10.1002/adhm.202404015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Indexed: 03/04/2025]
Abstract
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, Ti3C2Tx MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration. Ti3C2Tx MXenes are synthetized, incorporated into beta-tricalcium phosphate ceramics (β-TCP) nanocomposites (T-MXene), and their osteoinductive and immunomodulatory effects are evaluated. The effects of T-MXene-treated T-cells on bone marrow stromal cells (BMSCs) are explored. In addition, its therapeutic potential for bone regeneration is assessed in vivo using a critical-sized mandibular bone defect model. The underlying mechanisms by which T-MXene regulates T-cell differentiation and bone regeneration are explored via whole-transcriptome RNA sequencing. The scaffolds activate N-glycosylation in T cells, which possess anti-inflammatory and antioxidant effects, thereby inducing a pro-regenerative response. T-MXene increased the proportion of IL-4+ T cells among primary T cells and mandibular lymph nodes, ultimately promoting osteogenesis in BMSCs and injured mandibles. The distinctive function of MXene-based nanocomposites in osteoimmunomodulation provides a solid foundation for further exploration and application of MXenes as immune response modulators, potentially advancing their use in regenerative medicine.
Collapse
Affiliation(s)
- Fei Yu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xing Zhao
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shuting Zhang
- College of Polymer Science and Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Wenxin Lu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Peilin Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Yang
- College of Polymer Science and Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Kopčilová J, Ptáčková H, Kramářová T, Fajkusová L, Réblová K, Zeman J, Honzík T, Zdražilová L, Zámečník J, Balážová P, Viestová K, Kolníková M, Hansíková H, Zídková J. Large TRAPPC11 gene deletions as a cause of muscular dystrophy and their estimated genesis. J Med Genet 2024; 61:908-913. [PMID: 38955476 DOI: 10.1136/jmg-2024-110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Transport protein particle (TRAPP) is a multiprotein complex that functions in localising proteins to the Golgi compartment. The TRAPPC11 subunit has been implicated in diseases affecting muscle, brain, eye and to some extent liver. We present three patients who are compound heterozygotes for a missense variant and a structural variant in the TRAPPC11 gene. TRAPPC11 structural variants have not yet been described in association with a disease. In order to reveal the estimated genesis of identified structural variants, we performed sequencing of individual breakpoint junctions and analysed the extent of homology and the presence of repetitive elements in and around the breakpoints. METHODS Biochemical methods including isoelectric focusing on serum transferrin and apolipoprotein C-III, as well as mitochondrial respiratory chain complex activity measurements, were used. Muscle biopsy samples underwent histochemical analysis. Next-generation sequencing was employed for identifying sequence variants associated with neuromuscular disorders, and Sanger sequencing was used to confirm findings. RESULTS We suppose that non-homologous end joining is a possible mechanism of deletion origin in two patients and non-allelic homologous recombination in one patient. Analyses of mitochondrial function performed in patients' skeletal muscles revealed an imbalance of mitochondrial metabolism, which worsens with age and disease progression. CONCLUSION Our results contribute to further knowledge in the field of neuromuscular diseases and mutational mechanisms. This knowledge is important for understanding the molecular nature of human diseases and allows us to improve strategies for identifying disease-causing mutations.
Collapse
Affiliation(s)
- Johana Kopčilová
- Centre of Molecular Biology and Genetics, Brno University Hospital, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Ptáčková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Kramářová
- Centre of Molecular Biology and Genetics, Brno University Hospital, Brno, Czech Republic
| | - Lenka Fajkusová
- Centre of Molecular Biology and Genetics, Brno University Hospital, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kamila Réblová
- Centre of Molecular Biology and Genetics, Brno University Hospital, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiří Zeman
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Honzík
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic
| | - Lucie Zdražilová
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic
| | - Josef Zámečník
- Department of Pathology and Molecular Medicine, Charles University, Second Faculty of Medicine, and Faculty Hospital Motol, Prague, Czech Republic
| | - Patrícia Balážová
- Department of Pediatric Neurology, Medical Faculty of Comenius University and Children Faculty Hospital, Bratislava, Slovakia
| | - Karin Viestová
- Department of Pediatric Neurology, Medical Faculty of Comenius University and Children Faculty Hospital, Bratislava, Slovakia
| | - Miriam Kolníková
- Department of Pediatric Neurology, Medical Faculty of Comenius University and Children Faculty Hospital, Bratislava, Slovakia
| | - Hana Hansíková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine, and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Zídková
- Centre of Molecular Biology and Genetics, Brno University Hospital, Brno, Czech Republic
| |
Collapse
|
3
|
Peng M, Mathew ND, Anderson VE, Falk MJ, Nakamaru-Ogiso E. N-Glycosylation of MRS2 balances aerobic and anaerobic energy production by reducing rapid mitochondrial Mg 2+ influx in conditions of high glucose or impaired respiratory chain function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602756. [PMID: 39026824 PMCID: PMC11257584 DOI: 10.1101/2024.07.09.602756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
N-linked glycoproteins function in numerous biological processes, modulating enzyme activities as well as protein folding, stability, oligomerization, and trafficking. While N-glycosylation of mitochondrial proteins has been detected by untargeted MS-analyses, the physiological existence and roles of mitochondrial protein N-linked glycosylation remain under debate. Here, we report that MRS2, a mitochondrial inner membrane protein that functions as the high flux magnesium transporter, is N-glycosylated to various extents depending on cellular bioenergetic status. Both N-glycosylated and unglycosylated isoforms were consistently detected in mitochondria isolated from mouse liver, rat and mouse liver fibroblast cells (BRL 3A and AFT024, respectively) as well as human skin fibroblast cells. Immunoblotting of MRS2 showed it was bound to, and required stringent elution conditions to remove from, lectin affinity columns with covalently bound concanavalin A or Lens culinaris agglutinin. Following peptide:N-glycosidase F (PNGase F) digestion of the stringently eluted proteins, the higher Mr MRS2 bands gel-shifted to lower Mr and loss of lectin affinity was seen. BRL 3A cells treated with two different N-linked glycosylation inhibitors, tunicamycin or 6-diazo-5-oxo-l-norleucine, resulted in decreased intensity or loss of the higher Mr MRS2 isoform. To investigate the possible functional role of MRS2 N- glycosylation, we measured rapid Mg2+ influx capacity in intact mitochondria isolated from BRL 3A cells in control media or following treatment with tunicamycin or 6-diazo-5-oxo-l-norleucine. Interestingly, rapid Mg2+ influx capacity increased in mitochondria isolated from BRL 3A cells treated with either N-glycosylation inhibitor. Forcing reliance on mitochondrial respiration by treatment with either galactose media or the glycolytic inhibitor 2-deoxyglucose or by minimizing glucose concentration similarly reduced the N-glycosylated isoform of MRS2, with a correlated concomitant increase in rapid Mg2+ influx capacity. Conversely, inhibiting mitochondrial energy production in BRL 3A cells with either rotenone or oligomycin resulted in an increased fraction of N-glycosylated MRS2, with decreased rapid Mg2+ influx capacity. Collectively, these data provide strong evidence that MRS2 N-glycosylation is directly involved in the regulation of mitochondrial matrix Mg2+, dynamically communicating relative cellular nutrient status and bioenergetic capacity by serving as a physiologic brake on the influx of mitochondrial matrix Mg2+ under conditions of glucose excess or mitochondrial bioenergetic impairment.
Collapse
Affiliation(s)
- Min Peng
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Neal D. Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Vernon E. Anderson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
4
|
Zhang M, Luo X, Zhang B, Luo D, Huang L, Long Q. Unveiling OSCP as the potential therapeutic target for mitochondrial dysfunction-related diseases. Life Sci 2024; 336:122293. [PMID: 38030056 DOI: 10.1016/j.lfs.2023.122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Mitochondria are important organelles in cells responsible for energy production and regulation. Mitochondrial dysfunction has been implicated in the pathogenesis of many diseases. Oligomycin sensitivity-conferring protein (OSCP), a component of the inner mitochondrial membrane, has been studied for a long time. OSCP is a component of the F1Fo-ATP synthase in mitochondria and is closely related to the regulation of the mitochondrial permeability transition pore (mPTP). Studies have shown that OSCP plays an important role in cardiovascular disease, neurological disorders, and tumor development. This review summarizes the localization, structure, function, and regulatory mechanisms of OSCP and outlines its role in cardiovascular disease, neurological disease, and tumor development. In addition, this article reviews the research on the interaction between OSCP and mPTP. Finally, the article suggests future research directions, including further exploration of the mechanism of action of OSCP, the interaction between OSCP and other proteins and signaling pathways, and the development of new treatment strategies for mitochondrial dysfunction. In conclusion, in-depth research on OSCP will help to elucidate its importance in cell function and disease and provide new ideas for the treatment and prevention of related diseases.
Collapse
Affiliation(s)
- Mingyue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Binzhi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Martija AA, Krauß A, Bächle N, Doth L, Christians A, Krunic D, Schneider M, Helm D, Will R, Hartmann C, Herold-Mende C, von Deimling A, Pusch S. EMP3 sustains oncogenic EGFR/CDK2 signaling by restricting receptor degradation in glioblastoma. Acta Neuropathol Commun 2023; 11:177. [PMID: 37936247 PMCID: PMC10629159 DOI: 10.1186/s40478-023-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
Epithelial membrane protein 3 (EMP3) is an N-glycosylated tetraspanin with a putative trafficking function. It is highly expressed in isocitrate dehydrogenase-wild-type glioblastoma (IDH-wt GBM), and its high expression correlates with poor survival. However, the exact trafficking role of EMP3 and how it promotes oncogenic signaling in GBM remain unclear. Here, we show that EMP3 promotes EGFR/CDK2 signaling by regulating the trafficking and enhancing the stability of EGFR. BioID2-based proximity labeling revealed that EMP3 interacts with endocytic proteins involved in the vesicular transport of EGFR. EMP3 knockout (KO) enhances epidermal growth factor (EGF)-induced shuttling of EGFR into RAB7 + late endosomes, thereby promoting EGFR degradation. Increased EGFR degradation is rescued by the RAB7 negative regulator and novel EMP3 interactor TBC1D5. Phosphoproteomic and transcriptomic analyses further showed that EMP3 KO converges into the inhibition of the cyclin-dependent kinase CDK2 and the repression of EGFR-dependent and cell cycle transcriptional programs. Phenotypically, EMP3 KO cells exhibit reduced proliferation rates, blunted mitogenic response to EGF, and increased sensitivity to the pan-kinase inhibitor staurosporine and the EGFR inhibitor osimertinib. Furthermore, EGFR-dependent patient-derived glioblastoma stem cells display a transcriptomic signature consistent with reduced CDK2 activity, as well as increased susceptibility to CDK2 inhibition upon EMP3 knockdown. Lastly, using TCGA data, we showed that GBM tumors with high EMP3 expression have increased total and phosphorylated EGFR levels. Collectively, our findings demonstrate a novel EMP3-dependent mechanism by which EGFR/CDK2 activity is sustained in GBM. Consequently, EMP3's stabilizing effect provides an additional layer of tumor cell resistance against targeted kinase inhibition.
Collapse
Affiliation(s)
- Antoni Andreu Martija
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alexandra Krauß
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Natalie Bächle
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Laura Doth
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Arne Christians
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
- Canopy Biosciences, Bruker Nano Group, Hannover, Germany
| | - Damir Krunic
- Light Microscopy Facility, DKFZ, Heidelberg, Germany
| | | | - Dominic Helm
- Proteomics Core Facility, DKFZ, Heidelberg, Germany
| | - Rainer Will
- Cellular Tools Core Facility, DKFZ, Heidelberg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Andreas von Deimling
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Pusch
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
6
|
Le Minh G, Esquea EM, Young RG, Huang J, Reginato MJ. On a sugar high: Role of O-GlcNAcylation in cancer. J Biol Chem 2023; 299:105344. [PMID: 37838167 PMCID: PMC10641670 DOI: 10.1016/j.jbc.2023.105344] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
Recent advances in the understanding of the molecular mechanisms underlying cancer progression have led to the development of novel therapeutic targeting strategies. Aberrant glycosylation patterns and their implication in cancer have gained increasing attention as potential targets due to the critical role of glycosylation in regulating tumor-specific pathways that contribute to cancer cell survival, proliferation, and progression. A special type of glycosylation that has been gaining momentum in cancer research is the modification of nuclear, cytoplasmic, and mitochondrial proteins, termed O-GlcNAcylation. This protein modification is catalyzed by an enzyme called O-GlcNAc transferase (OGT), which uses the final product of the Hexosamine Biosynthetic Pathway (HBP) to connect altered nutrient availability to changes in cellular signaling that contribute to multiple aspects of tumor progression. Both O-GlcNAc and its enzyme OGT are highly elevated in cancer and fulfill the crucial role in regulating many hallmarks of cancer. In this review, we present and discuss the latest findings elucidating the involvement of OGT and O-GlcNAc in cancer.
Collapse
Affiliation(s)
- Giang Le Minh
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Emily M Esquea
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Riley G Young
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jessie Huang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
7
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
8
|
Kim S, Backe SJ, Wengert LA, Johnson AE, Isakov RV, Bratslavsky MS, Woodford MR. O-GlcNAcylation suppresses TRAP1 activity and promotes mitochondrial respiration. Cell Stress Chaperones 2022; 27:573-585. [PMID: 35976490 PMCID: PMC9485411 DOI: 10.1007/s12192-022-01293-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022] Open
Abstract
The molecular chaperone TNF-receptor-associated protein-1 (TRAP1) controls mitochondrial respiration through regulation of Krebs cycle and electron transport chain activity. Post-translational modification (PTM) of TRAP1 regulates its activity, thereby controlling global metabolic flux. O-GlcNAcylation is one PTM that is known to impact mitochondrial metabolism, however the major effectors of this regulatory PTM remain inadequately resolved. Here we demonstrate that TRAP1-O-GlcNAcylation decreases TRAP1 ATPase activity, leading to increased mitochondrial metabolism. O-GlcNAcylation of TRAP1 occurs following mitochondrial import and provides critical regulatory feedback, as the impact of O-GlcNAcylation on mitochondrial metabolism shows TRAP1-dependence. Mechanistically, loss of TRAP1-O-GlcNAcylation decreased TRAP1 binding to ATP, and interaction with its client protein succinate dehydrogenase (SDHB). Taken together, TRAP1-O-GlcNAcylation serves to regulate mitochondrial metabolism by the reversible attenuation of TRAP1 chaperone activity.
Collapse
Affiliation(s)
- Seungchan Kim
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Laura A Wengert
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Anna E Johnson
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Roman V Isakov
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Michael S Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
9
|
Short O-GlcNAcase Is Targeted to the Mitochondria and Regulates Mitochondrial Reactive Oxygen Species Level. Cells 2022; 11:cells11111827. [PMID: 35681522 PMCID: PMC9180253 DOI: 10.3390/cells11111827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
O-GlcNAcylation is a reversible post-translational modification involved in the regulation of cytosolic, nuclear, and mitochondrial proteins. Only two enzymes, OGT (O-GlcNAc transferase) and OGA (O-GlcNAcase), control the attachment and removal of O-GlcNAc on proteins, respectively. Whereas a variant OGT (mOGT) has been proposed as the main isoform that O-GlcNAcylates proteins in mitochondria, identification of a mitochondrial OGA has not been performed yet. Two splice variants of OGA (short and long isoforms) have been described previously. In this work, using cell fractionation experiments, we show that short-OGA is preferentially recovered in mitochondria-enriched fractions from HEK-293T cells and RAW 264.7 cells, as well as mouse embryonic fibroblasts. Moreover, fluorescent microscopy imaging confirmed that GFP-tagged short-OGA is addressed to mitochondria. In addition, using a Bioluminescence Resonance Energy Transfer (BRET)-based mitochondrial O-GlcNAcylation biosensor, we show that co-transfection of short-OGA markedly reduced O-GlcNAcylation of the biosensor, whereas long-OGA had no significant effect. Finally, using genetically encoded or chemical fluorescent mitochondrial probes, we show that short-OGA overexpression increases mitochondrial ROS levels, whereas long-OGA has no significant effect. Together, our work reveals that the short-OGA isoform is targeted to the mitochondria where it regulates ROS homoeostasis.
Collapse
|
10
|
Recent Advances in Quartz Crystal Microbalance Biosensors Based on the Molecular Imprinting Technique for Disease-Related Biomarkers. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The molecular imprinting technique is a quickly developing field of interest regarding the synthesis of artificial recognition elements that enable the specific determination of target molecule/analyte from a matrix. Recently, these smart materials can be successfully applied to biomolecule detection in biomimetic biosensors. These biosensors contain a biorecognition element (a bioreceptor) and a transducer, like their biosensor analogs. Here, the basic difference is that molecular imprinting-based biosensors use a synthetic recognition element. Molecular imprinting polymers used as the artificial recognition elements in biosensor platforms are complementary in shape, size, specific binding sites, and functionality to their template analytes. Recent progress in biomolecular recognition has supplied extra diagnostic and treatment methods for various diseases. Cost-effective, more robust, and high-throughput assays are needed for monitoring biomarkers in clinical settings. Quartz crystal microbalance (QCM) biosensors are promising tools for the real-time and quick detection of biomolecules in the past two decades A quick, simple-to-use, and cheap biomarkers detection technology based on biosensors has been developed. This critical review presents current applications in molecular imprinting-based quartz crystal microbalance biosensors for the quantification of biomarkers for disease monitoring and diagnostic results.
Collapse
|
11
|
Guo H, Damerow S, Penha L, Menzies S, Polanco G, Zegzouti H, Ferguson MAJ, Beverley SM. A broadly active fucosyltransferase LmjFUT1 whose mitochondrial localization and activity are essential in parasitic Leishmania. Proc Natl Acad Sci U S A 2021; 118:e2108963118. [PMID: 34385330 PMCID: PMC8379939 DOI: 10.1073/pnas.2108963118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glycoconjugates play major roles in the infectious cycle of the trypanosomatid parasite Leishmania While GDP-Fucose synthesis is essential, fucosylated glycoconjugates have not been reported in Leishmania major [H. Guo et al., J. Biol. Chem. 292, 10696-10708 (2017)]. Four predicted fucosyltransferases appear conventionally targeted to the secretory pathway; SCA1/2 play a role in side-chain modifications of lipophosphoglycan, while gene deletion studies here showed that FUT2 and SCAL were not essential. Unlike most eukaryotic glycosyltransferases, the predicted α 1-2 fucosyltransferase encoded by FUT1 localized to the mitochondrion. A quantitative "plasmid segregation" assay, expressing FUT1 from the multicopy episomal pXNG vector in a chromosomal null ∆fut1- background, established that FUT1 is essential. Similarly, "plasmid shuffling" confirmed that both enzymatic activity and mitochondrial localization were required for viability, comparing import-blocked or catalytically inactive enzymes, respectively. Enzymatic assays of tagged proteins expressed in vivo or of purified recombinant FUT1 showed it had a broad fucosyltransferase activity including glycan and peptide substrates. Unexpectedly, a single rare ∆fut1- segregant (∆fut1s ) was obtained in rich media, which showed severe growth defects accompanied by mitochondrial dysfunction and loss, all of which were restored upon FUT1 reexpression. Thus, FUT1 along with the similar Trypanosoma brucei enzyme TbFUT1 [G. Bandini et al., bioRxiv, https://www.biorxiv.org/content/10.1101/726117v2 (2021)] joins the eukaryotic O-GlcNAc transferase isoform as one of the few glycosyltransferases acting within the mitochondrion. Trypanosomatid mitochondrial FUT1s may offer a facile system for probing mitochondrial glycosylation in a simple setting, and their essentiality for normal growth and mitochondrial function renders it an attractive target for chemotherapy of these serious human pathogens.
Collapse
Affiliation(s)
- Hongjie Guo
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Sebastian Damerow
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Science, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Luciana Penha
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Stefanie Menzies
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gloria Polanco
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Michael A J Ferguson
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Science, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
12
|
Zhang C, Cai M, Chen S, Zhang F, Cui T, Xue Z, Wang W, Zhang B, Liu X. The consensus N glyco -X-S/T motif and a previously unknown N glyco -N-linked glycosylation are necessary for growth and pathogenicity of Phytophthora. Environ Microbiol 2021; 23:5147-5163. [PMID: 33728790 DOI: 10.1111/1462-2920.15468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
Asparagine (Asn, N)-linked glycosylation within Nglyco -X-S/T; X ≠ P motif is a ubiquitously distributed post-translational modification that participates in diverse cellular processes. In this work, N-glycosylation inhibitor was shown to prevent Phytophthora sojae growth, suggesting that N-glycosylation is necessary for oomycete development. We conducted a glycoproteomic analysis of P. sojae to identify and map N-glycosylated proteins and to quantify differentially expressed glycoproteins associated with mycelia, asexual cyst, and sexual oospore developmental stages. A total of 355 N-glycosylated proteins was found, containing 496 glycosites, potentially involved in glycan degradation, carbon metabolism, glycolysis, or other metabolic pathways. Through PNGase F deglycosylation assays and site-directed mutagenesis of a GPI transamidase protein (GPI16) upregulated in cysts and a heat shock protein 70 (HSP70) upregulated in oospores, we demonstrated that both proteins were N-glycosylated and that the Nglyco -N motif is a target site for asparagine - oligosaccharide linkage. Glycosite mutations of Asn 94 Nglyco -X-S/T in the GPI16 led to impaired cyst germination and pathogenicity, while mutation of the previously unknown Asn 270 Nglyco -N motif in HSP70 led to decreased oospore production. In addition to providing a map of the oomycete N-glycoproteome, this work confirms that P. sojae has evolved multiple N-glycosylation motifs essential for growth.
Collapse
Affiliation(s)
- Can Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Meng Cai
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Shanshan Chen
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Fan Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Tongshan Cui
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Zhaolin Xue
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Weizhen Wang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Borui Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
13
|
A Variant of SLC1A5 Is a Mitochondrial Glutamine Transporter for Metabolic Reprogramming in Cancer Cells. Cell Metab 2020; 31:267-283.e12. [PMID: 31866442 DOI: 10.1016/j.cmet.2019.11.020] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/05/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
Abstract
Glutamine is an essential nutrient that regulates energy production, redox homeostasis, and signaling in cancer cells. Despite the importance of glutamine in mitochondrial metabolism, the mitochondrial glutamine transporter has long been unknown. Here, we show that the SLC1A5 variant plays a critical role in cancer metabolic reprogramming by transporting glutamine into mitochondria. The SLC1A5 variant has an N-terminal targeting signal for mitochondrial localization. Hypoxia-induced gene expression of the SLC1A5 variant is mediated by HIF-2α. Overexpression of the SLC1A5 variant mediates glutamine-induced ATP production and glutathione synthesis and confers gemcitabine resistance to pancreatic cancer cells. SLC1A5 variant knockdown and overexpression alter cancer cell and tumor growth, supporting an oncogenic role. This work demonstrates that the SLC1A5 variant is a mitochondrial glutamine transporter for cancer metabolic reprogramming.
Collapse
|
14
|
Giorgio V, Fogolari F, Lippe G, Bernardi P. OSCP subunit of mitochondrial ATP synthase: role in regulation of enzyme function and of its transition to a pore. Br J Pharmacol 2019; 176:4247-4257. [PMID: 30291799 PMCID: PMC6887684 DOI: 10.1111/bph.14513] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/20/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
The permeability transition pore (PTP) is a latent, high-conductance channel of the inner mitochondrial membrane. When activated, it plays a key role in cell death and therefore in several diseases. The investigation of the PTP took an unexpected turn after the discovery that cyclophilin D (the target of the PTP inhibitory effect of cyclosporin A) binds to FO F1 (F)-ATP synthase, thus inhibiting its catalytic activity by about 30%. This observation was followed by the demonstration that binding occurs at a particular subunit of the enzyme, the oligomycin sensitivity conferral protein (OSCP), and that F-ATP synthase can form Ca2+ -activated, high-conductance channels with features matching those of the PTP, suggesting that the latter originates from a conformational change in F-ATP synthase. This review is specifically focused on the OSCP subunit of F-ATP synthase, whose unique features make it a potential pharmacological target both for modulation of F-ATP synthase and its transition to a pore. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Valentina Giorgio
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Federico Fogolari
- Department of Mathematics, Computer Sciences and PhysicsUniversity of UdineUdineItaly
| | - Giovanna Lippe
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - Paolo Bernardi
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| |
Collapse
|
15
|
Zhang X, Liu S, Pan J, Jia H, Chen Z, Guo T. Multifunctional oligomer immobilized on quartz crystal microbalance: a facile and stabilized molecular imprinting strategy for glycoprotein detection. Anal Bioanal Chem 2019; 411:3941-3949. [DOI: 10.1007/s00216-019-01867-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/17/2019] [Accepted: 04/24/2019] [Indexed: 01/02/2023]
|
16
|
Shannon C, Merovci A, Xiong J, Tripathy D, Lorenzo F, McClain D, Abdul-Ghani M, Norton L, DeFronzo RA. Effect of Chronic Hyperglycemia on Glucose Metabolism in Subjects With Normal Glucose Tolerance. Diabetes 2018; 67:2507-2517. [PMID: 30213826 PMCID: PMC6245228 DOI: 10.2337/db18-0439] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
Chronic hyperglycemia causes insulin resistance, but the inheritability of glucotoxicity and the underlying mechanisms are unclear. We examined the effect of 3 days of hyperglycemia on glucose disposal, enzyme activities, insulin signaling, and protein O-GlcNAcylation in skeletal muscle of individuals without (FH-) or with (FH+) family history of type 2 diabetes. Twenty-five subjects with normal glucose tolerance received a [3-3H]glucose euglycemic insulin clamp, indirect calorimetry, and vastus-lateralis biopsies before and after 3 days of saline (n = 5) or glucose (n = 10 FH- and 10 FH+) infusion to raise plasma glucose by ∼45 mg/dL. At baseline, FH+ had lower insulin-stimulated glucose oxidation and total glucose disposal (TGD) but similar nonoxidative glucose disposal and basal endogenous glucose production (bEGP) compared with FH- After 3 days of glucose infusion, bEGP and glucose oxidation were markedly increased, whereas nonoxidative glucose disposal and TGD were lower versus baseline, with no differences between FH- and FH+ subjects. Hyperglycemia doubled skeletal muscle glycogen content and impaired activation of glycogen synthase (GS), pyruvate dehydrogenase, and Akt, but protein O-GlcNAcylation was unchanged. Insulin resistance develops to a similar extent in FH- and FH+ subjects after chronic hyperglycemia, without increased protein O-GlcNAcylation. Decreased nonoxidative glucose disposal due to impaired GS activation appears to be the primary deficit in skeletal muscle glucotoxicity.
Collapse
Affiliation(s)
- Chris Shannon
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX
| | - Aurora Merovci
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX
| | - Juan Xiong
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX
| | - Devjit Tripathy
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX
| | - Felipe Lorenzo
- Center on Diabetes, Obesity, and Metabolism, Wake Forest University, Winston-Salem, NC
| | - Donald McClain
- Center on Diabetes, Obesity, and Metabolism, Wake Forest University, Winston-Salem, NC
| | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX
| | - Luke Norton
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX
| | - Ralph A DeFronzo
- Division of Diabetes, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX
| |
Collapse
|
17
|
Videira PAQ, Castro-Caldas M. Linking Glycation and Glycosylation With Inflammation and Mitochondrial Dysfunction in Parkinson's Disease. Front Neurosci 2018; 12:381. [PMID: 29930494 PMCID: PMC5999786 DOI: 10.3389/fnins.2018.00381] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting about 6.3 million people worldwide. PD is characterized by the progressive degeneration of dopaminergic neurons in the Substantia nigra pars compacta, resulting into severe motor symptoms. The cellular mechanisms underlying dopaminergic cell death in PD are still not fully understood, but mitochondrial dysfunction, oxidative stress and inflammation are strongly implicated in the pathogenesis of both familial and sporadic PD cases. Aberrant post-translational modifications, namely glycation and glycosylation, together with age-dependent insufficient endogenous scavengers and quality control systems, lead to cellular overload of dysfunctional proteins. Such injuries accumulate with time and may lead to mitochondrial dysfunction and exacerbated inflammatory responses, culminating in neuronal cell death. Here, we will discuss how PD-linked protein mutations, aging, impaired quality control mechanisms and sugar metabolism lead to up-regulated abnormal post-translational modifications in proteins. Abnormal glycation and glycosylation seem to be more common than previously thought in PD and may underlie mitochondria-induced oxidative stress and inflammation in a feed-forward mechanism. Moreover, the stress-induced post-translational modifications that directly affect parkin and/or its substrates, deeply impairing its ability to regulate mitochondrial dynamics or to suppress inflammation will also be discussed. Together, these represent still unexplored deleterious mechanisms implicated in neurodegeneration in PD, which may be used for a more in-depth knowledge of the pathogenic mechanisms, or as biomarkers of the disease.
Collapse
Affiliation(s)
- Paula A Q Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Margarida Castro-Caldas
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Stacpoole PW. Therapeutic Targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer. J Natl Cancer Inst 2017; 109:3871192. [PMID: 29059435 DOI: 10.1093/jnci/djx071] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial pyruvate dehydrogenase complex (PDC) irreversibly decarboxylates pyruvate to acetyl coenzyme A, thereby linking glycolysis to the tricarboxylic acid cycle and defining a critical step in cellular bioenergetics. Inhibition of PDC activity by pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation has been associated with the pathobiology of many disorders of metabolic integration, including cancer. Consequently, the PDC/PDK axis has long been a therapeutic target. The most common underlying mechanism accounting for PDC inhibition in these conditions is post-transcriptional upregulation of one or more PDK isoforms, leading to phosphorylation of the E1α subunit of PDC. Such perturbations of the PDC/PDK axis induce a "glycolytic shift," whereby affected cells favor adenosine triphosphate production by glycolysis over mitochondrial oxidative phosphorylation and cellular proliferation over cellular quiescence. Dichloroacetate is the prototypic xenobiotic inhibitor of PDK, thereby maintaining PDC in its unphosphorylated, catalytically active form. However, recent interest in the therapeutic targeting of the PDC/PDK axis for the treatment of cancer has yielded a new generation of small molecule PDK inhibitors. Ongoing investigations of the central role of PDC in cellular energy metabolism and its regulation by pharmacological effectors of PDKs promise to open multiple exciting vistas into the biochemical understanding and treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
19
|
In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface. Biomaterials 2017; 139:12-29. [DOI: 10.1016/j.biomaterials.2017.05.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/31/2017] [Indexed: 01/15/2023]
|
20
|
Gall T, Valkanas E, Bello C, Markello T, Adams C, Bone WP, Brandt AJ, Brazill JM, Carmichael L, Davids M, Davis J, Diaz-Perez Z, Draper D, Elson J, Flynn ED, Godfrey R, Groden C, Hsieh CK, Fischer R, Golas GA, Guzman J, Huang Y, Kane MS, Lee E, Li C, Links AE, Maduro V, Malicdan MCV, Malik FS, Nehrebecky M, Park J, Pemberton P, Schaffer K, Simeonov D, Sincan M, Smedley D, Valivullah Z, Wahl C, Washington N, Wolfe LA, Xu K, Zhu Y, Gahl WA, Tifft CJ, Toro C, Adams DR, He M, Robinson PN, Haendel MA, Zhai RG, Boerkoel CF. Defining Disease, Diagnosis, and Translational Medicine within a Homeostatic Perturbation Paradigm: The National Institutes of Health Undiagnosed Diseases Program Experience. Front Med (Lausanne) 2017; 4:62. [PMID: 28603714 PMCID: PMC5445140 DOI: 10.3389/fmed.2017.00062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022] Open
Abstract
Traditionally, the use of genomic information for personalized medical decisions relies on prior discovery and validation of genotype-phenotype associations. This approach constrains care for patients presenting with undescribed problems. The National Institutes of Health (NIH) Undiagnosed Diseases Program (UDP) hypothesized that defining disease as maladaptation to an ecological niche allows delineation of a logical framework to diagnose and evaluate such patients. Herein, we present the philosophical bases, methodologies, and processes implemented by the NIH UDP. The NIH UDP incorporated use of the Human Phenotype Ontology, developed a genomic alignment strategy cognizant of parental genotypes, pursued agnostic biochemical analyses, implemented functional validation, and established virtual villages of global experts. This systematic approach provided a foundation for the diagnostic or non-diagnostic answers provided to patients and serves as a paradigm for scalable translational research.
Collapse
Affiliation(s)
- Timothy Gall
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Elise Valkanas
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Christofer Bello
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States
| | - Thomas Markello
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Christopher Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - William P. Bone
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Alexander J. Brandt
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer M. Brazill
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States
| | | | - Mariska Davids
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Joie Davis
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States
| | - David Draper
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Elise D. Flynn
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Rena Godfrey
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Catherine Groden
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | | | - Roxanne Fischer
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gretchen A. Golas
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Jessica Guzman
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Yan Huang
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Megan S. Kane
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Elizabeth Lee
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States
| | - Amanda E. Links
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Valerie Maduro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - May Christine V. Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Fayeza S. Malik
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States
| | - Michele Nehrebecky
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States
| | - Paul Pemberton
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Katherine Schaffer
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Dimitre Simeonov
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Murat Sincan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Damian Smedley
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Zaheer Valivullah
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Colleen Wahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Nicole Washington
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Lynne A. Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karen Xu
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States
| | - William A. Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Cynthia J. Tifft
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Camillo Toro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - David R. Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Miao He
- Palmieri Metabolic Disease Laboratory, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter N. Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Melissa A. Haendel
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
| | - R. Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL, United States
| | - Cornelius F. Boerkoel
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Han SS, Lee DE, Shim HE, Lee S, Jung T, Oh JH, Lee HA, Moon SH, Jeon J, Yoon S, Kim K, Kang SW. Physiological Effects of Ac4ManNAz and Optimization of Metabolic Labeling for Cell Tracking. Theranostics 2017; 7:1164-1176. [PMID: 28435456 PMCID: PMC5399584 DOI: 10.7150/thno.17711] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022] Open
Abstract
Metabolic labeling techniques are powerful tools for cell labeling, tracking and proteomic analysis. However, at present, the effects of the metabolic labeling agents on cell metabolism and physiology are not known. To address this question, in this study, we analyzed the effects of cells treated with Ac4ManNAz through microarray analysis and analyses of membrane channel activity, individual bio-physiological properties, and glycolytic flux. According to the results, treatment with 50 μM Ac4ManNAz led to the reduction of major cellular functions, including energy generation capacity, cellular infiltration ability and channel activity. Interestingly, 10 μM Ac4ManNAz showed the least effect on cellular systems and had a sufficient labeling efficiency for cell labeling, tracking and proteomic analysis. Based on our results, we suggest 10 μM as the optimum concentration of Ac4ManNAz for in vivo cell labeling and tracking. Additionally, we expect that our approach could be used for cell-based therapy for monitoring the efficacy of molecule delivery and the fate of recipient cells.
Collapse
|
22
|
Sacoman JL, Dagda RY, Burnham-Marusich AR, Dagda RK, Berninsone PM. Mitochondrial O-GlcNAc Transferase (mOGT) Regulates Mitochondrial Structure, Function, and Survival in HeLa Cells. J Biol Chem 2017; 292:4499-4518. [PMID: 28100784 DOI: 10.1074/jbc.m116.726752] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 12/30/2016] [Indexed: 01/06/2023] Open
Abstract
O-Linked N-acetylglucosamine transferase (OGT) catalyzes O-GlcNAcylation of target proteins and regulates numerous biological processes. OGT is encoded by a single gene that yields nucleocytosolic and mitochondrial isoforms. To date, the role of the mitochondrial isoform of OGT (mOGT) remains largely unknown. Using high throughput proteomics, we identified 84 candidate mitochondrial glycoproteins, of which 44 are novel. Notably, two of the candidate glycoproteins identified (cytochrome oxidase 2 (COX2) and NADH:ubiquinone oxidoreductase core subunit 4 (MT-ND4)) are encoded by mitochondrial DNA. Using siRNA in HeLa cells, we found that reducing endogenous mOGT expression leads to alterations in mitochondrial structure and function, including Drp1-dependent mitochondrial fragmentation, reduction in mitochondrial membrane potential, and a significant loss of mitochondrial content in the absence of mitochondrial ROS. These defects are associated with a compensatory increase in oxidative phosphorylation per mitochondrion. mOGT is also critical for cell survival; siRNA-mediated knockdown of endogenous mOGT protected cells against toxicity mediated by rotenone, a complex I inhibitor. Conversely, reduced expression of both nucleocytoplasmic (ncOGT) and mitochondrial (mOGT) OGT isoforms is associated with increased mitochondrial respiration and elevated glycolysis, suggesting that ncOGT is a negative regulator of cellular bioenergetics. Last, we determined that mOGT is probably involved in the glycosylation of a restricted set of mitochondrial targets. We identified four proteins implicated in mitochondrial biogenesis and metabolism regulation as candidate substrates of mOGT, including leucine-rich PPR-containing protein and mitochondrial aconitate hydratase. Our findings suggest that mOGT is catalytically active in vivo and supports mitochondrial structure, health, and survival, whereas ncOGT predominantly regulates cellular bioenergetics.
Collapse
Affiliation(s)
- Juliana L Sacoman
- From the Department of Biology, University of Nevada, Reno, Nevada 89557 and
| | | | | | | | | |
Collapse
|
23
|
Ma XT, He XW, Li WY, Zhang YK. Determination of Glycoproteins by a Self-Assembled 4-Mercaptophenylboronic Acid Film on a Quartz Crystal Microbalance. ANAL SCI 2016; 32:1277-1282. [PMID: 27941255 DOI: 10.2116/analsci.32.1277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glycosylation plays an important part in many biological processes. However, many glycoproteins are either of low abundance or covered by other components in biological samples. Hence, developing new methods to measure the glycoproteins with both high efficiency and low detection limit is important. In this work, a self-assembled 4-mercaptophenylboronic acid film was coated on a quartz crystal microbalance chip. By optimizing the reaction time and the concentration of 4-mercaptophenylboronic acid, a sensor that specifically responded to glycoproteins was created. Then, several parameters for the prepared sensor were investigated and the working curve for representative glycoprotein-transferrin was established. The linearity range was from 50 to 400 ng/mL and the detection limit was 21.0 ng/mL. The sensor was used to detect transferrin in artificial urine samples. This sensor has a low detection limit of glycoproteins requiring only a small amount of samples, and thus has potential applications in both pharmaceutical and medical areas.
Collapse
Affiliation(s)
- Xiao-Tong Ma
- Research Center for Analytical Sciences, College of Chemistry, Nankai University
| | | | | | | |
Collapse
|
24
|
Xia J, Guo Z, Yang Z, Zhu X, Kang S, Yang X, Yang F, Wu Q, Wang S, Xie W, Xu W, Zhang Y. Proteomics-based identification of midgut proteins correlated with Cry1Ac resistance in Plutella xylostella (L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 132:108-117. [PMID: 27521921 DOI: 10.1016/j.pestbp.2016.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 06/06/2023]
Abstract
The diamondback moth, Plutella xylostella (L.), is a worldwide pest of cruciferous crops and can rapidly develop resistance to many chemical insecticides. Although insecticidal crystal proteins (i.e., Cry and Cyt toxins) derived from Bacillus thuringiensis (Bt) have been useful alternatives to chemical insecticides for the control of P. xylostella, resistance to Bt in field populations of P. xylostella has already been reported. A better understanding of the resistance mechanisms to Bt should be valuable in delaying resistance development. In this study, the mechanisms underlying P. xylostella resistance to Bt Cry1Ac toxin were investigated using two-dimensional differential in-gel electrophoresis (2D-DIGE) and ligand blotting for the first time. Comparative analyses of the constitutive expression of midgut proteins in Cry1Ac-susceptible and -resistant P. xylostella larvae revealed 31 differentially expressed proteins, 21 of which were identified by mass spectrometry. Of these identified proteins, the following fell into diverse eukaryotic orthologous group (KOG) subcategories may be involved in Cry1Ac resistance in P. xylostella: ATP-binding cassette (ABC) transporter subfamily G member 4 (ABCG4), trypsin, heat shock protein 70 (HSP70), vacuolar H(+)-ATPase, actin, glycosylphosphatidylinositol anchor attachment 1 protein (GAA1) and solute carrier family 30 member 1 (SLC30A1). Additionally, ligand blotting identified the following midgut proteins as Cry1Ac-binding proteins in Cry1Ac-susceptible P. xylostella larvae: ABC transporter subfamily C member 1 (ABCC1), solute carrier family 36 member 1 (SLC36A1), NADH dehydrogenase iron-sulfur protein 3 (NDUFS3), prohibitin and Rap1 GTPase-activating protein 1. Collectively, these proteomic results increase our understanding of the molecular resistance mechanisms to Bt Cry1Ac toxin in P. xylostella and also demonstrate that resistance to Bt Cry1Ac toxin is complex and multifaceted.
Collapse
Affiliation(s)
- Jixing Xia
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Department of Biocontrol, Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, 150080, China.
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xun Zhu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shi Kang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Fengshan Yang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Weijun Xu
- Department of Biocontrol, Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, 150080, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
25
|
Ravidà A, Cwiklinski K, Aldridge AM, Clarke P, Thompson R, Gerlach JQ, Kilcoyne M, Hokke CH, Dalton JP, O'Neill SM. Fasciola hepatica Surface Tegument: Glycoproteins at the Interface of Parasite and Host. Mol Cell Proteomics 2016; 15:3139-3153. [PMID: 27466253 PMCID: PMC5054340 DOI: 10.1074/mcp.m116.059774] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 11/20/2022] Open
Abstract
Fasciola hepatica, commonly known as liver fluke, is a trematode that causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterization of FhTeg glycosylation using lectin microarrays to characterize carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. Although some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica. Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components that could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine.
Collapse
Affiliation(s)
- Alessandra Ravidà
- From the ‡Fundamental and Translational Immunology, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Krystyna Cwiklinski
- §School of Biological Sciences, Medical Biology Centre (MBC), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Allison M Aldridge
- From the ‡Fundamental and Translational Immunology, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paul Clarke
- ¶Glycoselect, Dublin City University, Glasnevin, Dublin 9
| | | | - Jared Q Gerlach
- ‖Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland; **Regenerative Medicine Institute, NUI Galway, Ireland
| | - Michelle Kilcoyne
- ‖Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland; ‡‡Carbohydrate Signalling Group, Microbiology, NUI Galway, Ireland
| | - Cornelis H Hokke
- §§Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - John P Dalton
- §School of Biological Sciences, Medical Biology Centre (MBC), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sandra M O'Neill
- From the ‡Fundamental and Translational Immunology, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland;
| |
Collapse
|
26
|
Léger T, Garcia C, Camadro JM. The Metacaspase (Mca1p) Restricts O-glycosylation During Farnesol-induced Apoptosis in Candida albicans. Mol Cell Proteomics 2016; 15:2308-23. [PMID: 27125826 DOI: 10.1074/mcp.m116.059378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 11/06/2022] Open
Abstract
Protein glycolysation is an essential posttranslational modification in eukaryotic cells. In pathogenic yeasts, it is involved in a large number of biological processes, such as protein folding quality control, cell viability and host/pathogen relationships. A link between protein glycosylation and apoptosis was established by the analysis of the phenotypes of oligosaccharyltransferase mutants in budding yeast. However, little is known about the contribution of glycosylation modifications to the adaptive response to apoptosis inducers. The cysteine protease metacaspase Mca1p plays a key role in the apoptotic response in Candida albicans triggered by the quorum sensing molecule farnesol. We subjected wild-type and mca1-deletion strains to farnesol stress and then studied the early phase of apoptosis release in quantitative glycoproteomics and glycomics experiments on cell-free extracts essentially devoid of cell walls. We identified and characterized 62 new glycosylated peptides with their glycan composition: 17 N-glycosylated, 45 O-glycosylated, and 81 additional sites of N-glycosylation. They were found to be involved in the control of protein folding, cell wall integrity and cell cycle regulation. We showed a general increase in the O-glycosylation of proteins in the mca1 deletion strain after farnesol challenge. We identified 44 new putative protein substrates of the metacaspase in the glycoprotein fraction enriched on concanavalin A. Most of these substrates are involved in protein folding or protein resolubilization and in mitochondrial functions. We show here that key Mca1p substrates, such as Cdc48p or Ssb1p, involved in degrading misfolded glycoproteins and in the protein quality control system, are themselves differentially glycosylated. We found putative substrates, such as Bgl2p (validated by immunoblot), Srb1p or Ugp1p, that are involved in the biogenesis of glycans. Our findings highlight a new role of the metacaspase in amplifying cell death processes by affecting several critical protein quality control systems through the alteration of the protein glycosylation machinery.Data are available via ProteomeXchange with identifier PXD003677.
Collapse
Affiliation(s)
- Thibaut Léger
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Camille Garcia
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Jean-Michel Camadro
- From the ‡Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France; §Mitochondria, Metals and Oxidative Stress Group, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| |
Collapse
|
27
|
Sun S, Xiong L, Li Y, He X. Phenylboronic Acid Modified Magnetic Nanoparticles for the Electrochemical Determination of Glycoproteins. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1038551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Kankotia S, Stacpoole PW. Dichloroacetate and cancer: new home for an orphan drug? Biochim Biophys Acta Rev Cancer 2014; 1846:617-29. [PMID: 25157892 DOI: 10.1016/j.bbcan.2014.08.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 02/06/2023]
Abstract
We reviewed the anti-cancer effects of DCA, an orphan drug long used as an investigational treatment for various acquired and congenital disorders of mitochondrial intermediary metabolism. Inhibition by DCA of mitochondrial pyruvate dehydrogenase kinases and subsequent reactivation of the pyruvate dehydrogenase complex and oxidative phosphorylation is the common mechanism accounting for the drug's anti-neoplastic effects. At least two fundamental changes in tumor metabolism are induced by DCA that antagonize tumor growth, metastases and survival: the first is the redirection of glucose metabolism from glycolysis to oxidation (reversal of the Warburg effect), leading to inhibition of proliferation and induction of caspase-mediated apoptosis. These effects have been replicated in both human cancer cell lines and in tumor implants of diverse germ line origin. The second fundamental change is the oxidative removal of lactate, via pyruvate, and the co-incident buffering of hydrogen ions by dehydrogenases located in the mitochondrial matrix. Preclinical studies demonstrate that DCA has additive or synergistic effects when used in combination with standard agents designed to modify tumor oxidative stress, vascular remodeling, DNA integrity or immunity. These findings and limited clinical results suggest that potentially fruitful areas for additional clinical trials include 1) adult and pediatric high grade astrocytomas; 2) BRAF-mutant cancers, such as melanoma, perhaps combined with other pro-oxidants; 3) tumors in which resistance to standard platinum-class drugs alone may be overcome with combination therapy; and 4) tumors of endodermal origin, in which extensive experimental research has demonstrated significant anti-proliferative, pro-apoptotic effects of DCA, leading to improved host survival.
Collapse
Affiliation(s)
- Shyam Kankotia
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States
| | - Peter W Stacpoole
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States; Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
29
|
Antoniel M, Giorgio V, Fogolari F, Glick GD, Bernardi P, Lippe G. The oligomycin-sensitivity conferring protein of mitochondrial ATP synthase: emerging new roles in mitochondrial pathophysiology. Int J Mol Sci 2014; 15:7513-36. [PMID: 24786291 PMCID: PMC4057687 DOI: 10.3390/ijms15057513] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 01/08/2023] Open
Abstract
The oligomycin-sensitivity conferring protein (OSCP) of the mitochondrial F(O)F1 ATP synthase has long been recognized to be essential for the coupling of proton transport to ATP synthesis. Located on top of the catalytic F1 sector, it makes stable contacts with both F1 and the peripheral stalk, ensuring the structural and functional coupling between F(O) and F1, which is disrupted by the antibiotic, oligomycin. Recent data have established that OSCP is the binding target of cyclophilin (CyP) D, a well-characterized inducer of the mitochondrial permeability transition pore (PTP), whose opening can precipitate cell death. CyPD binding affects ATP synthase activity, and most importantly, it decreases the threshold matrix Ca²⁺ required for PTP opening, in striking analogy with benzodiazepine 423, an apoptosis-inducing agent that also binds OSCP. These findings are consistent with the demonstration that dimers of ATP synthase generate Ca²⁺-dependent currents with features indistinguishable from those of the PTP and suggest that ATP synthase is directly involved in PTP formation, although the underlying mechanism remains to be established. In this scenario, OSCP appears to play a fundamental role, sensing the signal(s) that switches the enzyme of life in a channel able to precipitate cell death.
Collapse
Affiliation(s)
- Manuela Antoniel
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35121 Padua, Italy.
| | - Valentina Giorgio
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35121 Padua, Italy.
| | - Federico Fogolari
- Department of Biomedical Sciences, University of Udine, p.le Kolbe, 33100 Udine, Italy.
| | - Gary D Glick
- Department of Chemistry, Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35121 Padua, Italy.
| | - Giovanna Lippe
- Department of Food Science, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
30
|
Tan EP, Villar MT, E L, Lu J, Selfridge JE, Artigues A, Swerdlow RH, Slawson C. Altering O-linked β-N-acetylglucosamine cycling disrupts mitochondrial function. J Biol Chem 2014; 289:14719-30. [PMID: 24713701 DOI: 10.1074/jbc.m113.525790] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mitochondrial impairment is commonly found in many diseases such as diabetes, cancer, and Alzheimer disease. We demonstrate that the enzymes responsible for the addition or removal of the O-GlcNAc modification, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively, are critical regulators of mitochondrial function. Using a SILAC (stable isotope labeling of amino acids in cell culture)-based proteomics screen, we quantified the changes in mitochondrial protein expression in OGT- and OGA-overexpressing cells. Strikingly, overexpression of OGT or OGA showed significant decreases in mitochondria-localized proteins involved in the respiratory chain and the tricarboxylic acid cycle. Furthermore, mitochondrial morphology was altered in these cells. Both cellular respiration and glycolysis were reduced in OGT/OGA-overexpressing cells. These data demonstrate that alterations in O-GlcNAc cycling profoundly affect energy and metabolite production.
Collapse
Affiliation(s)
- Ee Phie Tan
- From the Department of Biochemistry and Molecular Biology
| | - Maria T Villar
- From the Department of Biochemistry and Molecular Biology
| | - Lezi E
- Department of Neurology, and
| | | | | | | | - Russell H Swerdlow
- From the Department of Biochemistry and Molecular Biology, Department of Neurology, and University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, Kansas 64108
| | - Chad Slawson
- From the Department of Biochemistry and Molecular Biology, University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, Kansas 64108 University of Kansas Cancer Center,
| |
Collapse
|
31
|
Wiederschain GY. Glycobiology: progress, problems, and perspectives. BIOCHEMISTRY (MOSCOW) 2014; 78:679-96. [PMID: 24010832 DOI: 10.1134/s0006297913070018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review highlights different aspects of glycobiology with analysis of recent progress in the study of biosynthesis, degradation, and biological role of glycoconjugates and of hereditary diseases related to the metabolism of these compounds. In addition, the review presents some analysis of the papers of other authors who have contributed to this special issue.
Collapse
Affiliation(s)
- G Ya Wiederschain
- Program in Glycobiology, Department of Biology, Boston College, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
32
|
Wang G, Wu Y, Zhou T, Guo Y, Zheng B, Wang J, Bi Y, Liu F, Zhou Z, Guo X, Sha J. Mapping of the N-Linked Glycoproteome of Human Spermatozoa. J Proteome Res 2013; 12:5750-9. [DOI: 10.1021/pr400753f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gaigai Wang
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Yibo Wu
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Tao Zhou
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Bo Zheng
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Jing Wang
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Ye Bi
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Fangjuan Liu
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive
Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
33
|
Wang X, Xia N, Liu L. Boronic Acid-based approach for separation and immobilization of glycoproteins and its application in sensing. Int J Mol Sci 2013; 14:20890-912. [PMID: 24141187 PMCID: PMC3821649 DOI: 10.3390/ijms141020890] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/20/2013] [Accepted: 10/08/2013] [Indexed: 01/07/2023] Open
Abstract
Glycoproteins influence a broad spectrum of biological processes including cell-cell interaction, host-pathogen interaction, or protection of proteins against proteolytic degradation. The analysis of their glyco-structures and concentration levels are increasingly important in diagnosis and proteomics. Boronic acids can covalently react with cis-diols in the oligosaccharide chains of glycoproteins to form five- or six-membered cyclic esters. Based on this interaction, boronic acid-based ligands and materials have attracted much attention in both chemistry and biology as the recognition motif for enrichment and chemo/biosensing of glycoproteins in recent years. In this work, we reviewed the progress in the separation, immobilization and detection of glycoproteins with boronic acid-functionalized materials and addressed its application in sensing.
Collapse
Affiliation(s)
- Xiaojin Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, China; E-Mails: (X.W.); (L.L.)
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, China; E-Mails: (X.W.); (L.L.)
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, China; E-Mails: (X.W.); (L.L.)
| |
Collapse
|
34
|
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) sustains organelle function and plays a central role in cellular energy metabolism. The OXPHOS system consists of 5 multisubunit complexes (CI-CV) that are built up of 92 different structural proteins encoded by the nuclear (nDNA) and mitochondrial DNA (mtDNA). Biogenesis of a functional OXPHOS system further requires the assistance of nDNA-encoded OXPHOS assembly factors, of which 35 are currently identified. In humans, mutations in both structural and assembly genes and in genes involved in mtDNA maintenance, replication, transcription, and translation induce 'primary' OXPHOS disorders that are associated with neurodegenerative diseases including Leigh syndrome (LS), which is probably the most classical OXPHOS disease during early childhood. Here, we present the current insights regarding function, biogenesis, regulation, and supramolecular architecture of the OXPHOS system, as well as its genetic origin. Next, we provide an inventory of OXPHOS structural and assembly genes which, when mutated, induce human neurodegenerative disorders. Finally, we discuss the consequences of mutations in OXPHOS structural and assembly genes at the single cell level and how this information has advanced our understanding of the role of OXPHOS dysfunction in neurodegeneration.
Collapse
|
35
|
Metabolic labeling of Caenorhabditis elegans primary embryonic cells with azido-sugars as a tool for glycoprotein discovery. PLoS One 2012; 7:e49020. [PMID: 23152843 PMCID: PMC3495777 DOI: 10.1371/journal.pone.0049020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 10/07/2012] [Indexed: 11/19/2022] Open
Abstract
Glycobiology research with Caenorhabditis elegans (C. elegans) has benefitted from the numerous genetic and cell biology tools available in this system. However, the lack of a cell line and the relative inaccessibility of C. elegans somatic cells in vivo have limited the biochemical approaches available in this model. Here we report that C. elegans primary embryonic cells in culture incorporate azido-sugar analogs of N-acetylgalactosamine (GalNAc) and N-acetylglucosamine (GlcNAc), and that the labeled glycoproteins can be analyzed by mass spectrometry. By using this metabolic labeling approach, we have identified a set of novel C. elegans glycoprotein candidates, which include several mitochondrially-annotated proteins. This observation was unexpected given that mitochondrial glycoproteins have only rarely been reported, and it suggests that glycosylation of mitochondrially-annotated proteins might occur more frequently than previously thought. Using independent experimental strategies, we validated a subset of our glycoprotein candidates. These include a mitochondrial, atypical glycoprotein (ATP synthase α-subunit), a predicted glycoprotein (aspartyl protease, ASP-4), and a protein family with established glycosylation in other species (actin). Additionally, we observed a glycosylated isoform of ATP synthase α-subunit in bovine heart tissue and a primate cell line (COS-7). Overall, our finding that C. elegans primary embryonic cells are amenable to metabolic labeling demonstrates that biochemical studies in C. elegans are feasible, which opens the door to labeling C. elegans cells with other radioactive or azido-substrates and should enable the identification of additional post-translationally modified targets and analysis of the genes required for their modification using C. elegans mutant libraries.
Collapse
|