1
|
Cao LP, Huang J, Hu C, Li CM, Zhan L, Zhen SJ, Huang CZ. Self-Assembly of DNA Nanoflares in Mitochondria for Sensitive In Situ Imaging of Cancer Markers. ACS NANO 2025. [PMID: 40397408 DOI: 10.1021/acsnano.5c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Real-time monitoring of cancer markers at the organelle level offers an effective approach to understanding the mechanisms of cancer generation. Herein, we have developed a sensitive in situ imaging method for human apurinic/apyrimidinic endonuclease 1 (APE1), a cancer biomarker that regulates mitochondrial function by triggering a chain reaction within mitochondria to form highly efficient DNA nanoflares through palindrome-driven assembly (PDA). To deliver the DNA sequences with palindromes for the chain reaction, we prepared triphenylphosphine (TPP)-modified polymeric nanoparticles specifically targeting mitochondria. The presence of APE1 in mitochondria triggered the PDA, leading to the in situ assembly of DNA nanoflares and yielding highly sensitive imaging of APE1. This strategy demonstrates the high capability of combined chain reactions for the real-time monitoring of cancer markers within organelles.
Collapse
Affiliation(s)
- Li Ping Cao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Jingtao Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Congyi Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Chun Mei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Lei Zhan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Shu Jun Zhen
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
2
|
Schlor LA, Peußner M, Müller S, Marx A. Potent inhibitors of the human RNA ligase Rlig1 highlights its role in RNA integrity maintenance under oxidative cellular stress. Chem Sci 2025; 16:3313-3322. [PMID: 39845873 PMCID: PMC11747885 DOI: 10.1039/d4sc06542e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Human RNA ligase 1 (Rlig1) catalyzes the ligation of 5'-phosphate to 3'-hydroxyl ends via a conserved three-step mechanism. Rlig1-deficient HEK293 cells exhibit reduced cell viability and RNA integrity under oxidative stress, suggesting Rlig1's role in RNA repair maintenance. Reactive oxygen species (ROS) are linked to various diseases, including neurodegenerative disorders and cancer, where RNA damage has significant effects. This study identifies and characterizes Rlig1 inhibitors to elucidate its role in RNA metabolism. We developed a fluorescence resonance energy transfer (FRET)-based assay to monitor RNA ligation and screened a library of 13 026 bioactive small molecules. SGI-1027 emerged as a promising lead compound, and structure-activity relationship (SAR) studies revealed that the terminal residues play a key role in its inhibitory effect. In total 22 SGI-1027 derivatives were synthesized and tested, providing insights into the structural requirements for effective Rlig1 inhibition. Three derivatives showed low micromolar IC50 values and minimal cytotoxicity in HEK293 cells under physiological conditions. The combination of Rlig1 inhibition and oxidative stress led to reduced cell viability and compromised RNA integrity, reinforcing Rlig1's role in RNA maintenance. These findings provide a foundation for developing novel therapeutics aimed at targeting RNA maintenance pathways in conditions of dysregulated ROS levels.
Collapse
Affiliation(s)
- Lisa A Schlor
- Department of Chemistry, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
- Konstanz Research School Chemical Biology, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Maya Peußner
- Department of Chemistry, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Silke Müller
- Department of Biology, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
- Screening Center, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
- Konstanz Research School Chemical Biology, University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| |
Collapse
|
3
|
Verma H, Gangwar P, Yadav A, Yadav B, Rao R, Kaur S, Kumar P, Dhiman M, Taglialatela G, Mantha AK. Understanding the neuronal synapse and challenges associated with the mitochondrial dysfunction in mild cognitive impairment and Alzheimer's disease. Mitochondrion 2023; 73:19-29. [PMID: 37708950 DOI: 10.1016/j.mito.2023.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Synaptic mitochondria are crucial for maintaining synaptic activity due to their high energy requirements, substantial calcium (Ca2+) fluctuation, and neurotransmitter release at the synapse. To provide a continuous energy supply, neurons use special mechanisms to transport and distribute healthy mitochondria to the synapse while eliminating the damaged mitochondria from the synapse. Along the neuron, mitochondrial membrane potential (ψ) gradient exists and is highest in the somal region. Lower ψ in the synaptic region renders mitochondria more vulnerable to oxidative stress-mediated damage. Secondly, mitochondria become susceptible to the release of cytochrome c, and mitochondrial DNA (mtDNA) is not shielded from the reactive oxygen species (ROS) by the histone proteins (unlike nuclear DNA), leading to activation of caspases and pronounced oxidative DNA base damage, which ultimately causes synaptic loss. Both synaptic mitochondrial dysfunction and synaptic failure are crucial factors responsible for Alzheimer's disease (AD). Furthermore, amyloid beta (Aβ) and hyper-phosphorylated Tau, the two leading players of AD, exaggerate the disease-like pathological conditions by reducing the mitochondrial trafficking, blocking the bi-directional transport at the synapse, enhancing the mitochondrial fission via activating the mitochondrial fission proteins, enhancing the swelling of mitochondria by increasing the influx of water through mitochondrial permeability transition pore (mPTP) opening, as well as reduced ATP production by blocking the activity of complex I and complex IV. Mild cognitive impairment (MCI) is also associated with decline in cognitive ability caused by synaptic degradation. This review summarizes the challenges associated with the synaptic mitochondrial dysfunction linked to AD and MCI and the role of phytochemicals in restoring the synaptic activity and rendering neuroprotection in AD.
Collapse
Affiliation(s)
- Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Anuradha Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Bharti Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Rashmi Rao
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Giulio Taglialatela
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India.
| |
Collapse
|
4
|
Sahakian L, Robinson AM, Sahakian L, Stavely R, Kelley MR, Nurgali K. APE1/Ref-1 as a Therapeutic Target for Inflammatory Bowel Disease. Biomolecules 2023; 13:1569. [PMID: 38002251 PMCID: PMC10669584 DOI: 10.3390/biom13111569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammation of the gastrointestinal tract. The prevalence of IBD is increasing with approximately 4.9 million cases reported worldwide. Current therapies are limited due to the severity of side effects and long-term toxicity, therefore, the development of novel IBD treatments is necessitated. Recent findings support apurinic/apyrimidinic endonuclease 1/reduction-oxidation factor 1 (APE1/Ref-1) as a target in many pathological conditions, including inflammatory diseases, where APE1/Ref-1 regulation of crucial transcription factors impacts significant pathways. Thus, a potential target for a novel IBD therapy is the redox activity of the multifunctional protein APE1/Ref-1. This review elaborates on the status of conventional IBD treatments, the role of an APE1/Ref-1 in intestinal inflammation, and the potential of a small molecule inhibitor of APE1/Ref-1 redox activity to modulate inflammation, oxidative stress response, and enteric neuronal damage in IBD.
Collapse
Affiliation(s)
- Lauren Sahakian
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (L.S.); (A.M.R.)
| | - Ainsley M. Robinson
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (L.S.); (A.M.R.)
| | - Linda Sahakian
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.S.); (R.S.)
| | - Rhian Stavely
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.S.); (R.S.)
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mark R. Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kulmira Nurgali
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (L.S.); (A.M.R.)
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.S.); (R.S.)
- Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
5
|
Schank M, Zhao J, Wang L, Nguyen LNT, Zhang Y, Wu XY, Zhang J, Jiang Y, Ning S, El Gazzar M, Moorman JP, Yao ZQ. ROS-Induced Mitochondrial Dysfunction in CD4 T Cells from ART-Controlled People Living with HIV. Viruses 2023; 15:1061. [PMID: 37243148 PMCID: PMC10224005 DOI: 10.3390/v15051061] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
We have previously demonstrated mitochondrial dysfunction in aging CD4 T cells from antiretroviral therapy (ART)-controlled people living with HIV (PLWH). However, the underlying mechanisms by which CD4 T cells develop mitochondrial dysfunction in PLWH remain unclear. In this study, we sought to elucidate the mechanism(s) of CD4 T cell mitochondrial compromise in ART-controlled PLWH. We first assessed the levels of reactive oxygen species (ROS), and we observed significantly increased cellular and mitochondrial ROS levels in CD4 T cells from PLWH compared to healthy subjects (HS). Furthermore, we observed a significant reduction in the levels of proteins responsible for antioxidant defense (superoxide dismutase 1, SOD1) and ROS-mediated DNA damage repair (apurinic/apyrimidinic endonuclease 1, APE1) in CD4 T cells from PLWH. Importantly, CRISPR/Cas9-mediated knockdown of SOD1 or APE1 in CD4 T cells from HS confirmed their roles in maintaining normal mitochondrial respiration via a p53-mediated pathway. Reconstitution of SOD1 or APE1 in CD4 T cells from PLWH successfully rescued mitochondrial function as evidenced by Seahorse analysis. These results indicate that ROS induces mitochondrial dysfunction, leading to premature T cell aging via dysregulation of SOD1 and APE1 during latent HIV infection.
Collapse
Affiliation(s)
- Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yi Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xiao Y. Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yong Jiang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| |
Collapse
|
6
|
Wu X, Yao F, Xu JY, Chen J, Lu Y, Li W, Deng J, Mou L, Zhang Q, Pu Z. The transcriptome profile of RPE cells by the fullerenol against hydrogen peroxide stress. Front Med (Lausanne) 2022; 9:996280. [PMID: 36186803 PMCID: PMC9515647 DOI: 10.3389/fmed.2022.996280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related macular degeneration (AMD) causes central vision impairment with increased incidence. In the pathogenesis of AMD, reactive oxygen species (ROS) are associated with RPE cell apoptosis. H2O2 is an oxidative toxicant and is used to establish the AMD in vitro model. However, the mechanisms of ROS in H2O2-induced AMD are still unclear. Fullerenol, a promising antioxidant of nanomaterials, protects RPE cells from ROS attack. In addition to working as a scavenger, little is known about the antioxidant mechanism of fullerenol in RPE cells. In this study, transcriptome sequencing was performed to examine the global changes in mRNA transcripts induced by H2O2 in human ARPE-19 cells. Moreover, we comprehensively investigated the protective effects of fullerenol against H2O2-induced oxidative injury by RNA sequencing. Gene Ontology enrichment analysis showed that those pathways related to the release of positive regulation of DNA-templated transcription and negative regulation of apoptotic process were affected. Finally, we found that 12 hub genes were related to the oxidative-protection function of fullerenol. In summary, H2O2 affected these hub genes and signaling pathways to regulate the senescence of RPE cells. Moreover, fullerenol is a potent nanomaterial that protects the RPE and would be a promising approach for AMD prevention.
Collapse
Affiliation(s)
- Xiaojun Wu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Ophthalmology, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Fuwen Yao
- Department of Hepatopancreatobiliary Surgery, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jing-Ying Xu
- Department of Pathology and Pathophysiology School of Medicine, Tongji University, China
| | - Jiao Chen
- Department of Hepatopancreatobiliary Surgery, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ying Lu
- Department of Hepatopancreatobiliary Surgery, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei Li
- Department of Biochemistry, College of Science, Northeastern University, Boston, MA, United States
| | - Jing Deng
- Department of Hepatopancreatobiliary Surgery, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lisha Mou
- Department of Hepatopancreatobiliary Surgery, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- *Correspondence: Lisha Mou
| | - Qingling Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Qingling Zhang
| | - Zuihui Pu
- Imaging Department, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Zuihui Pu
| |
Collapse
|
7
|
Bazard P, Pineros J, Acosta AA, Thivierge M, Paganella LR, Zucker S, Mannering FL, Modukuri S, Zhu X, Frisina RD, Ding B. Post-Translational Modifications and Age-related Hearing Loss. Hear Res 2022; 426:108625. [DOI: 10.1016/j.heares.2022.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022]
|
8
|
Preventive Effect of Cocoa Flavonoids via Suppression of Oxidative Stress-Induced Apoptosis in Auditory Senescent Cells. Antioxidants (Basel) 2022; 11:antiox11081450. [PMID: 35892652 PMCID: PMC9330887 DOI: 10.3390/antiox11081450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Presbycusis or Age-related hearing loss (ARHL) is a sensorineural hearing loss that affects communication, leading to depression and social isolation. Currently, there are no effective treatments against ARHL. It is known that cocoa products have high levels of polyphenol content (mainly flavonoids), that are potent anti-inflammatory and antioxidant agents with proven benefits for health. The objective is to determine the protective effect of cocoa at the cellular and molecular levels in Presbycusis. For in vitro study, we used House Ear Institute-Organ of Corti 1 (HEI-OC1), stria vascularis (SV-k1), and organ of Corti (OC-k3) cells (derived from the auditory organ of a transgenic mouse). Each cell line was divided into a control group (CTR) and an H2O2 group (induction of senescence by an oxygen radical). Additionally, every group of every cell line was treated with the cocoa polyphenolic extract (CPE), measuring different markers of apoptosis, viability, the activity of antioxidant enzymes, and oxidative/nitrosative stress. The data show an increase of reactive oxidative and nitrogen species (ROS and RNS, respectively) in senescent cells compared to control ones. CPE treatment effectively reduced these high levels and correlated with a significant reduction in apoptosis cells by inhibiting the mitochondrial-apoptotic pathway. Furthermore, in senescence cells, the activity of antioxidant enzymes (Superoxide dismutase, SOD; Catalase, CAT; and Glutathione peroxidase, GPx) was recovered after CPE treatment. Administration of CPE also decreased oxidative DNA damage in the auditory senescent cells. In conclusion, CPE inhibits the activation of senescence-related apoptotic signaling by decreasing oxidative stress in auditory senescent cells.
Collapse
|
9
|
Gupta KB, Kaur S, Dhiman M, Mantha AK. Methods to Assess Oxidative DNA Base Damage Repair of Apurinic/Apyrimidinic (AP) Sites Using Radioactive and Nonradioactive Oligonucleotide-Based Assays. Methods Mol Biol 2022; 2413:155-163. [PMID: 35044663 DOI: 10.1007/978-1-0716-1896-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) overproduction results in oxidative stress leading to genomic instability via the generation of small base lesions in the genome, and this unrepaired DNA base damage leads to various cellular consequences. The oxidative stress-mediated DNA base damage is involved in various human disorders like cancer, cardiovascular, ocular, and neurodegenerative diseases. Base excision repair (BER) pathway, one of the DNA repair pathways, is majorly involved in the repair of oxidative DNA base lesions, which utilizes a different set of enzymes, including endonuclease viz Apurinic/apyrimidinic endonuclease 1 (APE1). APE1 is a well-known multifunctional enzyme with DNA repair, REDOX regulatory, and protein-protein interaction/cross-talk functions associated with the cell survival mechanisms. APE1 acts as an important player in both normal and cancerous cell survival; thus, evaluating its endonuclease activity in the biological samples provide useful readout of the DNA repair capacity/ability, which can be used to tune for the development of therapeutic candidates via either stimulating or blocking its DNA repair function in normal vs. cancer cells, respectively. This chapter enlists two methods used for the determination of APE1's endonuclease activity by oligonucleotide-based radioactive P32-labeled and nonradioactive fluorescence dyes using the cell extracts and recombinant APE1 protein.
Collapse
Affiliation(s)
- Kunj Bihari Gupta
- Department of Microbiology, School of Biological Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, School of Biological Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Biological Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
10
|
Tea polyphenols improve the memory in aging ovariectomized rats by regulating brain glucose metabolism in vivo and in vitro. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
11
|
Chakraborty A, Tapryal N, Islam A, Mitra S, Hazra T. Transcription coupled base excision repair in mammalian cells: So little is known and so much to uncover. DNA Repair (Amst) 2021; 107:103204. [PMID: 34390916 DOI: 10.1016/j.dnarep.2021.103204] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Oxidized bases in the genome has been implicated in various human pathologies, including cancer, aging and neurological diseases. Their repair is initiated with excision by DNA glycosylases (DGs) in the base excision repair (BER) pathway. Among the five oxidized base-specific human DGs, OGG1 and NTH1 preferentially excise oxidized purines and pyrimidines, respectively, while NEILs remove both oxidized purines and pyrimidines. However, little is known about why cells possess multiple DGs with overlapping substrate specificities. Studies of the past decades revealed that some DGs are involved in repair of oxidized DNA base lesions in the actively transcribed regions. Preferential removal of lesions from the transcribed strands of active genes, called transcription-coupled repair (TCR), was discovered as a distinct sub-pathway of nucleotide excision repair; however, such repair of oxidized DNA bases had not been established until our recent demonstration of NEIL2's role in TC-BER of the nuclear genome. We have shown that NEIL2 forms a distinct transcriptionally active, repair proficient complex. More importantly, we for the first time reconstituted TC-BER using purified components. These studies are important for characterizing critical requirement for the process. However, because NEIL2 cannot remove all types of oxidized bases, it is unlikely to be the only DNA glycosylase involved in TC-BER. Hence, we postulate TC-BER process to be universally involved in maintaining the functional integrity of active genes, especially in post-mitotic, non-growing cells. We further postulate that abnormal bases (e.g., uracil), and alkylated and other small DNA base adducts are also repaired via TC-BER. In this review, we have provided an overview of the various aspects of TC-BER in mammalian cells with the hope of generating significant interest of many researchers in the field. Further studies aimed at better understanding the mechanistic aspects of TC-BER could help elucidate the linkage of TC-BER deficiency to various human pathologies.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nisha Tapryal
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Azharul Islam
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sankar Mitra
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Tapas Hazra
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
12
|
Cendrowska-Pinkosz M, Krauze M, Juśkiewicz J, Ognik K. The effect of the use of copper carbonate and copper nanoparticles in the diet of rats on the level of β-amyloid and acetylcholinesterase in selected organs. J Trace Elem Med Biol 2021; 67:126777. [PMID: 33984546 DOI: 10.1016/j.jtemb.2021.126777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Copper has an important role in nervous system function, as a cofactor of many enzymes and in the synthesis of neurotransmitters. Both the dose and the chemical form of copper can determine the impact of this element on metabolism, the neurological system and the immune system. AIMS The aim of the study was to determine whether and in what form the addition of copper changes the level of amyloid beta and acetylcholinesterase level in selected rat tissues. METHODS Thirty, healthy, male, albino Wistar rats aged 7 weeks were randomly divided into 3 groups. Three experimental treatments were used to evaluate the effects of different levels and sources of Cu (6.5 mg kg of diet) in the diet: Cu0 - rats fed a diet without Cu supplementation; Cusalt - rats fed a diet with CuCO3 (6.5 mg kg of diet) during two months of feeding; CuNPs - rats fed a diet with Cu nanoparticles (6.5 mg kg of diet) during two months of feeding. In blood serum and tissue homogenates there rated the indicators proving the potential neurodegenerative effect and epigenetic DNA damage induced by chemical form of copper or lack of additional copper supplementation in diet were determined. There were analysed: level of acetylcholinesterase, β-amyloid, low-density lipoprotein receptor-related protein 1, apyrimidinic endonuclease, thymidine glycosidase, alkylpurine-DNA-N-glycosylase and glycosylated acetylcholinesterase. RESULTS Irrespective of the form of copper added, it was found to increase acetylcholinesterase level in the brain, spleen and liver, as well as in the blood plasma of the rats. Copper in the form of CuCO3 was found to increase acetylcholinesterase level in the kidneys. The addition of both forms of copper caused a marked increase in the plasma concentration of β-amyloid in comparison with the diet with no added Cu. The addition of both forms of copper caused a marked increase in the plasma concentration of β-amyloid in comparison with the diet with no added Cu. CONCLUSIONS A lack of added Cu in the diet of rats reduces the concentration of amyloid-β in the blood, whereas administration of copper, in the form of either CuNPs or CuCO3, increases the level of this peptide in the blood. The use of copper in the form of CuNPs in the diet of rats does not increase the level of β-amyloid more than the use of the carbonate form of this element. The use of CuNPs or CuCO3 in the diet of rats increases acetylcholinesterase level in the brain, spleen, liver, and blood. CuNPs in the diet of rats were not found to increase acetylcholinesterase level to a greater extent than Cu+2 carbonate.
Collapse
Affiliation(s)
| | - Magdalena Krauze
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950, Lublin, Poland.
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Biological Function of Food, Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| |
Collapse
|
13
|
Barchiesi A, Bazzani V, Jabczynska A, Borowski LS, Oeljeklaus S, Warscheid B, Chacinska A, Szczesny RJ, Vascotto C. DNA Repair Protein APE1 Degrades Dysfunctional Abasic mRNA in Mitochondria Affecting Oxidative Phosphorylation. J Mol Biol 2021; 433:167125. [PMID: 34224750 DOI: 10.1016/j.jmb.2021.167125] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/19/2022]
Abstract
APE1 is a multifunctional protein which plays a central role in the maintenance of nuclear and mitochondrial genomes repairing DNA lesions caused by oxidative and alkylating agents. In addition, it works as a redox signaling protein regulating gene expression by interacting with many transcriptional factors. Apart from these canonical activities, recent studies have shown that APE1 is also enzymatically active on RNA molecules. The present study unveils for the first time a new role of the mitochondrial form of APE1 protein in the metabolism of RNA in mitochondria. Our data demonstrate that APE1 is associated with mitochondrial messenger RNA and exerts endoribonuclease activity on abasic sites. Loss of APE1 results in the accumulation of damaged mitochondrial mRNA species, determining impairment in protein translation and reduced expression of mitochondrial-encoded proteins, finally leading to less efficient mitochondrial respiration. Altogether, our data demonstrate that APE1 plays an active role in the degradation of the mitochondrial mRNA and has a profound impact on mitochondrial well-being.
Collapse
Affiliation(s)
| | | | - Agata Jabczynska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Lukasz S Borowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Silke Oeljeklaus
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Germany
| | - Agnieszka Chacinska
- Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; ReMedy International Research Agenda Unit, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Carlo Vascotto
- Department of Medicine, University of Udine, 33100 Udine, Italy; Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
14
|
Curia MC, Catalano T, Aceto GM. MUTYH: Not just polyposis. World J Clin Oncol 2020; 11:428-449. [PMID: 32821650 PMCID: PMC7407923 DOI: 10.5306/wjco.v11.i7.428] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
MUTYH is a base excision repair enzyme, it plays a crucial role in the correction of DNA errors from guanine oxidation and may be considered a cell protective factor. In humans it is an adenine DNA glycosylase that removes adenine misincorporated in 7,8-dihydro-8-oxoguanine (8-oxoG) pairs, inducing G:C to T:A transversions. MUTYH functionally cooperates with OGG1 that eliminates 8-oxodG derived from excessive reactive oxygen species production. MUTYH mutations have been linked to MUTYH associated polyposis syndrome (MAP), an autosomal recessive disorder characterized by multiple colorectal adenomas. MAP patients show a greatly increased lifetime risk for gastrointestinal cancers. The cancer risk in mono-allelic carriers associated with one MUTYH mutant allele is controversial and it remains to be clarified whether the altered functions of this protein may have a pathophysiological involvement in other diseases besides familial gastrointestinal diseases. This review evaluates the role of MUTYH, focusing on current studies of human neoplastic and non-neoplastic diseases different to colon polyposis and colorectal cancer. This will provide novel insights into the understanding of the molecular basis underlying MUTYH-related pathogenesis. Furthermore, we describe the association between MUTYH single nucleotide polymorphisms (SNPs) and different cancer and non-cancer diseases. We address the utility to increase our knowledge regarding MUTYH in the light of recent advances in the literature with the aim of a better understanding of the potential for identifying new therapeutic targets. Considering the multiple functions and interactions of MUTYH protein, its involvement in pathologies based on oxidative stress damage could be hypothesized. Although the development of extraintestinal cancer in MUTYH heterozygotes is not completely defined, the risk for malignancies of the duodenum, ovary, and bladder is also increased as well as the onset of benign and malignant endocrine tumors. The presence of MUTYH pathogenic variants is an independent predictor of poor prognosis in sporadic gastric cancer and in salivary gland secretory carcinoma, while its inhibition has been shown to reduce the survival of pancreatic ductal adenocarcinoma cells. Furthermore, some MUTYH SNPs have been associated with lung, hepatocellular and cervical cancer risk. An additional role of MUTYH seems to contribute to the prevention of numerous other disorders with an inflammatory/degenerative basis, including neurological and ocular diseases. Finally, it is interesting to note that MUTYH could be a new therapeutic target and future studies will shed light on its specific functions in the prevention of diseases and in the improvement of the chemo-sensitivity of cancer cells.
Collapse
Affiliation(s)
- Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Via Consolare Valeria 98125, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| |
Collapse
|
15
|
Wang J, Puel JL. Presbycusis: An Update on Cochlear Mechanisms and Therapies. J Clin Med 2020; 9:jcm9010218. [PMID: 31947524 PMCID: PMC7019248 DOI: 10.3390/jcm9010218] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Age-related hearing impairment (ARHI), also referred to as presbycusis, is the most common sensory impairment seen in the elderly. As our cochlea, the peripheral organ of hearing, ages, we tend to experience a decline in hearing and are at greater risk of cochlear sensory-neural cell degeneration and exacerbated age-related hearing impairments, e.g., gradual hearing loss, deterioration in speech comprehension (especially in noisy environments), difficulty in the localization sound sources, and ringing sensations in the ears. However, the aging process does not affect people uniformly; nor, in fact, does the aging process appear to be uniform even within an individual. Here, we outline recent research into chronological cochlear age in healthy people, and exacerbated hearing impairments during aging due to both extrinsic factors including noise and ototoxic medication, and intrinsic factors such as genetic predisposition, epigenetic factors, and aging. We review our current understanding of molecular pathways mediating ARHL and discuss recent discoveries in experimental hearing restoration and future prospects.
Collapse
Affiliation(s)
- Jing Wang
- INSERM U051, Institute for Neurosciences of Montpellier, Hôpital Saint Eloi-Bâtiment INM, 80, rue Augustin Fliche-BP 74103, 34091 Montpellier, France
- Montpellier Neuroscience Institute, University of Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
- Correspondence: (J.W.); (J.-L.P.); Tel.: +33-499-63-60-48 (J.W.); +33-499-63-60-09 (J.-L.P.)
| | - Jean-Luc Puel
- INSERM U051, Institute for Neurosciences of Montpellier, Hôpital Saint Eloi-Bâtiment INM, 80, rue Augustin Fliche-BP 74103, 34091 Montpellier, France
- Montpellier Neuroscience Institute, University of Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
- Correspondence: (J.W.); (J.-L.P.); Tel.: +33-499-63-60-48 (J.W.); +33-499-63-60-09 (J.-L.P.)
| |
Collapse
|
16
|
Hognon C, Gebus A, Barone G, Monari A. Human DNA Telomeres in Presence of Oxidative Lesions: The Crucial Role of Electrostatic Interactions on the Stability of Guanine Quadruplexes. Antioxidants (Basel) 2019; 8:antiox8090337. [PMID: 31443537 PMCID: PMC6770428 DOI: 10.3390/antiox8090337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 01/23/2023] Open
Abstract
By using all atom molecular dynamics simulations, we studied the behavior of human DNA telomere sequences in guanine quadruplex (G4) conformation and in the presence of oxidative lesions, namely abasic sites. In particular, we evidenced that while removing one guanine base induces a significant alteration and destabilization of the involved leaflet, human telomere oligomers tend, in most cases, to maintain at least a partial quadruplex structure, eventually by replacing the empty site with undamaged guanines of different leaflets. This study shows that (i) the disruption of the quadruplex leaflets induces the release of at least one of the potassium cations embedded in the quadruplex channel and that (ii) the electrostatic interactions of the DNA sequence with the aforementioned cations are fundamental to the maintenance of the global quadruplex structure.
Collapse
Affiliation(s)
- Cecilia Hognon
- Université de Lorraine, CNRS, LPCT UMR 7019, F54000 Nancy, France.
| | - Adrien Gebus
- Université de Lorraine, CNRS, LPCT UMR 7019, F54000 Nancy, France
| | - Giampaolo Barone
- Department of Biological, Chenical and Pharmaceutical Sciences and Technologies, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Antonio Monari
- Université de Lorraine, CNRS, LPCT UMR 7019, F54000 Nancy, France.
| |
Collapse
|
17
|
Ertuzun T, Semerci A, Cakir ME, Ekmekcioglu A, Gok MO, Soltys DT, de Souza-Pinto NC, Sezerman U, Muftuoglu M. Investigation of base excision repair gene variants in late-onset Alzheimer's disease. PLoS One 2019; 14:e0221362. [PMID: 31415677 PMCID: PMC6695184 DOI: 10.1371/journal.pone.0221362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/05/2019] [Indexed: 12/03/2022] Open
Abstract
Base excision repair (BER) defects and concomitant oxidative DNA damage accumulation play a role in the etiology and progression of late-onset Alzheimer’s disease (LOAD). However, it is not known whether genetic variant(s) of specific BER genes contribute to reduced BER activity in LOAD patients and whether they are associated with risk, development and/or progression of LOAD. Therefore, we performed targeted next generation sequencing for three BER genes, uracil glycosylase (UNG), endonuclease VIII-like DNA glycosylase 1 (NEIL1) and polymerase β (POLβ) including promoter, exonic and intronic regions in peripheral blood samples and postmortem brain tissues (temporal cortex, TC and cerebellum, CE) from LOAD patients, high-pathology control and cognitively normal age-matched controls. In addition, the known LOAD risk factor, APOE was included in this study to test whether any BER gene variants associate with APOE variants, particularly APOE ε4. We show that UNG carry five significant variants (rs1610925, rs2268406, rs80001089, rs1018782 and rs1018783) in blood samples of Turkish LOAD patients compared to age-matched controls and one of them (UNG rs80001089) is also significant in TC from Brazilian LOAD patients (p<0.05). The significant variants present only in CE and TC from LOAD are UNG rs2569987 and POLβ rs1012381950, respectively. There is also significant epistatic relationship (p = 0.0410) between UNG rs80001089 and NEIL1 rs7182283 in TC from LOAD subjects. Our results suggest that significant BER gene variants may be associated with the risk of LOAD in non-APOE ε4 carriers. On the other hand, there are no significant UNG, NEIL1 and POLβ variants that could affect their protein level and function, suggesting that there may be other factors such as post-transcriptional or–translational modifications responsible for the reduced activities and protein levels of these genes in LOAD pathogenesis. Further studies with increased sample size are needed to confirm the relationship between BER variants and LOAD risk.
Collapse
Affiliation(s)
- Tugce Ertuzun
- Department of Molecular Biology and Genetics
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Asli Semerci
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Mehmet Emin Cakir
- Department of Neurology, Medeniyet University, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Aysegul Ekmekcioglu
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Mehmet Oguz Gok
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Daniela T. Soltys
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Nadja C. de Souza-Pinto
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Meltem Muftuoglu
- Department of Molecular Biology and Genetics
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
18
|
Frossi B, Antoniali G, Yu K, Akhtar N, Kaplan MH, Kelley MR, Tell G, Pucillo CEM. Endonuclease and redox activities of human apurinic/apyrimidinic endonuclease 1 have distinctive and essential functions in IgA class switch recombination. J Biol Chem 2019; 294:5198-5207. [PMID: 30705092 DOI: 10.1074/jbc.ra118.006601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/28/2019] [Indexed: 11/06/2022] Open
Abstract
The base excision repair (BER) pathway is an important DNA repair pathway and is essential for immune responses. In fact, it regulates both the antigen-stimulated somatic hypermutation (SHM) process and plays a central function in the process of class switch recombination (CSR). For both processes, a central role for apurinic/apyrimidinic endonuclease 1 (APE1) has been demonstrated. APE1 acts also as a master regulator of gene expression through its redox activity. APE1's redox activity stimulates the DNA-binding activity of several transcription factors, including NF-κB and a few others involved in inflammation and in immune responses. Therefore, it is possible that APE1 has a role in regulating the CSR through its function as a redox coactivator. The present study was undertaken to address this question. Using the CSR-competent mouse B-cell line CH12F3 and a combination of specific inhibitors of APE1's redox (APX3330) and repair (compound 3) activities, APE1-deficient or -reconstituted cell lines expressing redox-deficient or endonuclease-deficient proteins, and APX3330-treated mice, we determined the contributions of both endonuclease and redox functions of APE1 in CSR. We found that APE1's endonuclease activity is essential for IgA-class switch recombination. We provide evidence that the redox function of APE1 appears to play a role in regulating CSR through the interleukin-6 signaling pathway and in proper IgA expression. Our results shed light on APE1's redox function in the control of cancer growth through modulation of the IgA CSR process.
Collapse
Affiliation(s)
- Barbara Frossi
- From the Laboratory of Immunology, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Giulia Antoniali
- the Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Kefei Yu
- the Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, and
| | - Nahid Akhtar
- the Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Mark H Kaplan
- the Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Mark R Kelley
- the Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Gianluca Tell
- the Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy,
| | - Carlo E M Pucillo
- From the Laboratory of Immunology, Department of Medicine, University of Udine, 33100 Udine, Italy,
| |
Collapse
|
19
|
Benkafadar N, François F, Affortit C, Casas F, Ceccato JC, Menardo J, Venail F, Malfroy-Camine B, Puel JL, Wang J. ROS-Induced Activation of DNA Damage Responses Drives Senescence-Like State in Postmitotic Cochlear Cells: Implication for Hearing Preservation. Mol Neurobiol 2019; 56:5950-5969. [PMID: 30693443 PMCID: PMC6614136 DOI: 10.1007/s12035-019-1493-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
Abstract
In our aging society, age-related hearing loss (ARHL) has become a major socioeconomic issue. Reactive oxygen species (ROS) may be one of the main causal factors of age-related cochlear cell degeneration. We examined whether ROS-induced DNA damage response drives cochlear cell senescence and contributes to ARHL from the cellular up to the system level. Our results revealed that sublethal concentrations of hydrogen peroxide (H2O2) exposure initiated a DNA damage response illustrated by increased γH2AX and 53BP1 expression and foci formation mainly in sensory hair cells, together with increased levels of p-Chk2 and p53. Interestingly, postmitotic cochlear cells exposed to H2O2 displayed key hallmarks of senescent cells, including dramatically increased levels of p21, p38, and p-p38 expression, concomitant with decreased p19 and BubR1 expression and positive senescence-associated β-galactosidase labeling. Importantly, the synthetic superoxide dismutase/catalase mimetic EUK-207 attenuated H2O2-induced DNA damage and senescence phenotypes in cochlear cells in vitro. Furthermore, systemic administration of EUK-207 reduced age-related loss of hearing and hair cell degeneration in senescence-accelerated mouse-prone 8 (SAMP8) mice. Altogether, these findings highlight that ROS-induced DNA damage responses drive cochlear cell senescence and contribute to accelerated ARHL. EUK-207 and likely other antioxidants with similar mechanisms of action could potentially postpone cochlear aging and prevent ARHL in humans.
Collapse
Affiliation(s)
- Nesrine Benkafadar
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - Florence François
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - Corentin Affortit
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - François Casas
- INRA, UMR 866 Différenciation Cellulaire et Croissance, 34060, Montpellier, France
| | - Jean-Charles Ceccato
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - Julien Menardo
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - Frederic Venail
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | | | - Jean-Luc Puel
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - Jing Wang
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France.
- Université Montpellier, 34295, Montpellier, France.
| |
Collapse
|
20
|
Epigenetics of Subcellular Structure Functioning in the Origin of Risk or Resilience to Comorbidity of Neuropsychiatric and Cardiometabolic Disorders. Int J Mol Sci 2018; 19:ijms19051456. [PMID: 29757967 PMCID: PMC5983601 DOI: 10.3390/ijms19051456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
Mechanisms controlling mitochondrial function, protein folding in the endoplasmic reticulum (ER) and nuclear processes such as telomere length and DNA repair may be subject to epigenetic cues that relate the genomic expression and environmental exposures in early stages of life. They may also be involved in the comorbid appearance of cardiometabolic (CMD) and neuropsychiatric disorders (NPD) during adulthood. Mitochondrial function and protein folding in the endoplasmic reticulum are associated with oxidative stress and elevated intracellular calcium levels and may also underlie the vulnerability for comorbid CMD and NPD. Mitochondria provide key metabolites such as nicotinamide adenine dinucleotide (NAD+), ATP, α-ketoglutarate and acetyl coenzyme A that are required for many transcriptional and epigenetic processes. They are also a source of free radicals. On the other hand, epigenetic markers in nuclear DNA determine mitochondrial biogenesis. The ER is the subcellular organelle in which secretory proteins are folded. Many environmental factors stop the ability of cells to properly fold proteins and modify post-translationally secretory and transmembrane proteins leading to endoplasmic reticulum stress and oxidative stress. ER functioning may be epigenetically determined. Chronic ER stress is emerging as a key contributor to a growing list of human diseases, including CMD and NPD. Telomere loss causes chromosomal fusion, activation of the control of DNA damage-responses, unstable genome and altered stem cell function, which may underlie the comorbidity of CMD and NPD. The length of telomeres is related to oxidative stress and may be epigenetically programmed. Pathways involved in DNA repair may be epigenetically programmed and may contribute to diseases. In this paper, we describe subcellular mechanisms that are determined by epigenetic markers and their possible relation to the development of increased susceptibility to develop CMD and NPD.
Collapse
|
21
|
Coutinho LG, de Oliveira AHS, Witwer M, Leib SL, Agnez-Lima LF. DNA repair protein APE1 is involved in host response during pneumococcal meningitis and its expression can be modulated by vitamin B6. J Neuroinflammation 2017; 14:243. [PMID: 29233148 PMCID: PMC5727666 DOI: 10.1186/s12974-017-1020-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023] Open
Abstract
Background The production of reactive oxygen species (ROS) during pneumococcal meningitis (PM) leads to severe DNA damage in the neurons and is the major cause of cell death during infection. Hence, the use of antioxidants as adjuvant therapy has been investigated. Previous studies have demonstrated the possible participation of apurinic/apyrimidinic endonuclease (APE1) during PM. The aims of this study were to investigate the APE1 expression in the cortical and hippocampal tissues of infant Wistar rats infected with Streptococcus pneumoniae and its association with cell death and understand the role of vitamin B6 (vitB6) as a protective factor against cell death. Methods APE1 expression and oxidative stress markers were analyzed at two-time points, 20 and 24 h post infection (p.i.), in the cortex (CX) and hippocampus (HC) of rats supplemented with vitB6. Statistical analyses were performed by the nonparametric Kruskal–Wallis test using Dunn’s post test. Results Our results showed high protein levels of APE1 in CX and HC of infected rats. In the CX, at 20 h p.i., vitB6 supplementation led to the reduction of expression of APE1 and apoptosis-inducing factor, while no significant changes in the transcript levels of caspase-3 were observed. Furthermore, levels of carbonyl content and glutamate in the CX were reduced by vitB6 supplementation at the same time point of 20 h p.i.. Since our data showed a significant effect of vitB6 on the CX at 20 h p.i. rather than that at 24 h p.i., we evaluated the effect of administering a second dose of vitB6 at 18 h p.i. and sacrifice at 24 h p.i.. Reduction in the oxidative stress and APE1 levels were observed, although the latter was not significant. Although the levels of APE1 was not significantly changed in the HC with vitB6 adjuvant therapy, vitB6 supplementation prevented the formation of the truncated form of APE1 (34 kDa) that is associated with apoptosis. Conclusions Our data suggest that PM affects APE1 expression, which can be modulated by vitB6. Additionally, vitB6 contributes to the reduction of glutamate and ROS levels. Besides the potential to reduce cell death and oxidative stress during neuroinflammation, vitB6 showed enhanced effect on the CX than on the HC during PM.
Collapse
Affiliation(s)
- Leonam G Coutinho
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, UFRN, Campus Universitário, Lagoa Nova, Natal, RN, 59078-900, Brazil.,Instituto Federal de Educação Tecnológica do Rio Grande do Norte, IFRN, Natal, Brazil
| | | | - Matthias Witwer
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, CH-3010, Bern, Switzerland
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, CH-3010, Bern, Switzerland
| | - Lucymara F Agnez-Lima
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, UFRN, Campus Universitário, Lagoa Nova, Natal, RN, 59078-900, Brazil.
| |
Collapse
|
22
|
Sarkar B, Dhiman M, Mittal S, Mantha AK. Curcumin revitalizes Amyloid beta (25-35)-induced and organophosphate pesticides pestered neurotoxicity in SH-SY5Y and IMR-32 cells via activation of APE1 and Nrf2. Metab Brain Dis 2017; 32:2045-2061. [PMID: 28861684 DOI: 10.1007/s11011-017-0093-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/11/2017] [Indexed: 12/15/2022]
Abstract
Amyloid beta (Aβ) peptide deposition is the primary cause of neurodegeneration in Alzheimer's disease (AD) pathogenesis. Several reports point towards the role of pesticides in the AD pathogenesis, especially organophosphate pesticides (OPPs). Monocrotophos (MCP) and Chlorpyrifos (CP) are the most widely used OPPs. In this study, the role of MCP and CP in augmenting the Aβ-induced oxidative stress associated with the neurodegeneration in AD has been assessed in human neuroblastoma IMR-32 and SH-SY5Y cell lines. From the cell survival assay, it was observed that MCP and CP reduced cell survival both dose- and time-dependently. Nitro blue tetrazolium (NBT) based assay for determination of intracellular reactive oxygen species (ROS) demonstrated that Aβ(25-35), MCP or CP produce significant oxidative stress alone or synergistically in IMR-32 and SH-SY5Y cells, while pretreatment of curcumin reduced ROS levels significantly in all treatment combinations. In this study, we also demonstrate that treatment of Aβ(25-35) and MCP upregulated inducible nitric oxide synthase (iNOS/NOS2) whereas, no change was observed in neuronal nitric oxide synthase (nNOS/NOS1), but down-regulation of the nuclear factor erythroid 2-related factor 2 (Nrf2) level was observed. While curcumin pretreatment resulted in upregulation of iNOS and Nrf2 proteins. Also, the expression of key DNA repair enzymes APE1, DNA polymerase beta (Pol β), and PARP1 were found to be downregulated upon treatment with MCP, Aβ(25-35) and their combinations at 24 h and 48 h time points. In this study, pretreatment of curcumin to the SH-SY5Y cells enhanced the expression of DNA repair enzymes APE1, pol β, and PARP1 enzymes to counter the oxidative DNA base damage via base excision repair (BER) pathway, and also activated the antioxidant element (ARE) via Nrf2 upregulation. Furthermore, the immunofluorescent confocal imaging studies in SH-SY5Y and IMR-32 cells treated with Aβ(25-35) and MCP-mediated oxidative stress and their combinations at different time periods suggesting for cross-talk between the two proteins APE1 and Nrf2. The APE1's association with Nrf2 might be associated with the redox function of APE1 that might be directly regulating the ARE-mediated neuronal survival mechanisms.
Collapse
Affiliation(s)
- Bibekananda Sarkar
- Center for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151 001, India
| | - Monisha Dhiman
- Center for Biochemistry and Microbial Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Sunil Mittal
- Center for Environmental Science & Technology, School of Earth Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil K Mantha
- Center for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151 001, India.
| |
Collapse
|
23
|
Systemic Inflammation, Oxidative Damage to Nucleic Acids, and Metabolic Syndrome in the Pathogenesis of Psoriasis. Int J Mol Sci 2017; 18:ijms18112238. [PMID: 29068430 PMCID: PMC5713208 DOI: 10.3390/ijms18112238] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/22/2017] [Accepted: 10/22/2017] [Indexed: 02/07/2023] Open
Abstract
In the pathogenesis of psoriasis, systemic inflammation and oxidative stress play mutual roles interrelated with metabolic syndrome (MetS). This study aims to map the selected markers of inflammation (C-reactive protein (CRP)), oxidative damage to nucleic acids (DNA/RNA damage; 8-hydroxy-2'-deoxyguanosine, 8-hydroxyguanosine, and 8-hydroxyguanine), and the parameters of MetS (waist circumference, fasting glucose, triglycerides, high-density lipoprotein (HDL) cholesterol, diastolic and systolic blood pressure) in a group of 37 patients with psoriasis (62% of MetS) and in 43 healthy controls (42% of MetS). Levels of CRP, DNA/RNA damage, fasting glucose, and triglycerides were significantly elevated in patients. MetS in conjunction with psoriasis was associated with high levels of CRP, significantly higher than in control subjects without MetS. Patients with MetS exhibited further DNA/RNA damage, which was significantly higher in comparison with the control group. Our study supports the independent role of psoriasis and MetS in the increase of CRP and DNA/RNA damage. The psoriasis contributes to an increase in the levels of both effects more significantly than MetS. The psoriasis also diminished the relationship between CRP and oxidative damage to nucleic acids existent in controls.
Collapse
|
24
|
Kim IH, Lee TK, Cho JH, Lee JC, Park JH, Ahn JH, Shin BN, Chen BH, Tae HJ, Kim YH, Kim JD, Kim YM, Won MH, Kang IJ. Pre‑treatment with Chrysanthemum indicum Linné extract protects pyramidal neurons from transient cerebral ischemia via increasing antioxidants in the gerbil hippocampal CA1 region. Mol Med Rep 2017; 16:133-142. [PMID: 28534982 PMCID: PMC5482094 DOI: 10.3892/mmr.2017.6591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
Chrysanthemum indicum Linné extract (CIL) is used in herbal medicine in East Asia. In the present study, gerbils were orally pre-treated with CIL, and changes of antioxidant enzymes including superoxide dismutase (SOD) 1 and SOD2, catalase (CAT) and glutathione peroxidase (GPX) in the hippocampal CA1 region following 5 min of transient cerebral ischemia were investigated and the neuroprotective effect of CIL in the ischemic CA1 region was examined. SOD1, SOD2, CAT and GPX immunoreactivities were observed in the pyramidal cells of the CA1 region and their immunoreactivities were gradually decreased following ischemia-reperfusion and barely detectable at 5 days post-ischemia. CIL pre-treatment significantly increased immunoreactivities of SOD1, CAT and GPX, but not SOD2, in the CA1 pyramidal cells of the sham-operated animals. In addition, SOD1, SOD2, CAT and GPX immunoreactivities in the CA1 pyramidal cells were significantly higher compared with the ischemia-operated animals. Furthermore, it was identified that pre-treatment with CIL protected the CA1 pyramidal cells in the CA1 region using neuronal nuclei immunohistochemistry and Fluoro-Jade B histofluorescence staining; the protected CA1 pyramidal cells were 67.5% compared with the sham-operated animals. In conclusion, oral CIL pre-treatment increased endogenous antioxidant enzymes in CA1 pyramidal cells in the gerbil hippocampus and protected the cells from transient cerebral ischemic insult. This finding suggested that CIL is promising for the prevention of ischemia-induced neuronal damage.
Collapse
Affiliation(s)
- In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Hyun-Jin Tae
- Bio‑Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeollabuk‑do 54596, Republic of Korea
| | - Yang Hee Kim
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| |
Collapse
|
25
|
Noristani HN, Gerber YN, Sabourin JC, Le Corre M, Lonjon N, Mestre-Frances N, Hirbec HE, Perrin FE. RNA-Seq Analysis of Microglia Reveals Time-Dependent Activation of Specific Genetic Programs following Spinal Cord Injury. Front Mol Neurosci 2017; 10:90. [PMID: 28420963 PMCID: PMC5376598 DOI: 10.3389/fnmol.2017.00090] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Neurons have inherent competence to regrow following injury, although not spontaneously. Spinal cord injury (SCI) induces a pronounced neuroinflammation driven by resident microglia and infiltrating peripheral macrophages. Microglia are the first reactive glial population after SCI and participate in recruitment of monocyte-derived macrophages to the lesion site. Both positive and negative influence of microglia and macrophages on axonal regeneration had been reported after SCI, raising the issue whether their response depends on time post-lesion or different lesion severity. We analyzed molecular alterations in microglia at several time-points after different SCI severities using RNA-sequencing. We demonstrate that activation of microglia is time-dependent post-injury but is independent of lesion severity. Early transcriptomic response of microglia after SCI involves proliferation and neuroprotection, which is then switched to neuroinflammation at later stages. Moreover, SCI induces an autologous microglial expression of astrocytic markers with over 6% of microglia expressing glial fibrillary acidic protein and vimentin from as early as 72 h post-lesion and up to 6 weeks after injury. We also identified the potential involvement of DNA damage and in particular tumor suppressor gene breast cancer susceptibility gene 1 (Brca1) in microglia after SCI. Finally, we established that BRCA1 protein is specifically expressed in non-human primate spinal microglia and is upregulated after SCI. Our data provide the first transcriptomic analysis of microglia at multiple stages after different SCI severities. Injury-induced microglia expression of astrocytic markers at RNA and protein levels demonstrates novel insights into microglia plasticity. Finally, increased microglia expression of BRCA1 in rodents and non-human primate model of SCI, suggests the involvement of oncogenic proteins after CNS lesion.
Collapse
Affiliation(s)
- Harun N Noristani
- MMDN, University of Montpellier; EPHE, Institut National de la Santé et de la Recherche Médicale U1198Montpellier, France.,Institut National de la Santé et de la Recherche Médicale U1051Montpellier, France
| | - Yannick N Gerber
- MMDN, University of Montpellier; EPHE, Institut National de la Santé et de la Recherche Médicale U1198Montpellier, France.,Institut National de la Santé et de la Recherche Médicale U1051Montpellier, France.,"Integrative Biology of Neurodegeneration", IKERBASQUE Basque Foundation for Science and Neuroscience Department, University of the Basque CountryBilbao, Spain
| | - Jean-Charles Sabourin
- "Integrative Biology of Neurodegeneration", IKERBASQUE Basque Foundation for Science and Neuroscience Department, University of the Basque CountryBilbao, Spain
| | - Marine Le Corre
- Institut National de la Santé et de la Recherche Médicale U1051Montpellier, France.,Department of Neurosurgery, Gui de Chauliac HospitalMontpellier, France
| | - Nicolas Lonjon
- MMDN, University of Montpellier; EPHE, Institut National de la Santé et de la Recherche Médicale U1198Montpellier, France.,Department of Neurosurgery, Gui de Chauliac HospitalMontpellier, France
| | - Nadine Mestre-Frances
- MMDN, University of Montpellier; EPHE, Institut National de la Santé et de la Recherche Médicale U1198Montpellier, France
| | - Hélène E Hirbec
- Institute for Functional Genomics, CNRS UMR5203, Institut National de la Santé et de la Recherche Médicale U1191Montpellier, France
| | - Florence E Perrin
- MMDN, University of Montpellier; EPHE, Institut National de la Santé et de la Recherche Médicale U1198Montpellier, France.,Institut National de la Santé et de la Recherche Médicale U1051Montpellier, France.,"Integrative Biology of Neurodegeneration", IKERBASQUE Basque Foundation for Science and Neuroscience Department, University of the Basque CountryBilbao, Spain
| |
Collapse
|
26
|
Oxidative stress-induced CREB upregulation promotes DNA damage repair prior to neuronal cell death protection. Mol Cell Biochem 2016; 425:9-24. [PMID: 27816995 DOI: 10.1007/s11010-016-2858-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/22/2016] [Indexed: 01/23/2023]
Abstract
cAMP response element-binding (CREB) protein is a cellular transcription factor that mediates responses to different physiological and pathological signals. Using a model of human neuronal cells we demonstrate herein, that CREB is phosphorylated after oxidative stress induced by hydrogen peroxide. This phosphorylation is largely independent of PKA and of the canonical phosphoacceptor site at ser-133, and is accompanied by an upregulation of CREB expression at both mRNA and protein levels. In accordance with previous data, we show that CREB upregulation promotes cell survival and that its silencing results in an increment of apoptosis after oxidative stress. Interestingly, we also found that CREB promotes DNA repair after treatment with hydrogen peroxide. Using a cDNA microarray we found that CREB is responsible for the regulation of many genes involved in DNA repair and cell survival after oxidative injury. In summary, the neuroprotective effect mediated by CREB appears to follow three essential steps following oxidative injury. First, the upregulation of CREB expression that allows sufficient level of activated and phosphorylated protein is the primordial event that promotes the induction of genes of the DNA Damage Response. Then and when the DNA repair is effective, CREB induces detoxification and survival genes. This kinetics seems to be important to completely resolve oxidative-induced neuronal damages.
Collapse
|
27
|
Lillenes MS, Rabano A, Støen M, Riaz T, Misaghian D, Møllersen L, Esbensen Y, Günther CC, Selnes P, Stenset VTV, Fladby T, Tønjum T. Altered DNA base excision repair profile in brain tissue and blood in Alzheimer's disease. Mol Brain 2016; 9:61. [PMID: 27234294 PMCID: PMC4884418 DOI: 10.1186/s13041-016-0237-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a progressive, multifactorial neurodegenerative disorder that is the main cause of dementia globally. AD is associated with increased oxidative stress, resulting from imbalance in production and clearance of reactive oxygen species (ROS). ROS can damage DNA and other macromolecules, leading to genome instability and disrupted cellular functions. Base excision repair (BER) plays a major role in repairing oxidative DNA lesions. Here, we compared the expression of BER components APE1, OGG1, PARP1 and Polβ in blood and postmortem brain tissue from patients with AD, mild cognitive impairment (MCI) and healthy controls (HC). Results BER mRNA levels were correlated to clinical signs and cerebrospinal fluid biomarkers for AD. Notably, the expression of BER genes was higher in brain tissue than in blood samples. Polβ mRNA and protein levels were significantly higher in the cerebellum than in the other brain regions, more so in AD patients than in HC. Blood mRNA levels of OGG1 was low and PARP1 high in MCI and AD. Conclusions These findings reflect the oxidative stress-generating energy-consumption in the brain and the importance of BER in repairing these damage events. The data suggest that alteration in BER gene expression is an event preceding AD. The results link DNA repair in brain and blood to the etiology of AD at the molecular level and can potentially serve in establishing novel biomarkers, particularly in the AD prodromal phase. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0237-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meryl S Lillenes
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Department of Microbiology, University of Oslo, Oslo, Norway
| | - Alberto Rabano
- Fundación Centro Investigación Enfermedades Neurológicas (CIEN), Madrid, Spain
| | - Mari Støen
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tahira Riaz
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Dorna Misaghian
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Department of Microbiology, University of Oslo, Oslo, Norway
| | - Linda Møllersen
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Ying Esbensen
- Department of Clinical Molecular Biology and Laboratory Sciences (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, Lørenskog, Norway
| | | | - Per Selnes
- Department of Neurology, Faculty Division, Akershus University Hospital, University of Oslo, Lørenskog, Norway
| | - Vidar T V Stenset
- Department of Neurology, Faculty Division, Akershus University Hospital, University of Oslo, Lørenskog, Norway
| | - Tormod Fladby
- Department of Neurology, Faculty Division, Akershus University Hospital, University of Oslo, Lørenskog, Norway
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Oslo, Norway. .,Department of Microbiology, University of Oslo, Oslo, Norway. .,Department of Microbiology, University of Oslo, Oslo University Hospital, Postbox 4950 Nydalen, Oslo, NO-0424, Norway.
| |
Collapse
|
28
|
Vohhodina J, Harkin DP, Savage KI. Dual roles of DNA repair enzymes in RNA biology/post-transcriptional control. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:604-19. [PMID: 27126972 DOI: 10.1002/wrna.1353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022]
Abstract
Despite consistent research into the molecular principles of the DNA damage repair pathway for almost two decades, it has only recently been found that RNA metabolism is very tightly related to this pathway, and the two ancient biochemical mechanisms act in alliance to maintain cellular genomic integrity. The close links between these pathways are well exemplified by examining the base excision repair pathway, which is now well known for dual roles of many of its members in DNA repair and RNA surveillance, including APE1, SMUG1, and PARP1. With additional links between these pathways steadily emerging, this review aims to provide a summary of the emerging roles for DNA repair proteins in the post-transcriptional regulation of RNAs. WIREs RNA 2016, 7:604-619. doi: 10.1002/wrna.1353 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jekaterina Vohhodina
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - D Paul Harkin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Kienan I Savage
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
29
|
Choonara YE, Kumar P, Modi G, Pillay V. Improving drug delivery technology for treating neurodegenerative diseases. Expert Opin Drug Deliv 2016; 13:1029-43. [PMID: 26967508 DOI: 10.1517/17425247.2016.1162152] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Neurodegenerative diseases (NDs) represent intricate challenges for efficient uptake and transport of drugs to the brain mainly due to the restrictive blood-brain barrier (BBB). NDs are characterized by the loss of neuronal subtypes as sporadic and/or familial and several mechanisms of neurodegeneration have been identified. AREAS COVERED This review attempts to recap, organize and concisely evaluate the advanced drug delivery systems designed for treating common NDs. It highlights key research gaps and opinionates on new neurotherapies to overcome the BBB as an addition to the current treatments of countering oxidative stress, inflammation and apoptotic mechanisms. EXPERT OPINION Current treatments do not fully address the biological, drug and therapeutic factors faced. This has led to the development of vogue treatments such as nose-to-brain technologies, bio-engineered systems, fusion protein chaperones, stem cells, gene therapy, use of natural compounds, neuroprotectants and even vaccines. However, failure of these treatments is mainly due to the BBB and non-specific delivery in the brain. In order to increase neuroavailability various advanced drug delivery systems provide promising alternatives that are able to augment the treatment of Alzheimer's disease and Parkinson's disease. However, much work is still required in this field beyond the preclinical testing phase.
Collapse
Affiliation(s)
- Yahya E Choonara
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences , University of the Witwatersrand, Johannesburg , South Africa
| | - Pradeep Kumar
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences , University of the Witwatersrand, Johannesburg , South Africa
| | - Girish Modi
- b Division of Neurosciences, Department of Neurology, Faculty of Health Sciences , University of the Witwatersrand, Johannesburg , South Africa
| | - Viness Pillay
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences , University of the Witwatersrand, Johannesburg , South Africa
| |
Collapse
|
30
|
Antoniali G, Marcuzzi F, Casarano E, Tell G. Cadmium treatment suppresses DNA polymerase δ catalytic subunit gene expression by acting on the p53 and Sp1 regulatory axis. DNA Repair (Amst) 2015; 35:90-105. [PMID: 26519823 DOI: 10.1016/j.dnarep.2015.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/28/2015] [Accepted: 08/05/2015] [Indexed: 01/03/2023]
Abstract
Cadmium (Cd) is a carcinogenic and neurotoxic environmental pollutant. Among the proposed mechanisms for Cd toxic effects, its ability to promote oxidative stress and to inhibit, in vitro, the activities of some Base Excision DNA Repair (BER) enzymes, such as hOGG1, XRCC1 and APE1, have been already established. However, the molecular mechanisms at the basis of these processes are largely unknown especially at sub-lethal doses of Cd and no information is available on the effect of Cd on the expression levels of BER enzymes. Here, we show that non-toxic treatment of neuronal cell lines, with pro-mitogenic doses of Cd, promotes a significant time- and dose-dependent down-regulation of DNA polymerase δ (POLD1) expression through a transcriptional mechanism with a modest effect on Polβ, XRCC1 and APE1. We further elucidated that the observed transcriptional repression on Polδ is acted by through competition by activated p53 on Sp1 at POLD1 promoter and by a squelching effect. We further proved the positive effect of Sp1 not only on POLD1 expression but also on Polβ, XRCC1 and APE1 expression, suggesting that Sp1 has pleiotropic effects on the whole BER pathway. Our results indicated that Cd-mediated impairment of BER pathway, besides acting on the enzymatic functions of some key proteins, is also exerted at the gene expression level of Polδ by acting on the p53-Sp1 regulatory axis. These data may explain not only the Cd-induced neurotoxic effects but also the potential carcinogenicity of this heavy metal.
Collapse
Affiliation(s)
- Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
| | - Federica Marcuzzi
- Laboratory of Molecular Biology and DNA Repair, Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
| | - Elena Casarano
- Laboratory of Molecular Biology and DNA Repair, Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy.
| |
Collapse
|
31
|
Narayan S, Sharma R. Molecular mechanism of adenomatous polyposis coli-induced blockade of base excision repair pathway in colorectal carcinogenesis. Life Sci 2015; 139:145-52. [PMID: 26334567 DOI: 10.1016/j.lfs.2015.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/31/2015] [Accepted: 08/23/2015] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third leading cause of death in both men and women in North America. Despite chemotherapeutic efforts, CRC is associated with a high degree of morbidity and mortality. Thus, to develop effective treatment strategies for CRC, one needs knowledge of the pathogenesis of cancer development and cancer resistance. It is suggested that colonic tumors or cell lines harbor truncated adenomatous polyposis coli (APC) without DNA repair inhibitory (DRI)-domain. It is also thought that the product of the APC gene can modulate base excision repair (BER) pathway through an interaction with DNA polymerase β (Pol-β) and flap endonuclease 1 (Fen-1) to mediate CRC cell apoptosis. The proposed therapy with temozolomide (TMZ) exploits this particular pathway; however, a high percentage of colorectal tumors continue to develop resistance to chemotherapy due to mismatch repair (MMR)-deficiency. In the present communication, we have comprehensively reviewed a critical issue that has not been addressed previously: a novel mechanism by which APC-induced blockage of single nucleotide (SN)- and long-patch (LP)-BER play role in DNA-alkylation damage-induced colorectal carcinogenesis.
Collapse
Affiliation(s)
- Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610 United States.
| | - Ritika Sharma
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610 United States
| |
Collapse
|
32
|
Noristani HN, Sabourin JC, Gerber YN, Teigell M, Sommacal A, Vivanco MDM, Weber M, Perrin FE. Brca1 is expressed in human microglia and is dysregulated in human and animal model of ALS. Mol Neurodegener 2015; 10:34. [PMID: 26227626 PMCID: PMC4521418 DOI: 10.1186/s13024-015-0023-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/25/2015] [Indexed: 02/07/2023] Open
Abstract
Background There is growing evidence that microglia are key players in the pathological process of amyotrophic lateral sclerosis (ALS). It is suggested that microglia have a dual role in motoneurone degeneration through the release of both neuroprotective and neurotoxic factors. Results To identify candidate genes that may be involved in ALS pathology we have analysed at early symptomatic age (P90), the molecular signature of microglia from the lumbar region of the spinal cord of hSOD1G93A mice, the most widely used animal model of ALS. We first identified unique hSOD1G93A microglia transcriptomic profile that, in addition to more classical processes such as chemotaxis and immune response, pointed toward the potential involvement of the tumour suppressor gene breast cancer susceptibility gene 1 (Brca1). Secondly, comparison with our previous data on hSOD1G93A motoneurone gene profile substantiated the putative contribution of Brca1 in ALS. Finally, we established that Brca1 protein is specifically expressed in human spinal microglia and is up-regulated in ALS patients. Conclusions Overall, our data provide new insights into the pathogenic concept of a non-cell-autonomous disease and the involvement of microglia in ALS. Importantly, the identification of Brca1 as a novel microglial marker and as possible contributor in both human and animal model of ALS may represent a valid therapeutic target. Moreover, our data points toward novel research strategies such as investigating the role of oncogenic proteins in neurodegenerative diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0023-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harun Najib Noristani
- Institute for Neurosciences of Montpellier (INM), INSERM U1051, 80, rue Augustin Fliche, 34091, Montpellier, Cedex 5, France.
| | - Jean Charles Sabourin
- "Integrative Biology of Neurodegeneration", IKERBASQUE Basque Foundation for Science and Neuroscience Department, University of the Basque Country, Bilbao, Spain.
| | - Yannick Nicolas Gerber
- Institute for Neurosciences of Montpellier (INM), INSERM U1051, 80, rue Augustin Fliche, 34091, Montpellier, Cedex 5, France. .,"Integrative Biology of Neurodegeneration", IKERBASQUE Basque Foundation for Science and Neuroscience Department, University of the Basque Country, Bilbao, Spain.
| | - Marisa Teigell
- Institute for Neurosciences of Montpellier (INM), INSERM U1051, 80, rue Augustin Fliche, 34091, Montpellier, Cedex 5, France.
| | - Andreas Sommacal
- Kantonspital St. Gallen. FachMuskelzentrum/ALS clinic, St. Gallen, Switzerland.
| | - Maria dM Vivanco
- CIC bioGUNE, Cell Biology & Stem Cells Unit, Technological Park of Bizkaia, Derio, Spain.
| | - Markus Weber
- Kantonspital St. Gallen. FachMuskelzentrum/ALS clinic, St. Gallen, Switzerland.
| | - Florence Evelyne Perrin
- Institute for Neurosciences of Montpellier (INM), INSERM U1051, 80, rue Augustin Fliche, 34091, Montpellier, Cedex 5, France. .,"Integrative Biology of Neurodegeneration", IKERBASQUE Basque Foundation for Science and Neuroscience Department, University of the Basque Country, Bilbao, Spain. .,Department "Biologie-Mécanismes du Vivant" Faculty of Science, University of Montpellier, Montpellier, France.
| |
Collapse
|
33
|
Kim HS, Guo C, Thompson EL, Jiang Y, Kelley MR, Vasko MR, Lee SH. APE1, the DNA base excision repair protein, regulates the removal of platinum adducts in sensory neuronal cultures by NER. Mutat Res 2015; 779:96-104. [PMID: 26164266 DOI: 10.1016/j.mrfmmm.2015.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/22/2015] [Indexed: 01/24/2023]
Abstract
Peripheral neuropathy is one of the major side effects of treatment with the anticancer drug, cisplatin. One proposed mechanism for this neurotoxicity is the formation of platinum adducts in sensory neurons that could contribute to DNA damage. Although this damage is largely repaired by nuclear excision repair (NER), our previous findings suggest that augmenting the base excision repair pathway (BER) by overexpressing the repair protein APE1 protects sensory neurons from cisplatin-induced neurotoxicity. The question remains whether APE1 contributes to the ability of the NER pathway to repair platinum-damage in neuronal cells. To examine this, we manipulated APE1 expression in sensory neuronal cultures and measured Pt-removal after exposure to cisplatin. When neuronal cultures were treated with increasing concentrations of cisplatin for two or three hours, there was a concentration-dependent increase in Pt-damage that peaked at four hours and returned to near baseline levels after 24h. In cultures where APE1 expression was reduced by ∼ 80% using siRNA directed at APE1, there was a significant inhibition of Pt-removal over eight hours which was reversed by overexpressing APE1 using a lentiviral construct for human wtAPE1. Overexpressing a mutant APE1 (C65 APE1), which only has DNA repair activity, but not its other significant redox-signaling function, mimicked the effects of wtAPE1. Overexpressing DNA repair activity mutant APE1 (226 + 177APE1), with only redox activity was ineffective suggesting it is the DNA repair function of APE1 and not its redox-signaling, that restores the Pt-damage removal. Together, these data provide the first evidence that a critical BER enzyme, APE1, helps regulate the NER pathway in the repair of cisplatin damage in sensory neurons.
Collapse
Affiliation(s)
- Hyun-Suk Kim
- Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202, USA
| | - Chunlu Guo
- Department of Pharmacology and Toxicology, Indianapolis, IN 46202, USA
| | - Eric L Thompson
- Department of Pharmacology and Toxicology, Indianapolis, IN 46202, USA
| | - Yanlin Jiang
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R Kelley
- Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indianapolis, IN 46202, USA; Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael R Vasko
- Department of Pharmacology and Toxicology, Indianapolis, IN 46202, USA
| | - Suk-Hee Lee
- Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202, USA.
| |
Collapse
|
34
|
Thakur S, Dhiman M, Tell G, Mantha AK. A review on protein-protein interaction network of APE1/Ref-1 and its associated biological functions. Cell Biochem Funct 2015; 33:101-12. [DOI: 10.1002/cbf.3100] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/10/2015] [Accepted: 02/24/2015] [Indexed: 12/17/2022]
Affiliation(s)
- S. Thakur
- Center for Biosciences, School of Basic and Applied Sciences; Central University of Punjab; Bathinda Punjab India
| | - M. Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies; Central University of Punjab; Bathinda Punjab India
| | - G. Tell
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - A. K. Mantha
- Center for Biosciences, School of Basic and Applied Sciences; Central University of Punjab; Bathinda Punjab India
- Department of Biochemistry and Molecular Biology; University of Texas Medical Branch; Galveston TX USA
| |
Collapse
|
35
|
Kaur N, Dhiman M, Perez-Polo JR, Mantha AK. Ginkgolide B revamps neuroprotective role of apurinic/apyrimidinic endonuclease 1 and mitochondrial oxidative phosphorylation against Aβ25-35 -induced neurotoxicity in human neuroblastoma cells. J Neurosci Res 2015; 93:938-47. [PMID: 25677400 DOI: 10.1002/jnr.23565] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/17/2014] [Accepted: 01/05/2015] [Indexed: 12/22/2022]
Abstract
Accumulating evidence points to roles for oxidative stress, amyloid beta (Aβ), and mitochondrial dysfunction in the pathogenesis of Alzheimer's disease (AD). In neurons, the base excision repair pathway is the predominant DNA repair (BER) pathway for repairing oxidized base lesions. Apurinic/apyrimidinic endonuclease 1 (APE1), a multifunctional enzyme with DNA repair and reduction-oxidation activities, has been shown to enhance neuronal survival after oxidative stress. This study seeks to determine 1) the effect of Aβ25-35 on reactive oxygen species (ROS)/reactive nitrogen species (RNS) levels, 2) the activities of respiratory complexes (I, III, and IV), 3) the role of APE1 by ectopic expression, and 4) the neuromodulatory role of ginkgolide B (GB; from the leaves of Ginkgo biloba). The pro-oxidant Aβ25-35 peptide treatment increased the levels of ROS/RNS in human neuroblastoma IMR-32 and SH-SY5Y cells, which were decreased after pretreatment with GB. Furthermore, the mitochondrial APE1 level was found to be decreased after treatment with Aβ25-35 up to 48 hr, and the level was increased significantly in cells pretreated with GB. The oxidative phosphorylation (OXPHOS; activities of complexes I, III, and IV) indicated that Aβ25-35 treatment decreased activities of complexes I and IV, and pretreatment with GB and ectopic APE1 expression enhanced these activities significantly compared with Aβ25-35 treatment. Our results indicate that ectopic expression of APE1 potentiates neuronal cells to overcome the oxidative damage caused by Aβ25-35 . In addition, GB has been shown to modulate the mitochondrial OXPHOS against Aβ25-35 -induced oxidative stress and also to regulate the levels of ROS/RNS in the presence of ectopic APE1. This study presents findings from a new point of view to improve therapeutic potential for AD via the synergistic neuroprotective role played by APE1 in combination with the phytochemical GB.
Collapse
Affiliation(s)
- Navrattan Kaur
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | | | | | | |
Collapse
|
36
|
Canugovi C, Misiak M, Scheibye-Knudsen M, Croteau DL, Mattson MP, Bohr VA. Loss of NEIL1 causes defects in olfactory function in mice. Neurobiol Aging 2015; 36:1007-12. [PMID: 25448603 PMCID: PMC5576891 DOI: 10.1016/j.neurobiolaging.2014.09.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 11/28/2022]
Abstract
Oxidative DNA damage accumulation has been implicated in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The base excision repair pathway is a primary responder to oxidative DNA damage. Effects of loss of base excision repair on normal brain function is a relatively nascent area of research that needs further exploration for better understanding of related brain diseases. Recently, we found that loss of a versatile DNA glycosylase endonuclease 8-like 1 (NEIL1) causes deficits in spatial memory retention using the Morris water maze test. Furthermore, we found that there is a significant loss of NEIL1 enzyme levels and its activity in postmortem Alzheimer's disease brains. Based on the Allen Brain Atlas in situ hybridization data, the expression levels of Neil1 messenger RNA are higher in the olfactory bulb compared with other areas of the brain. Olfaction in mice is a central brain function that involves many central nervous system pathways. Here, we studied the effect of complete loss of Neil1 gene on olfactory function. We explored olfactory function in mice with 3 different behavioral tests namely, olfactory sensitivity, performance, and buried food tests. Neil1(-/-) mice performed poorly compared with wild-type mice in all 3 tests. Our data indicate that loss of Neil1 causes olfactory function deficits supporting our previous findings and that normal brain function requires robust DNA repair.
Collapse
Affiliation(s)
- Chandrika Canugovi
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Magdalena Misiak
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
37
|
Sampath H. Oxidative DNA damage in disease--insights gained from base excision repair glycosylase-deficient mouse models. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:689-703. [PMID: 25044514 DOI: 10.1002/em.21886] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/24/2014] [Indexed: 05/10/2023]
Abstract
Cellular components, including nucleic acids, are subject to oxidative damage. If left unrepaired, this damage can lead to multiple adverse cellular outcomes, including increased mutagenesis and cell death. The major pathway for repair of oxidative base lesions is the base excision repair pathway, catalyzed by DNA glycosylases with overlapping but distinct substrate specificities. To understand the role of these glycosylases in the initiation and progression of disease, several transgenic mouse models have been generated to carry a targeted deletion or overexpression of one or more glycosylases. This review summarizes some of the major findings from transgenic animal models of altered DNA glycosylase expression, especially as they relate to pathologies ranging from metabolic disease and cancer to inflammation and neuronal health.
Collapse
Affiliation(s)
- Harini Sampath
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
38
|
Kaur G, Cholia RP, Mantha AK, Kumar R. DNA repair and redox activities and inhibitors of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1): a comparative analysis and their scope and limitations toward anticancer drug development. J Med Chem 2014; 57:10241-56. [PMID: 25280182 DOI: 10.1021/jm500865u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme involved in DNA repair and activation of transcription factors through its redox function. The evolutionarily conserved C- and N-termini are involved in these functions independently. It is also reported that the activity of APE1/Ref-1 abruptly increases several-fold in various human cancers. The control over the outcomes of these two functions is emerging as a new strategy to combine enhanced DNA damage and chemotherapy in order to tackle the major hurdle of increased cancer cell growth and proliferation. Studies have targeted these two domains individually for the design and development of inhibitors for APE1/Ref-1. Here, we have made, for the first time, an attempt at a comparative analysis of APE1/Ref-1 inhibitors that target both DNA repair and redox activities simultaneously. We further discuss their scope and limitations with respect to the development of potential anticancer agents.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory for Drug Design and Synthesis, Centre for Chemical and Pharmaceutical Sciences, School of Basic and Applied Sciences, Central University of Punjab , Bathinda, 151001, Punjab, India
| | | | | | | |
Collapse
|
39
|
Thakur S, Sarkar B, Cholia RP, Gautam N, Dhiman M, Mantha AK. APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp Mol Med 2014; 46:e106. [PMID: 25033834 PMCID: PMC4119211 DOI: 10.1038/emm.2014.42] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/27/2014] [Accepted: 03/05/2014] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1α, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a ‘hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Shweta Thakur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Bibekananda Sarkar
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Ravi P Cholia
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Nandini Gautam
- Center for Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Punjab, India
| | - Monisha Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies, Central University of Punjab, Punjab, India
| | - Anil K Mantha
- 1] Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India [2] Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
40
|
Cetinkaya Y, Dasdemir S, Gencer M, Bireller ES, Ozkok E, Aydin M, Cakmakoglu B. DNA repair gene variants in migraine. Genet Test Mol Biomarkers 2014; 18:568-73. [PMID: 24892639 DOI: 10.1089/gtmb.2014.0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AIMS Migraine is a common and debilitating episodic disorder characterized by recurrent headache attacks associated with autonomic symptoms. It affects an estimated 12% of the population. The etiology of the underlying neurodegenerative process is widely unknown; however, oxidative stress is a unifying factor in the current theories of migraine pathogenesis. After demonstrating the observation that oxidative DNA damage is detectable in migraine disease, searching the role played by DNA repair systems in migraine diseases could bring us much significant information about the pathogenesis of migraine. We prospectively investigated whether DNA repair gene polymorphisms (XRCC1 Arg399Gln, XRCC3 Thr241Met XPD Lys751Gln, XPG Asp1104His, APE1 Asp148Glu, hOGG1 Ser326Cys) account for an increased risk of migraine. The present analyses are based on 135 case subjects with migraine disease and 101 noncase subjects. Genotyping of DNA repair gene polymorphisms (XRCC1 Arg399Gln, XRCC3 Thr241Met XPD Lys751Gln, XPG Asp1104His, APE1 Asp148Glu, hOGG1 Ser326Cys) was detected by polymerase chain reaction-restriction fragment length polymorphism. RESULTS We demonstrated that apurinic endonuclease (APE), X-ray repair complementing defective repair in Chinese hamster cells 3 (XRCC3), xeroderma pigmentosum D (XPD), and hOGG1 gene variants were associated with an increased risk for development of migraine disease (p<0.05). In contrast, no statistically significant differences were found in genotype distributions of X-ray repair complementing defective repair in Chinese hamster cells 1 (XRCC1) and XPG between migraine cases and controls (p>0.05). CONCLUSIONS Our findings have suggested that APE1, XRCC3, XPD, and hOGG1 gene variants could facilitate the development of migraine disease.
Collapse
Affiliation(s)
- Yilmaz Cetinkaya
- 1 Department of Neurology, Haydarpasa Numune Training and Research Hospital , Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
This perspective reviews the many dimensions of base excision repair from a 10,000 foot vantage point and provides one person's view on where the field is headed. Enzyme function is considered under the lens of X-ray diffraction and single molecule studies. Base excision repair in chromatin and telomeres, regulation of expression and the role of posttranslational modifications are also discussed in the context of enzyme activities, cellular localization and interacting partners. The specialized roles that base excision repair play in transcriptional activation by active demethylation and targeted oxidation as well as how base excision repair functions in the immune processes of somatic hypermutation and class switch recombination and its possible involvement in retroviral infection are also discussed. Finally the complexities of oxidative damage and its repair and its link to neurodegenerative disorders, as well as the role of base excision repair as a tumor suppressor are examined in the context of damage, repair and aging. By outlining the many base excision repair-related mysteries that have yet to be unraveled, hopefully this perspective will stimulate further interest in the field.
Collapse
Affiliation(s)
- Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0084, USA.
| |
Collapse
|
42
|
Violet M, Delattre L, Tardivel M, Sultan A, Chauderlier A, Caillierez R, Talahari S, Nesslany F, Lefebvre B, Bonnefoy E, Buée L, Galas MC. A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front Cell Neurosci 2014; 8:84. [PMID: 24672431 PMCID: PMC3957276 DOI: 10.3389/fncel.2014.00084] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/05/2014] [Indexed: 11/29/2022] Open
Abstract
Nucleic acid protection is a substantial challenge for neurons, which are continuously exposed to oxidative stress in the brain. Neurons require powerful mechanisms to protect DNA and RNA integrity and ensure their functionality and longevity. Beside its well known role in microtubule dynamics, we recently discovered that Tau is also a key nuclear player in the protection of neuronal genomic DNA integrity under reactive oxygen species (ROS)-inducing heat stress (HS) conditions in primary neuronal cultures. In this report, we analyzed the capacity of Tau to protect neuronal DNA integrity in vivo in adult mice under physiological and HS conditions. We designed an in vivo mouse model of hyperthermia/HS to induce a transient increase in ROS production in the brain. Comet and Terminal deoxyribonucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assays demonstrated that Tau protected genomic DNA in adult cortical and hippocampal neurons in vivo under physiological conditions in wild-type (WT) and Tau-deficient (KO-Tau) mice. HS increased DNA breaks in KO-Tau neurons. Notably, KO-Tau hippocampal neurons in the CA1 subfield restored DNA integrity after HS more weakly than the dentate gyrus (DG) neurons. The formation of phosphorylated histone H2AX foci, a double-strand break marker, was observed in KO-Tau neurons only after HS, indicating that Tau deletion did not trigger similar DNA damage under physiological or HS conditions. Moreover, genomic DNA and cytoplasmic and nuclear RNA integrity were altered under HS in hippocampal neurons exhibiting Tau deficiency, which suggests that Tau also modulates RNA metabolism. Our results suggest that Tau alterations lead to a loss of its nucleic acid safeguarding functions and participate in the accumulation of DNA and RNA oxidative damage observed in the Alzheimer’s disease (AD) brain.
Collapse
Affiliation(s)
- Marie Violet
- Inserm UMR837, Alzheimer and Tauopathies Lille, France ; Jean Pierre Aubert Research Centre, Faculté de Médecine-Pôle Recherche, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université Droıt et Santé de Lille, CHU-Lille Lille, France
| | - Lucie Delattre
- Inserm UMR837, Alzheimer and Tauopathies Lille, France ; Jean Pierre Aubert Research Centre, Faculté de Médecine-Pôle Recherche, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université Droıt et Santé de Lille, CHU-Lille Lille, France
| | - Meryem Tardivel
- Inserm UMR837, Alzheimer and Tauopathies Lille, France ; Jean Pierre Aubert Research Centre, Faculté de Médecine-Pôle Recherche, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université Droıt et Santé de Lille, CHU-Lille Lille, France
| | - Audrey Sultan
- Inserm UMR837, Alzheimer and Tauopathies Lille, France ; Jean Pierre Aubert Research Centre, Faculté de Médecine-Pôle Recherche, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université Droıt et Santé de Lille, CHU-Lille Lille, France
| | - Alban Chauderlier
- Inserm UMR837, Alzheimer and Tauopathies Lille, France ; Jean Pierre Aubert Research Centre, Faculté de Médecine-Pôle Recherche, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université Droıt et Santé de Lille, CHU-Lille Lille, France
| | - Raphaelle Caillierez
- Inserm UMR837, Alzheimer and Tauopathies Lille, France ; Jean Pierre Aubert Research Centre, Faculté de Médecine-Pôle Recherche, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université Droıt et Santé de Lille, CHU-Lille Lille, France
| | - Smail Talahari
- Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille Lille, France
| | - Fabrice Nesslany
- Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille Lille, France
| | - Bruno Lefebvre
- Inserm UMR837, Alzheimer and Tauopathies Lille, France ; Jean Pierre Aubert Research Centre, Faculté de Médecine-Pôle Recherche, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université Droıt et Santé de Lille, CHU-Lille Lille, France
| | - Eliette Bonnefoy
- CNRS FRE 3235, Génétique Moléculaire et Défense Antivirale Paris, France
| | - Luc Buée
- Inserm UMR837, Alzheimer and Tauopathies Lille, France ; Jean Pierre Aubert Research Centre, Faculté de Médecine-Pôle Recherche, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université Droıt et Santé de Lille, CHU-Lille Lille, France
| | - Marie-Christine Galas
- Inserm UMR837, Alzheimer and Tauopathies Lille, France ; Jean Pierre Aubert Research Centre, Faculté de Médecine-Pôle Recherche, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université Droıt et Santé de Lille, CHU-Lille Lille, France
| |
Collapse
|