1
|
Kumar S, Shanker A, Gupta D. pSATdb 2.0: a database of organellar common, polymorphic, and unique microsatellites. Funct Integr Genomics 2024; 24:213. [PMID: 39546046 DOI: 10.1007/s10142-024-01498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Microsatellites, or simple sequence repeats (SSRs), are repetitive DNA sequences typically composed of 1-6 nucleotides. These repetitive sequences are found in almost all genomes, including chloroplasts and mitochondria, and are widely distributed throughout the genomes. Microsatellites are highly polymorphic, and their length may differ from species to species. Consequently, microsatellites are widely used as molecular markers and play pivotal roles in various biological research. However, comprehensive information about the length variation of microsatellites in various organellar genome sequences is not available. Therefore, to provide mined information and explore the variability in the length of microsatellites across species, we developed a comprehensive resource named pSATdb 2.0 (polymorphic microSATellites database; https://bioinfo.icgeb.res.in/psatdb/ ). This upgraded version of its predecessor pSATdb provides comprehensive information on the frequency and distribution of 348,894 microsatellites identified in organellar genome sequences. These sequences originate from 15,681 organisms spanning 3252 genera within Metazoa and Viridiplantae. Remarkably, pSATdb 2.0 is the only database that offers information on common and polymorphic microsatellites detected between organisms, along with unique microsatellites specific to each genus. Furthermore, this database features unrestricted access and includes pioneer functionalities such as Advanced Search, BLAST, and JBrowse, which facilitate user-specific microsatellite search and its visualization within the database. The pSATdb holds immense potential for the research community to support diverse studies, including genetic diversity, genetic mapping, marker-assisted selection, and comparative population investigations.
Collapse
Affiliation(s)
- Sonu Kumar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Asheesh Shanker
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, 824236, India.
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
2
|
Grosser MR, Sites SK, Murata MM, Lopez Y, Chamusco KC, Love Harriage K, Grosser JW, Graham JH, Gmitter FG, Chase CD. Plant mitochondrial introns as genetic markers - conservation and variation. FRONTIERS IN PLANT SCIENCE 2023; 14:1116851. [PMID: 37021319 PMCID: PMC10067590 DOI: 10.3389/fpls.2023.1116851] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Plant genomes are comprised of nuclear, plastid and mitochondrial components characterized by different patterns of inheritance and evolution. Genetic markers from the three genomes provide complementary tools for investigations of inheritance, genetic relationships and phenotypic contributions. Plant mitochondrial genomes are challenging for universal marker development because they are highly variable in terms of size, gene order and intergenic sequences and highly conserved with respect to protein-coding sequences. PCR amplification of introns with primers that anneal to conserved, flanking exons is effective for the development of polymorphic nuclear genome markers. The potential for plant mitochondrial intron polymorphisms to distinguish between congeneric species or intraspecific varieties has not been systematically investigated and is possibly constrained by requirements for intron secondary structure and interactions with co-evolved organelle intron splicing factors. To explore the potential for broadly applicable plant mitochondrial intron markers, PCR primer sets based upon conserved sequences flanking 11 introns common to seven angiosperm species were tested across a range of plant orders. PCR-amplified introns were screened for indel polymorphisms among a group of cross-compatible Citrus species and relatives; two Raphanus sativus mitotypes; representatives of the two Phaseolus vulgaris gene pools; and congeneric pairs of Cynodon, Cenchrus, Solanum, and Vaccinium species. All introns were successfully amplified from each plant entry. Length polymorphisms distinguishable by gel electrophoresis were common among genera but infrequent within genera. Sequencing of three introns amplified from 16 entries identified additional short indel polymorphisms and nucleotide substitutions that separated Citrus, Cynodon, Cenchrus and Vaccinium congeners, but failed to distinguish Solanum congeners or representatives of the Phaseolus vulgaris major gene pools. The ability of primer sets to amplify a wider range of plant species' introns and the presence of intron polymorphisms that distinguish congeners was confirmed by in silico analysis. While mitochondrial intron variation is limited in comparison to nuclear introns, these exon-based primer sets provide robust tools for the amplification of mitochondrial introns across a wide range of plant species wherein useful polymorphisms can be identified.
Collapse
Affiliation(s)
- Melinda R. Grosser
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Samantha K. Sites
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Mayara M. Murata
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Yolanda Lopez
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Karen C. Chamusco
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Kyra Love Harriage
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Jude W. Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - James H. Graham
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Fred G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Christine D. Chase
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
AutomAted RepeaT Identifier (AARTI): A tool to identify common, polymorphic, and unique microsatellites. Mitochondrion 2022; 65:161-165. [PMID: 35738354 DOI: 10.1016/j.mito.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022]
Abstract
Here we are presenting an automated computational pipeline used to mine 5976 mitochondrial genomes to identify common, polymorphic, and unique microsatellites also known as simple sequence repeats (SSRs). Microsatellites are repetitive motifs of 1-6 bases in a DNA sequence. Due to their abundance and highly polymorphic nature, microsatellites have become one of the widely used molecular/genetic markers valuable for many studies including gene tagging, genetic diversity, and species identification. Several computational tools dedicated to mine and categorize microsatellites in nucleotide sequences were developed; however, there is no tool which can identify unique, common and polymorphic microsatellites between each pair of nucleotide sequences. To explore such microsatellites, we have developed a fully automated computational pipeline named AutomAted RepeaT Identifier (AARTI). The AARTI is the only tool till date, which identifies common, polymorphic, and unique microsatellites between each pair of nucleotide sequences. The computational pipeline was constructed using the PERL programming language and the web server for the pipeline was developed with the help of PHP, HTML, CSS, and JavaScript. It was successfully tested to reproduce the results of previous study on 7 mitochondrial genomes of genus Orthotrichum. Moreover, the pipeline was also applied on 5846 (Metazoa) and 130 (Viridiplantae) mitochondrial genomes. The AARTI is freely available at https://lms.snu.edu.in/aarti/ and will certainly accelerate the studies of length variation in microsatellites between species. Additionally, it will be useful in comparative genomic studies, for the computational characterization of microsatellites, and has the potential to be a routine genome analysis pipeline for mitochondrial genomes.
Collapse
|
4
|
Kumar S, Singh A, Shanker A. pSATdb: a database of mitochondrial common, polymorphic, and unique microsatellites. Life Sci Alliance 2022; 5:5/6/e202101307. [PMID: 35181599 PMCID: PMC8860089 DOI: 10.26508/lsa.202101307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/02/2022] Open
Abstract
The polymorphic microSATellites database (pSATdb) provides information on common, polymorphic, and unique mitochondrial microsatellites. Microsatellites, also termed as simple sequence repeats, are repetitive tracts in a DNA sequence, typically consisting of one to six nucleotides. These repeats are found in all genomes and play key roles in phylogeny and species identification. Microsatellites are highly polymorphic, and their length may differ from species to species. There are several online resources dedicated to mitochondria; however, comprehensive information is not available about the length variation of mitochondrial microsatellites. Therefore, to explore it between species among a genus, we have developed a database named pSATdb (polymorphic microSATellites database; https://lms.snu.edu.in/pSATdb/). pSATdb contains 28,710 perfect microsatellites identified across 5,976 mitochondrial genome (mt-genome) sequences from 1,576 genera which includes 1,535 (5,846 mt-genome) and 41 (130 mt-genome) genera of Metazoa and Viridiplantae, respectively. pSATdb is the only database which provides genus-wise information about the length variation of mitochondrial microsatellites. Because of the emerging role of microsatellites in genomics studies, the identified common, polymorphic, and unique microsatellites stored in pSATdb will be effectively useful in various studies including genetic diversity, mapping, marker-assisted selection, and comparative population studies.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Ashutosh Singh
- Translational Bioinformatics Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Asheesh Shanker
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| |
Collapse
|
5
|
Ramchander S, Leon MTAP, Souframanien J, Arumugam Pillai M. Genetic diversity, allelic variation and marker trait associations in gamma irradiated mutants of rice ( Oryza sativa L.). Int J Radiat Biol 2021; 98:90-99. [PMID: 34587459 DOI: 10.1080/09553002.2021.1987568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Rice is a prime staple crop for more than half of the world population. Improved White Ponni (IWP) is a premium quality grain rice variety that is fetching a good price and is increasingly popular among the consumers of Tamil Nadu. Tall plant stature of IWP makes them susceptible to lodging and medium duration are two undesirable traits in the variety increases yield losses in the field and also productivity. In this context, we aimed to generate a large mutant population of IWP irradiated with various doses of gamma irradiation to recover putative mutants for semi-dwarfism and earliness. MATERIALS AND METHODS Totally, 34 putative mutants (22 early, 11 semi-dwarf and early and 1 Narrow-leaf dwarf mutant) were phenotyped for nine morphological traits and genotyped using 34 microsatellite markers linked to a trait of interest of earliness and semi-dwarfism. Trait variability, allelic variations, genetic structure and marker-trait associations in gamma-irradiated putative mutants of Improved White Ponni (IWP) rice were investigated in this study. RESULTS The hierarchical clustering of morphological data produced five clusters with a dissimilarity coefficient of 1.39. A minimum dissimilarity coefficient of 0.23 was observed between the mutants IWPM9 and IWPM20 and a maximum dissimilarity coefficient of 2.55 was observed between IWPM1 and IWPM25. In cluster analysis with molecular marker data, five clusters with a similarity coefficient of 0.67 were observed. The mutant IWPM29 exhibited the most divergence from the wild type at the genotype level. The first principal component explained 50.99% of the total variability and the majority of the traits were contributed positively. The single-marker analysis revealed the strong association of SSR marker RM3912 with the traits plant height, panicle length and number of grains per panicle with an R2 value of 0.235, 0.235 and 0.250 respectively. CONCLUSIONS The study identified semi-dwarf and short-duration rice mutants of IWP that can be utilized as potential breeding stocks. The trait-linked SSR markers can improve selection cycles in advanced breeding programs.
Collapse
Affiliation(s)
- S Ramchander
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Killikulam, Tamil Nadu Agricultural University, India.,Department of Agriculture, School of Agriculture and Biosciences, Karunya Institute of Science and Technology, Coimbatore, India
| | - M T Andrew Peter Leon
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Killikulam, Tamil Nadu Agricultural University, India
| | - J Souframanien
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - M Arumugam Pillai
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Killikulam, Tamil Nadu Agricultural University, India
| |
Collapse
|
6
|
PCLiON: An Ontology for Data Standardization and Sharing of Prostate Cancer Associated Lifestyles. Int J Med Inform 2020; 145:104332. [PMID: 33186790 DOI: 10.1016/j.ijmedinf.2020.104332] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Researches on Lifestyle medicine (LM) have emerged in recent years to garner wide attention. Prostate cancer (PCa) could be prevented and treated by positive lifestyles, but the association between lifestyles and PCa is always personalized. OBJECTIVES In order to solve the heterogeneity and diversity of different data types related to PCa, establish a standardized lifestyle ontology, promote the exchange and sharing of disease lifestyle knowledge, and support text mining and knowledge discovery. METHODS The overall construction of PCLiON was created in accordance with the principles and methodology of ontology construction. Following the principles of evidence-based medicine, we screened and integrated the lifestyles and their related attributes. Protégé was used to construct and validate the semantic framework. All annotations in PCLiON were based on SNOMED CT, NCI Thesaurus, the Cochrane Library and FooDB, etc. HTML5 and ASP.NET was used to develop the independent Web page platform and corresponding intelligent terminal application. The PCLiON also uploaded to the National Center for Biomedical Ontology BioPortal. RESULTS PCLiON integrates 397 lifestyles and lifestyle-related factors associated with PCa, and is the first of its kind for a specific disease. It contains 320 attribute annotations and 11 object attributes. The logical relationship and completeness meet the ontology requirements. Qualitative analysis was carried out for 329 terms in PCLiON, including factors which are protective, risk or associated but functional unclear, etc. PCLiON is publicly available both at http://pcaontology.net/PCaLifeStyleDefault.aspx and https://bioportal.bioontology.org/ontologies/PCALION. CONCLUSIONS Through the bilingual online platforms, complex lifestyle research data can be transformed into standardized, reliable and responsive knowledge, which can promote the shared-decision making (SDM) on lifestyle intervention and assist patients in lifestyle self-management toward the goal of PCa targeted prevention.
Collapse
|
7
|
Cabañas N, Becerra A, Romero D, Govezensky T, Espinosa-Aguirre JJ, Camacho-Carranza R. Repetitive DNA profile of the amphibian mitogenome. BMC Bioinformatics 2020; 21:197. [PMID: 32429835 PMCID: PMC7236288 DOI: 10.1186/s12859-020-3532-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/05/2020] [Indexed: 11/20/2022] Open
Abstract
Background Repetitive DNA elements such as direct and inverted repeat sequences are present in every genome, playing numerous biological roles. In amphibians, the functions and effects of the repeat sequences have not been extensively explored. We consider that the data of mitochondrial genomes in the NCBI database are a valuable alternative to generate a better understanding of the molecular dynamic of the repeat sequences in the amphibians. Results This work presents the development of a strategy to identify and quantify the total amount of repeat sequences with lengths from 5 to 30 base pairs in the amphibian mitogenomes. The results show differences in the abundance of repeat sequences among amphibians and bias to specific genomic regions that are not easily associated with the classical amphibian ancestry. Conclusions Derived from these analyses, we show that great variability of the repeat sequences exists among amphibians, demonstrating that the mitogenomes of these organisms are dynamic.
Collapse
Affiliation(s)
- Noel Cabañas
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Cd. Mx., Mexico
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Cd. Mx., Mexico
| | - David Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Tzipe Govezensky
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Cd. Mx., Mexico
| | - Jesús Javier Espinosa-Aguirre
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Cd. Mx., Mexico
| | - Rafael Camacho-Carranza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Cd. Mx., Mexico. .,Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Cd. Mx., Mexico.
| |
Collapse
|
8
|
Shamanskiy VA, Timonina VN, Popadin KY, Gunbin KV. ImtRDB: a database and software for mitochondrial imperfect interspersed repeats annotation. BMC Genomics 2019; 20:295. [PMID: 31284879 PMCID: PMC6614062 DOI: 10.1186/s12864-019-5536-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mitochondria is a powerhouse of all eukaryotic cells that have its own circular DNA (mtDNA) encoding various RNAs and proteins. Somatic perturbations of mtDNA are accumulating with age thus it is of great importance to uncover the main sources of mtDNA instability. Recent analyses demonstrated that somatic mtDNA deletions depend on imperfect repeats of various nature between distant mtDNA segments. However, till now there are no comprehensive databases annotating all types of imperfect repeats in numerous species with sequenced complete mitochondrial genome as well as there are no algorithms capable to call all types of imperfect repeats in circular mtDNA. RESULTS We implemented naïve algorithm of pattern recognition by analogy to standard dot-plot construction procedures allowing us to find both perfect and imperfect repeats of four main types: direct, inverted, mirror and complementary. Our algorithm is adapted to specific characteristics of mtDNA such as circularity and an excess of short repeats - it calls imperfect repeats starting from the length of 10 b.p. We constructed interactive web available database ImtRDB depositing perfect and imperfect repeats positions in mtDNAs of more than 3500 Vertebrate species. Additional tools, such as visualization of repeats within a genome, comparison of repeat densities among different genomes and a possibility to download all results make this database useful for many biologists. Our first analyses of the database demonstrated that mtDNA imperfect repeats (i) are usually short; (ii) associated with unfolded DNA structures; (iii) four types of repeats positively correlate with each other forming two equivalent pairs: direct and mirror versus inverted and complementary, with identical nucleotide content and similar distribution between species; (iv) abundance of repeats is negatively associated with GC content; (v) dinucleotides GC versus CG are overrepresented on light chain of mtDNA covered by repeats. CONCLUSIONS ImtRDB is available at http://bioinfodbs.kantiana.ru/ImtRDB/ . It is accompanied by the software calling all types of interspersed repeats with different level of degeneracy in circular DNA. This database and software can become a very useful tool in various areas of mitochondrial and chloroplast DNA research.
Collapse
Affiliation(s)
- Viktor A Shamanskiy
- Center for Mitochondrial Functional Genomics, School of Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Valeria N Timonina
- Center for Mitochondrial Functional Genomics, School of Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Konstantin Yu Popadin
- Center for Mitochondrial Functional Genomics, School of Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Konstantin V Gunbin
- Center for Mitochondrial Functional Genomics, School of Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia. .,Center of Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
| |
Collapse
|
9
|
Maughan PJ, Chaney L, Lightfoot DJ, Cox BJ, Tester M, Jellen EN, Jarvis DE. Mitochondrial and chloroplast genomes provide insights into the evolutionary origins of quinoa (Chenopodium quinoa Willd.). Sci Rep 2019; 9:185. [PMID: 30655548 PMCID: PMC6336861 DOI: 10.1038/s41598-018-36693-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/23/2018] [Indexed: 11/18/2022] Open
Abstract
Quinoa has recently gained international attention because of its nutritious seeds, prompting the expansion of its cultivation into new areas in which it was not originally selected as a crop. Improving quinoa production in these areas will benefit from the introduction of advantageous traits from free-living relatives that are native to these, or similar, environments. As part of an ongoing effort to characterize the primary and secondary germplasm pools for quinoa, we report the complete mitochondrial and chloroplast genome sequences of quinoa accession PI 614886 and the identification of sequence variants in additional accessions from quinoa and related species. This is the first reported mitochondrial genome assembly in the genus Chenopodium. Inference of phylogenetic relationships among Chenopodium species based on mitochondrial and chloroplast variants supports the hypotheses that 1) the A-genome ancestor was the cytoplasmic donor in the original tetraploidization event, and 2) highland and coastal quinoas were independently domesticated.
Collapse
Affiliation(s)
- Peter J Maughan
- Brigham Young University, Department of Plant and Wildlife Sciences, College of Life Sciences, Provo, Utah 84602, USA
| | - Lindsay Chaney
- Snow College, Department of Biological Sciences, Division of Natural Science and Mathematics, Ephraim, Utah, 84627, USA
| | - Damien J Lightfoot
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Brian J Cox
- Brigham Young University, Department of Plant and Wildlife Sciences, College of Life Sciences, Provo, Utah 84602, USA
| | - Mark Tester
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Eric N Jellen
- Brigham Young University, Department of Plant and Wildlife Sciences, College of Life Sciences, Provo, Utah 84602, USA
| | - David E Jarvis
- Brigham Young University, Department of Plant and Wildlife Sciences, College of Life Sciences, Provo, Utah 84602, USA.
| |
Collapse
|
10
|
Goruynov DV, Goryunova SV, Kuznetsova OI, Logacheva MD, Milyutina IA, Fedorova AV, Ignatov MS, Troitsky AV. Complete mitochondrial genome sequence of the "copper moss" Mielichhoferia elongata reveals independent nad7 gene functionality loss. PeerJ 2018; 6:e4350. [PMID: 29416956 PMCID: PMC5798402 DOI: 10.7717/peerj.4350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/19/2018] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial genome of moss Mielichhoferia elongata has been sequenced and assembled with Spades genome assembler. It consists of 100,342 base pairs and has practically the same gene set and order as in other known bryophyte chondriomes. The genome contains 66 genes including three rRNAs, 24 tRNAs, and 40 conserved mitochondrial proteins genes. Unlike the majority of previously sequenced bryophyte mitogenomes, it lacks the functional nad7 gene. The phylogenetic reconstruction and scrutiny analysis of the primary structure of nad7 gene carried out in this study suggest its independent pseudogenization in different bryophyte lineages. Evaluation of the microsatellite (simple sequence repeat) content of the M. elongata mitochondrial genome indicates that it could be used as a tool in further studies as a phylogenetic marker. The strongly supported phylogenetic tree presented here, derived from 33 protein coding sequences of 40 bryophyte species, is consistent with other reconstructions based on a number of different data sets.
Collapse
Affiliation(s)
- Denis V. Goruynov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Maria D. Logacheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Irina A. Milyutina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alina V. Fedorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Michael S. Ignatov
- Tsitsin Main Botanical Garden Russian Academy of Science, Moscow, Russia
| | - Aleksey V. Troitsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
Wang Y, Zhang J, Li B, He QY. Proteomic analysis of mitochondria: biological and clinical progresses in cancer. Expert Rev Proteomics 2017; 14:891-903. [DOI: 10.1080/14789450.2017.1374180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yang Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Kabra R, Kapil A, Attarwala K, Rai PK, Shanker A. Identification of common, unique and polymorphic microsatellites among 73 cyanobacterial genomes. World J Microbiol Biotechnol 2016; 32:71. [PMID: 27030027 DOI: 10.1007/s11274-016-2061-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 03/28/2016] [Indexed: 02/01/2023]
Abstract
Microsatellites also known as Simple Sequence Repeats are short tandem repeats of 1-6 nucleotides. These repeats are found in coding as well as non-coding regions of both prokaryotic and eukaryotic genomes and play a significant role in the study of gene regulation, genetic mapping, DNA fingerprinting and evolutionary studies. The availability of 73 complete genome sequences of cyanobacteria enabled us to mine and statistically analyze microsatellites in these genomes. The cyanobacterial microsatellites identified through bioinformatics analysis were stored in a user-friendly database named CyanoSat, which is an efficient data representation and query system designed using ASP.net. The information in CyanoSat comprises of perfect, imperfect and compound microsatellites found in coding, non-coding and coding-non-coding regions. Moreover, it contains PCR primers with 200 nucleotides long flanking region. The mined cyanobacterial microsatellites can be freely accessed at www.compubio.in/CyanoSat/home.aspx. In addition to this 82 polymorphic, 13,866 unique and 2390 common microsatellites were also detected. These microsatellites will be useful in strain identification and genetic diversity studies of cyanobacteria.
Collapse
Affiliation(s)
- Ritika Kabra
- Department of Bioinformatics, Banasthali University, Banasthali, Rajasthan, 304022, India
| | - Aditi Kapil
- Department of Bioinformatics, Banasthali University, Banasthali, Rajasthan, 304022, India
| | - Kherunnisa Attarwala
- Department of Bioinformatics, Banasthali University, Banasthali, Rajasthan, 304022, India
| | - Piyush Kant Rai
- Department of Mathematics and Statistics, Banasthali University, Banasthali, Rajasthan, 304022, India
| | - Asheesh Shanker
- Department of Bioinformatics, Banasthali University, Banasthali, Rajasthan, 304022, India. .,Bioinformatics Programme, Centre for Biological Sciences, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, BIT Campus, Patna, Bihar, 800014, India.
| |
Collapse
|
13
|
Srivastava D, Shanker A. Identification of Simple Sequence Repeats in Chloroplast Genomes of Magnoliids Through Bioinformatics Approach. Interdiscip Sci 2015; 8:327-336. [PMID: 26471998 DOI: 10.1007/s12539-015-0129-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/11/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
Basal angiosperms or Magnoliids is an important clade of commercially important plants which mainly include spices and edible fruits. In this study, 17 chloroplast genome sequences belonging to clade Magnoliids were screened for the identification of chloroplast simple sequence repeats (cpSSRs). Simple sequence repeats or microsatellites are short stretches of DNA up to 1-6 base pair in length. These repeats are ubiquitous and play important role in the development of molecular markers and to study the mapping of traits of economic, medical or ecological interest. A total of 479 SSRs were detected, showing average density of 1 SSR/6.91 kb. Depending on the repeat units, the length of SSRs ranged from 12 to 24 bp for mono-, 12 to 18 bp for di-, 12 to 26 bp for tri-, 12 to 24 bp for tetra-, 15 bp for penta- and 18 bp for hexanucleotide repeats. Mononucleotide repeats were the most frequent (207, 43.21 %) followed by tetranucleotide repeats (130, 27.13 %). Penta- and hexanucleotide repeats were least frequent or absent in these chloroplast genomes.
Collapse
Affiliation(s)
- Deepika Srivastava
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Asheesh Shanker
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India.
| |
Collapse
|
14
|
Basharat Z, Yasmin A. Survey of compound microsatellites in multiple Lactobacillus genomes. Can J Microbiol 2015; 61:898-902. [PMID: 26445296 DOI: 10.1139/cjm-2015-0136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Distinct simple sequence repeats with 2 or more individual microsatellites joined together or lying adjacent to each other are identified as compound microsatellites. Investigation of such composite microsatellites in the genomes of genus Lactobacillus was the aim of this study. In silico inspection of microsatellite clustering in genomes of 14 Lactobacillus species revealed a wealth of compound microsatellites. All of the mined compound microsatellites were imperfect, were composed of variant motifs, and increased in all genomes, with maximum distance (dMAX) increments of 10 to 50. The majority of these repeats were present in the coding regions. A correlation of microsatellite to compound microsatellite density was detected. The difference established in compound microsatellite division among eukaryotes, Escherichia coli, and lactobacilli is suggestive of diverse genomic features and elementary distinction between creation and fixation methods of compound microsatellites among these organisms.
Collapse
Affiliation(s)
- Zarrin Basharat
- Microbiology and Biotechnology Research Laboratory, Department of Environmental Sciences, Fatima Jinnah Women University 46000, Pakistan.,Microbiology and Biotechnology Research Laboratory, Department of Environmental Sciences, Fatima Jinnah Women University 46000, Pakistan
| | - Azra Yasmin
- Microbiology and Biotechnology Research Laboratory, Department of Environmental Sciences, Fatima Jinnah Women University 46000, Pakistan.,Microbiology and Biotechnology Research Laboratory, Department of Environmental Sciences, Fatima Jinnah Women University 46000, Pakistan
| |
Collapse
|
15
|
Sablok G, Padma Raju GV, Mudunuri SB, Prabha R, Singh DP, Baev V, Yahubyan G, Ralph PJ, La Porta N. ChloroMitoSSRDB 2.00: more genomes, more repeats, unifying SSRs search patterns and on-the-fly repeat detection. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav084. [PMID: 26412851 PMCID: PMC4584093 DOI: 10.1093/database/bav084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/17/2015] [Indexed: 01/13/2023]
Abstract
Organelle genomes evolve rapidly as compared with nuclear genomes and have been widely used for developing microsatellites or simple sequence repeats (SSRs) markers for delineating phylogenomics. In our previous reports, we have established the largest repository of organelle SSRs, ChloroMitoSSRDB, which provides access to 2161 organelle genomes (1982 mitochondrial and 179 chloroplast genomes) with a total of 5838 perfect chloroplast SSRs, 37 297 imperfect chloroplast SSRs, 5898 perfect mitochondrial SSRs and 50 355 imperfect mitochondrial SSRs across organelle genomes. In the present research, we have updated ChloroMitoSSRDB by systematically analyzing and adding additional 191 chloroplast and 2102 mitochondrial genomes. With the recent update, ChloroMitoSSRDB 2.00 provides access to a total of 4454 organelle genomes displaying a total of 40 653 IMEx Perfect SSRs (11 802 Chloroplast Perfect SSRs and 28 851 Mitochondria Perfect SSRs), 275 981 IMEx Imperfect SSRs (78 972 Chloroplast Imperfect SSRs and 197 009 Mitochondria Imperfect SSRs), 35 250 MISA (MIcroSAtellite identification tool) Perfect SSRs and 3211 MISA Compound SSRs and associated information such as location of the repeats (coding and non-coding), size of repeat, motif and length polymorphism, and primer pairs. Additionally, we have integrated and made available several in silico SSRs mining tools through a unified web-portal for in silico repeat mining for assembled organelle genomes and from next generation sequencing reads. ChloroMitoSSRDB 2.00 allows the end user to perform multiple SSRs searches and easy browsing through the SSRs using two repeat algorithms and provide primer pair information for identified SSRs for evolutionary genomics. Database URL:http://www.mcr.org.in/chloromitossrdb
Collapse
Affiliation(s)
- Gaurav Sablok
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia, Environmental Biotechnology Platform, Research and Innovation Center, Fondazione Edmund Mach (FEM), IASMA Via Mach 1., 38010 San Michele all'Adige (TN), Italy,
| | - G V Padma Raju
- Department of Computer Science and Engineering, S.R.K.R Engineering College, Chinna Amiram, Bhimavaram 534204, Andhra Pradesh, India
| | - Suresh B Mudunuri
- Technology Centre, S.R.K.R. Engineering College, Chinna Amiram, Bhimavaram 534204, Andhra Pradesh, India
| | - Ratna Prabha
- National Bureau of Agriculturally Important Microorganisms (NBAIM) (Indian Council of Agricultural Research), Maunath Bhanjan 275101, Uttar Pradesh, India and
| | - Dhananjaya P Singh
- National Bureau of Agriculturally Important Microorganisms (NBAIM) (Indian Council of Agricultural Research), Maunath Bhanjan 275101, Uttar Pradesh, India and
| | - Vesselin Baev
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Galina Yahubyan
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Peter J Ralph
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Nicola La Porta
- Environmental Biotechnology Platform, Research and Innovation Center, Fondazione Edmund Mach (FEM), IASMA Via Mach 1., 38010 San Michele all'Adige (TN), Italy
| |
Collapse
|
16
|
Kapil A, Rai PK, Shanker A. ChloroSSRdb: a repository of perfect and imperfect chloroplastic simple sequence repeats (cpSSRs) of green plants. Database (Oxford) 2014; 2014:bau107. [PMID: 25380781 PMCID: PMC4224265 DOI: 10.1093/database/bau107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/19/2014] [Accepted: 10/08/2014] [Indexed: 01/08/2023]
Abstract
Simple sequence repeats (SSRs) are regions in DNA sequence that contain repeating motifs of length 1-6 nucleotides. These repeats are ubiquitously present and are found in both coding and non-coding regions of genome. A total of 534 complete chloroplast genome sequences (as on 18 September 2014) of Viridiplantae are available at NCBI organelle genome resource. It provides opportunity to mine these genomes for the detection of SSRs and store them in the form of a database. In an attempt to properly manage and retrieve chloroplastic SSRs, we designed ChloroSSRdb which is a relational database developed using SQL server 2008 and accessed through ASP.NET. It provides information of all the three types (perfect, imperfect and compound) of SSRs. At present, ChloroSSRdb contains 124 430 mined SSRs, with majority lying in non-coding region. Out of these, PCR primers were designed for 118 249 SSRs. Tetranucleotide repeats (47 079) were found to be the most frequent repeat type, whereas hexanucleotide repeats (6414) being the least abundant. Additionally, in each species statistical analyses were performed to calculate relative frequency, correlation coefficient and chi-square statistics of perfect and imperfect SSRs. In accordance with the growing interest in SSR studies, ChloroSSRdb will prove to be a useful resource in developing genetic markers, phylogenetic analysis, genetic mapping, etc. Moreover, it will serve as a ready reference for mined SSRs in available chloroplast genomes of green plants. Database URL: www.compubio.in/chlorossrdb/
Collapse
Affiliation(s)
- Aditi Kapil
- Department of Bioinformatics, Banasthali University, Banasthali, Rajasthan 304022, India and Department of Mathematics and Statistics, Banasthali University, Banasthali, Rajasthan 304022, India
| | - Piyush Kant Rai
- Department of Bioinformatics, Banasthali University, Banasthali, Rajasthan 304022, India and Department of Mathematics and Statistics, Banasthali University, Banasthali, Rajasthan 304022, India
| | - Asheesh Shanker
- Department of Bioinformatics, Banasthali University, Banasthali, Rajasthan 304022, India and Department of Mathematics and Statistics, Banasthali University, Banasthali, Rajasthan 304022, India
| |
Collapse
|