1
|
Silva MFS, Silva LMA, Quintela AL, Silva FAN, De Oliveira FDCE, Dos S Luciano MC, Rodrigues THS, Filho EGA, Brito ES, Canuto KM, Pessoa C, Zocolo GJ. Bioguided Fractionation of Phyllanthus spp.: Unveiling Anticancer Potential through Metabolomic Correlation and ADMETox Insights. Chem Biodivers 2024; 21:e202400670. [PMID: 38747034 DOI: 10.1002/cbdv.202400670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
Cancer remains a significant global health concern, with mortality rates steadily rising and prompting an urgent search for effective treatments. This study focuses on the medicinal properties of plants from the Phyllanthus genus, specifically Phyllanthus amarus and Phyllanthus niruri, which have shown promise in traditional medicine. Through bioguided fractionation using preparative high-performance liquid chromatography (HPLC), bioactive compounds were isolated and identified using ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry (UHPLC-QTOF-MSE) and nuclear magnetic resonance (NMR) spectroscopy. Chemometric analyses such as principal component analysis (PCA) aided in understanding metabolite distribution. Biological assays demonstrated cytotoxic activities of specific fractions against cancer cell lines, notably the PhyN 4n fraction from P. niruri, which induced S-phase cell cycle arrest and apoptosis in HL60 cells. These findings underscore the anticancer potential of Phyllanthus species and lay the groundwork for future drug development efforts. The study's integration of advanced analytical techniques, chemometrics, and biological assays provides valuable insights for harnessing natural products in the fight against cancer.
Collapse
Affiliation(s)
- Maria Francilene S Silva
- Department of Physiology and Pharmacology, Universidade Federal do Ceará, Rua Coronel Nunes de Mello 1127, CEP 60431-970, Fortaleza, CE, Brazil
| | - Lorena Mara A Silva
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270 - Pici, CEP 60511-110, Fortaleza, CE, Brazil
| | - Amanda L Quintela
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270 - Pici, CEP 60511-110, Fortaleza, CE, Brazil
| | - Francisca Aliny N Silva
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270 - Pici, CEP 60511-110, Fortaleza, CE, Brazil
| | - Fátima de Cássia E De Oliveira
- Department of Physiology and Pharmacology, Universidade Federal do Ceará, Rua Coronel Nunes de Mello 1127, CEP 60431-970, Fortaleza, CE, Brazil
| | - Maria Claudia Dos S Luciano
- Department of Physiology and Pharmacology, Universidade Federal do Ceará, Rua Coronel Nunes de Mello 1127, CEP 60431-970, Fortaleza, CE, Brazil
| | - Tigressa Helena S Rodrigues
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270 - Pici, CEP 60511-110, Fortaleza, CE, Brazil
| | - Elenilson Godoy A Filho
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270 - Pici, CEP 60511-110, Fortaleza, CE, Brazil
| | - Edy S Brito
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270 - Pici, CEP 60511-110, Fortaleza, CE, Brazil
| | - Kirley M Canuto
- Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270 - Pici, CEP 60511-110, Fortaleza, CE, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Universidade Federal do Ceará, Rua Coronel Nunes de Mello 1127, CEP 60431-970, Fortaleza, CE, Brazil
| | - Guilherme J Zocolo
- Embrapa Soja, Rodovia Carlos João Strass, Acesso Orlando Amaral, s/no, Caixa Postal 4006, CEP 86085-981, Londrina, Paraná, Brazil
| |
Collapse
|
2
|
Mohammadi E, Nikbakht F, Barati M, Roghani M, Vazifekhah S, Khanizadeh AM, Heidari Z. Protective effect of N-acetyl cysteine on the mitochondrial dynamic imbalance in temporal lobe epilepsy: Possible role of mTOR. Neuropeptides 2022; 96:102294. [PMID: 36270032 DOI: 10.1016/j.npep.2022.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Understanding the underlying molecular mechanisms involved in epilepsy is critical for the development of more effective therapies. It is believed that mTOR (Mechanistic Target of Rapamycin kinases) activity and the mitochondrial dynamic balance change during epilepsy. mTOR affects mitochondrial fission by stimulating the translation of mitochondrial fission process 1 (MTFP1). In This study, the protective role of N-acetylcysteine was studied in temporal lobe epilepsy (TLE) through the regulation of mTOR and mitochondrial dynamic proteins. Rats received N-acetylcysteine (oral administration) seven days before induction of epilepsy, followed by one day after epilepsy. TLE was induced by microinjection of kainite into the left lateral ventricle. The total mTOR and Drp1 levels in the hippocampus were evaluated by western blotting. MFN1 was assessed using immunohistochemistry, and the expression of Fis.1 and MTFP1 (fission-related proteins) and OPA (fusion-related protein) were detected by real-time PCR. The mitochondrial membrane potential was measured by Rhodamin 123. The results showed that 72 h after induction of epilepsy, the mTOR protein level increased, and the balance of the mitochondrial dynamic was disturbed; however, oral administration of NAC decreased the mTOR protein level and improved the mitochondrial dynamic. These findings indicate that NAC plays a neuroprotective role in temporal lobe epilepsy, probably through decreasing the mTOR protein level, which can improve the imbalance in the mitochondrial dynamic.
Collapse
Affiliation(s)
- Ekram Mohammadi
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Nikbakht
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahmoud Barati
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Somayeh Vazifekhah
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Khanizadeh
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Heidari
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wu H, Liu S, Chen S, Hua Y, Li X, Zeng Q, Zhou Y, Yang X, Zhu X, Tu C, Zhang X. A Selective Reduction of Osteosarcoma by Mitochondrial Apoptosis Using Hydroxyapatite Nanoparticles. Int J Nanomedicine 2022; 17:3691-3710. [PMID: 36046839 PMCID: PMC9423115 DOI: 10.2147/ijn.s375950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Background In recent years, using hydroxyapatite nanoparticles (HANPs) for tumor therapy attracted increasing attention because HANPs were found to selectively suppress the growth of tumor cells but exhibit ignorable toxicity to normal cells. Purpose This study aimed to investigate the capacities of HANPs with different morphologies and particle sizes against two kinds of osteosarcoma (OS) cells, human OS 143B cells and rat OS UMR106 cells. Methods Six kinds of HANPs with different morphologies and particle sizes were prepared by wet chemical method. Then, the antitumor effect of these nanoparticles was characterized by means of in vitro cell experiments and in vivo tumor-bearing mice model. The underlying antitumor mechanism involving mitochondrial apoptosis was also investigated by analysis of intracellular calcium, expression of apoptosis-related genes, reactive oxygen species (ROS), and the endocytosis efficiency of the particles in tumor cells. Results Both in vitro cell experiments and in vivo mice model evaluation revealed the anti-OS performance of HANPs depended on the concentration, morphology, and particle size of the nanoparticles, as well as the OS cell lines. Among the six HANPs, rod-like HANPs (R-HANPs) showed the best inhibitory activity on 143B cells, while needle-like HANPs (N-HANPs) inhibited the growth of UMR106 cells most efficiently. We further demonstrated that HANPs induced mitochondrial apoptosis by selectively raising intracellular Ca2+ and the gene expression levels of mitochondrial apoptosis-related molecules, and depolarizing mitochondrial membrane potential in tumor cells but not in MC3T3-E1, a mouse pre-osteoblast line. Additionally, the anti-OS activity of HANPs also linked with the endocytosis efficiency of the particles in the tumor cells, and their ability to drive oxidative damage and immunogenic cell death (ICD). Conclusion The current study provides an effective strategy for OS therapy where the effectiveness was associated with the particle morphology and cell line.
Collapse
Affiliation(s)
- Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Shuo Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yuchen Hua
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China.,NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yong Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, People's Republic of China.,NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610064, People's Republic of China
| |
Collapse
|
4
|
The lncRNA Punisher Regulates Apoptosis and Mitochondrial Homeostasis of Vascular Smooth Muscle Cells via Targeting miR-664a-5p and OPA1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5477024. [PMID: 35663194 PMCID: PMC9159832 DOI: 10.1155/2022/5477024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/19/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are important regulators of various cellular functions. Recent studies have shown that a novel lncRNA termed Punisher is highly expressed in cardiovascular progenitors and has potential role in cardiovascular diseases. However, its role, especially in molecular mechanism, is unclear. In our present study, we observed that Punisher was obviously downregulated in atherosclerotic plaques. Further research proved that it can suppress the apoptosis of VSMCs potentially contributing to the progression of atherosclerosis. Intriguingly, Punisher revealed to regulate mitochondria fission as well as mitochondrial functions induced by hydrogen peroxide (H2O2) in VSMCs. Mechanistically, Punisher was further proved to serve as a ceRNA which directly binds to miR-664a-5p and consequently regulates its target OPA1, and finally contributes to the biological function of VSMCs. Particularly, Punisher overexpression distinctly suppressed neointima formation and VSMC apoptosis in vivo. Encouragingly, these results were in accordance with findings obtained with the clinical evaluation of patients with atherosclerosis. Our data provides the significant relationship among OPA1, mitochondrial homeostasis, VSMC apoptosis, and atherosclerosis. And lncRNA Punisher and miR-664a-5p could serve as the novel and potential targets in the diagnosis and treatment of cardiovascular diseases.
Collapse
|
5
|
Saahene RO, Agbo E, Barnes P, Yahaya ES, Amoani B, Nuvor SV, Okyere P. A Review: Mechanism of Phyllanthus urinaria in Cancers-NF- κB, P13K/AKT, and MAPKs Signaling Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4514342. [PMID: 34484390 PMCID: PMC8413045 DOI: 10.1155/2021/4514342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/01/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022]
Abstract
Phyllanthus urinaria has been characterized for its several biological and medicinal effects such as antiviral, antibacterial, anti-inflammatory, anticancer, and immunoregulation. In recent years, Phyllanthus urinaria has demonstrated potential to modulate the activation of critical pathways such as NF-κB, P13K/AKT, and ERK/JNK/P38/MAPKs associated with cell growth, proliferation, metastasis, and apoptotic cell death. To date, there is much evidence indicating that modulation of cellular signaling pathways is a promising approach to consider in drug development and discovery. Thus, therapies that can regulate cancer-related pathways are longed-for in anticancer drug discovery. This review's focus is to provide comprehensive knowledge on the anticancer mechanisms of Phyllanthus urinaria through the regulation of NF-κB, P13K/AKT, and ERK/JNK/P38/MAPKs signaling pathways. Thus, the review summarizes both in vitro and in vivo effects of Phyllanthus urinaria extracts or bioactive constituents with emphasis on tumor cell apoptosis. The literature information was obtained from publications on Google Scholar, PubMed, Web of Science, and EBSCOhost. The key words used in the search were "Phyllanthus" or "Phyllanthus urinaria" and cancer. P. urinaria inhibits cancer cell proliferation via inhibition of NF-κB, P13K/AKT, and MAPKs (ERK, JNK, P38) pathways to induce apoptosis and prevents angiogenesis. It is expected that understanding these fundamental mechanisms may help stimulate additional research to exploit Phyllanthus urinaria and other natural products for the development of novel anticancer therapies in the future.
Collapse
Affiliation(s)
- Roland Osei. Saahene
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Elvis Agbo
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Jinggangshan University, Ji'an City, Jiangxi Province, China
| | - Precious Barnes
- Department of Physician Assistant Studies, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ewura Seidu Yahaya
- Department of Pharmacology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Amoani
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Victor Nuvor
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Perditer Okyere
- Department of Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
6
|
Zhang M, Bai Y, Xu C, Qi Y, Meng J, Zhang W, Su H, Yan W. Blockage of Extracellular Signal-Regulated Kinase Exerts an Antitumor Effect via Regulating Energy Metabolism and Enhances the Efficacy of Autophagy Inhibitors by Regulating Transcription Factor EB Nuclear Translocation in Osteosarcoma. Front Cell Dev Biol 2021; 9:650846. [PMID: 34414176 PMCID: PMC8369911 DOI: 10.3389/fcell.2021.650846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence suggests that extracellular signal-regulated kinase (ERK) is a valuable target molecule for cancer. However, antitumor drugs targeting ERK are still in their clinical phase and no FDA-approved medications exist. In this study, we identified an ERK inhibitor (ERKi; Vx-11e) with potential antitumor activities, which was reflected by the inhibition in the survival and proliferation of Osteosarcoma (OS) cells. Mechanistically, the ERKi regulated autophagic flux by promoting the translocation of transcription factor EB (TFEB) in OS cells, thereby increasing the dependence of OS cells on autophagy and sensitivity to treatment with autophagy inhibitors in OS. Besides, we also found that the ERKi could regulate mitochondrial apoptosis through the ROS/mitochondria pathway and aerobic glycolysis in OS, which also increases the dependence of OS cells on autophagy to clear metabolites to a certain extent. These results may provide a reference for the clinically improved efficacy of ERKis in combination with autophagy inhibitors in the treatment of OS and indicate its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Man Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Yang Bai
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chang Xu
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiahong Meng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Su
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiqi Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
Zhao J, Zhao Y, Ma X, Zhang B, Feng H. Targeting ferroptosis in osteosarcoma. J Bone Oncol 2021; 30:100380. [PMID: 34345580 PMCID: PMC8319509 DOI: 10.1016/j.jbo.2021.100380] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumour in children and adolescents, with high degree of malignancy and an extremely poor prognosis. Ferroptosis, a non-traditional mode of regulated cell death (RCD) characterised by iron-dependent accumulation of lipid reactive oxygen species (ROS), is closely associated with a variety of cancers. It has been demonstrated that ferroptosis can regulate OS progression and exert an essential role in the treatment of OS, which is potentially of great value. By targeting ferroptosis in OS, the present review article summarises the relevant mechanisms and therapeutic applications along with discussing current limitations and future directions, which may provide a new strategy for the treatment of OS.
Collapse
Affiliation(s)
- Jiazheng Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, PR China
| | - Yi Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, PR China
| | - Xiaowei Ma
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, PR China
| | - Benzheng Zhang
- Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050011, PR. China
| | - Helin Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, PR China
| |
Collapse
|
8
|
Ko CY, Shih PC, Huang PW, Lee YH, Chen YF, Tai MH, Liu CH, Wen ZH, Kuo HM. Sinularin, an Anti-Cancer Agent Causing Mitochondria-Modulated Apoptosis and Cytoskeleton Disruption in Human Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22083946. [PMID: 33920454 PMCID: PMC8069418 DOI: 10.3390/ijms22083946] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Liver cancer remains a leading cause of death, despite advances in anti-cancer therapies. To develop novel drugs, natural products are being considered as a good source for exploration. In this study, a natural product isolated from a soft coral was applied to evaluate its anti-cancer activities in hepatocellular carcinoma SK-HEP-1 cells. Sinularin was determined to have half-maximal inhibitory concentration (IC50) values of ~10 μM after 24, 48, and 72 h. The TUNEL assay and annexin V/PI staining results showed that sinularin induced DNA fragmentation and apoptosis, respectively. An investigation at the molecular level demonstrated that the expression levels of cleaved caspases 3/9 were significantly elevated at 10 μM sinularin. Mitochondrial and intracellular reactive oxygen species (ROS) levels were significantly increased following sinularin treatment, which also affected the mitochondrial membrane potential. In addition, it significantly lowered the mitochondrial respiration parameters and extracellular acidification rates at 10 μM. Further investigation showed that sinularin significantly attenuated wound healing, cell migration, and potential colony formation at 10 μM. Fluorescence microscopic observations showed that the distribution of F-actin filaments was significantly altered at 10 μM sinularin. Supported by Western blot analyses, the expression levels of AKT, p-ERK (extracellular-signal-related kinase), vimentin and VEGF were significantly down-regulated, whereas p-p38, pJNK and E-cadherin were significantly increased. Overall, at the IC50 concentration, sinularin was able to significantly affect SK-HEP-1 cells.
Collapse
Affiliation(s)
- Chou-Yuan Ko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; (C.-Y.K.); (Y.-F.C.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Po-Chang Shih
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (P.-C.S.); (P.-W.H.); (Y.-H.L.)
- UCL School of Pharmacy, University College London, Bloomsbury, London WC1N 1AX, UK
| | - Po-Wei Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (P.-C.S.); (P.-W.H.); (Y.-H.L.)
| | - Yi-Hsin Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (P.-C.S.); (P.-W.H.); (Y.-H.L.)
| | - Yen-Fu Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; (C.-Y.K.); (Y.-F.C.)
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chi-Hao Liu
- Division of Nephrology, Department of Interanl Medicine, Kashsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (P.-C.S.); (P.-W.H.); (Y.-H.L.)
- Correspondence: (Z.-H.W.); (H.-M.K.); Tel.: +886-7-5252000 (ext. 5038) (Z.-H.W. & H.-M.K.); Fax: +886-7-5252021 (Z.-H.W. & H.-M.K.)
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (P.-C.S.); (P.-W.H.); (Y.-H.L.)
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: (Z.-H.W.); (H.-M.K.); Tel.: +886-7-5252000 (ext. 5038) (Z.-H.W. & H.-M.K.); Fax: +886-7-5252021 (Z.-H.W. & H.-M.K.)
| |
Collapse
|
9
|
Chen W, Liu H, Wang T, Bao G, Wang N, Li RC. Downregulation of AIF-2 Inhibits Proliferation, Migration, and Invasion of Human Glioma Cells via Mitochondrial Dysfunction. J Mol Neurosci 2019; 68:304-310. [PMID: 30982162 DOI: 10.1007/s12031-019-01306-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/20/2019] [Indexed: 01/03/2023]
Abstract
Glioma remains the leading cause of brain tumor-related death worldwide. Apoptosis inducing factor (AIF) is a family of mitochondrial oxidoreductases that play important roles in mitochondrial metabolism and redox control. AIF-1 has been demonstrated to exert cell-killing effect via apoptosis in cancer cells, whereas the role of AIF-2 in cancer cells has not been determined. This study aimed to investigate the role of AIF-2 in human glioma cells. We found that AIF-2 was upregulated in human glioma tissues and cell lines, especially in U251 cells. Downregulation of AIF-2 using specific siRNA (Si-AIF-2) significantly reduced cell proliferation, induced G1 cell cycle arrest and differently regulated the expression of cell cycle regulator proteins in U251 cells. In addition, the results of Matrigel invasion assay and live-cell tracking assay showed that knockdown of AIF-2 inhibited cell invasion and migration. The results of immunocytochemistry indicated that knockdown of AIF-2 significantly attenuated the nuclear translocation of AIF-1, which was confirmed by western blot analysis. Furthermore, downregulation of AIF-2 resulted in mitochondrial dysfunction in U251 cells, as evidenced by reduced mitochondrial membrane potential (MMP), mitochondrial complex I activity, and mitochondrial Ca2+ buffering capacity. In conclusion, we found that AIF-2 plays a key role in promoting cell proliferation, invasion, and migration via regulating AIF-1-related mitochondrial cascades. Downregulation of the candidate oncogene AIF-2 might constitute a strategy to kill human glioma cells.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Hao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Tuo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Gang Bao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Rui-Chun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
10
|
Lin KL, Lin KJ, Wang PW, Chuang JH, Lin HY, Chen SD, Chuang YC, Huang ST, Tiao MM, Chen JB, Huang PH, Liou CW, Lin TK. Resveratrol provides neuroprotective effects through modulation of mitochondrial dynamics and ERK1/2 regulated autophagy. Free Radic Res 2019; 52:1371-1386. [DOI: 10.1080/10715762.2018.1489128] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kai-Lieh Lin
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Kai-Jung Lin
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Pei-Wen Wang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Jiin-Haur Chuang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Division of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Hung-Yu Lin
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Shang-Der Chen
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yao-Chung Chuang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Sheng-Teng Huang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Mao-Meng Tiao
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Jin-Bor Chen
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Pei-Hsuan Huang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chia-Wei Liou
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Tsu-Kung Lin
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung UniversityCollege of Medicine, Kaohsiung 833, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
11
|
Zhao WP, Wang HW, Liu J, Zhang ZH, Zhu SQ, Zhou BH. Mitochondrial respiratory chain complex abnormal expressions and fusion disorder are involved in fluoride-induced mitochondrial dysfunction in ovarian granulosa cells. CHEMOSPHERE 2019; 215:619-625. [PMID: 30342406 DOI: 10.1016/j.chemosphere.2018.10.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Excessive fluoride intake has a strong female reproductive toxicity, which can result in follicular developmental dysplasia and decrease oocytes developmental potential. The underlying mechanisms of fluoride-induced mitochondrial dysfunction in ovarian granulosa cells remain largely unknown. In this study, the ultrastructure changes of mitochondria and DNA damage in ovarian granulosa cells were observed under transmission electron microscope and TUNEL staining. Then, the ATP content and ROS level in granulosa cells were measured. The expression of mitochondrial fusion proteins and mitochondrial respiratory chain complexes, including OPA1 and Mfn1, and NDUFV2, SDHA and CYC1, in the ovarian tissues were measured by immunohistochemistry, Western blot and Quantitative real-time PCR analyses. The expression of ATP5j and ATP5h in the ovarian tissues was also measured. Results show that fluoride treatment considerably damages mitochondrial ultrastructure and enhances the apoptosis of granulosa cells. The ATP content greatly decreased, whereas the ROS level increased after fluoride treatment. The expression level of Mfn1 in the ovarian tissue was up-regulated, whereas OPA1 expression had no significant change. The expression levels of NDUFV2, SDHA and CYC1 were considerably up-regulated, and the expression of ATP5j and ATP5h were down-regulated after fluoride treatment. In summary, the damage in the mitochondrial ultrastructure, ATP content decrease, ROS level increase and the abnormal expression of OPA1, Mfn1, NDUFV2, SDHA, CYC1, ATP5j and ATP5h in ovary tissue are closely associated with fluoride-induced mitochondrial dysfunction, which might be responsible for the follicular developmental dysplasia and the potential decrease in oocyte development induced by fluoride in female mice.
Collapse
Affiliation(s)
- Wen-Peng Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, PR China.
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, PR China.
| | - Jing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, PR China.
| | - Zi-Hao Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, PR China.
| | - Shi-Quan Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, PR China.
| | - Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, PR China.
| |
Collapse
|
12
|
Seyed MA. A comprehensive review on Phyllanthus derived natural products as potential chemotherapeutic and immunomodulators for a wide range of human diseases. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Geethangili M, Ding ST. A Review of the Phytochemistry and Pharmacology of Phyllanthus urinaria L. Front Pharmacol 2018; 9:1109. [PMID: 30327602 PMCID: PMC6174540 DOI: 10.3389/fphar.2018.01109] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
The genus Phyllanthus (L.) is one of the most important groups of plants belonging to the Phyllantaceae family. Phyllanthus urinaria (L.) is an annual perennial herbal species found in tropical Asia, America, China, and the Indian Ocean islands. P. urinaria is used in folk medicine as a cure to treat jaundice, diabetes, malaria, and liver diseases. This review provides traditional knowledge, phytochemistry, and biological activities of P. urinaria. The literature reviewed for this article was obtained from the Web of Science, SciFinder, PubMed, ScienceDirect, and Google Scholar journal papers published prior to December 2017. Phytochemical investigations reveal that the plant is a rich source of lignans, tannins, flavonoids, phenolics, terpenoids, and other secondary metabolites. Pharmacological activities include anticancer, hepatoprotective, antidiabetic, antimicrobial, and cardioprotective effects. Thus, this present review summarizes the phytochemical constituents and their biological activities including biological studies on various crude extracts and fractions both in vitro and in vivo, and on clinical trial information about P. urinaria. This review compiles 93 naturally occurring compounds from P. urinaria along with their structures and pharmacological activities. The review is expected to stimulate further research on P. urinaria, and its pharmacological potential to yield novel therapeutic agents.
Collapse
Affiliation(s)
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Chen W, Wang N, Li RC, Xu GF, Bao G, Jiang HT, Wang MD. Salvianolic acid B renders glioma cells more sensitive to radiation via Fis-1-mediated mitochondrial dysfunction. Biomed Pharmacother 2018; 107:1230-1236. [PMID: 30257337 DOI: 10.1016/j.biopha.2018.08.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/19/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023] Open
Abstract
Glioma remains the leading cause of brain tumor-related death worldwide, and radiation is a standard adjuvant therapy with proven efficacy. Salvianolic acid B (SalB), a bioactive compound isolated from Radix Salviae, has been shown to exert anti-cancer effects in many cancer cell lines, including glioma. This study aimed to investigate whether SalB could affect response to radiation in human glioma cells. We found that SalB decreased cell viability of U87 cells in a-dose-dependent manner. A subthreshold dose of SalB at 0.5 μM, which had no effect on cell viability and apoptosis, significantly increased radiation sensitivity of U87 cells in a dose- and time-dependent manner, but had no effect on sensitivity to temozolomide (TMZ). Similar results were also observed in human glioma U373 cells. In addition, SalB aggravated the radiation-induced apoptosis and mitochondrial dysfunction, as measured by mitochondrial Ca2+ buffering capacity and mitochondrial swelling. SalB treatment markedly promoted mitochondrial fission and differently regulated the expression of fission proteins. Furthermore, downregulation of the fission protein Fis-1 using siRNA was found to partially reversed the SalB-induced effects on cell viability, apoptosis and mitochondrial fission in U87 cells. In conclusion, our results suggest that a subthreshold dose of SalB renders glioma cells more sensitive to radiation via Fis-1-mediated mitochondrial dysfunction, and radiotherapy combined with SalB might be a novel treatment for glioma patients.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Ning Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Rui-Chun Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Gao-Feng Xu
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Gang Bao
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hai-Tao Jiang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mao-De Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
15
|
Huang ST, Huang CC, Sheen JM, Lin TK, Liao PL, Huang WL, Wang PW, Liou CW, Chuang JH. Phyllanthus urinaria’s Inhibition of Human Osteosarcoma Xenografts Growth in Mice is Associated with Modulation of Mitochondrial Fission/Fusion Machinery. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1507-1523. [DOI: 10.1142/s0192415x16500841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Osteosarcoma is an aggressive bone cancer arising from primitive transformed cells of mesenchymal origin to form malignant osteoid. Phyllanthus urinaria [Formula: see text]P. urinaria[Formula: see text] is a widely used folk medicine in cancer treatment, however the mechanism of P. urinaria inhibited human osteosarcoma is unclear. The present study was aimed at investigating the antitumoral effects of an aqueous P. urinaria on human osteosarcoma in vivo and the related underlying mechanisms, mainly focusing on mitochondrial dynamic dysfunction. Our results showed that oral administration of P. urinaria to mice led to significant inhibition of tumor development without substantial changes to body weight or major organs. Histological examinations with H&E, Giemsa, and Masson trichrome stains confirmed inhibition of tumor growth by the P. urinaria treatment. Immunohistochemical staining of proliferation markers antigen KI-67 (Ki67) and proliferating cell nuclear antigen (PCNA), as well as a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay demonstrated a decrease of tumor proliferation and an increase of apoptosis, which was associated with the modulation of B-cell lymphoma 2 (Bcl-2) family activating the caspase cascade in the P. urinaria-treated mice. The neovascularization marker cluster of differentiation 31 (CD31) was inhibited in P. urinaria-treated xenografts, implicating the potential anti-angiogenic effect of P. urinaria. P. urinaria treatment resulted in a significant decrease in the mitochondrial fusion proteins, including mitofusin 1/2 (Mfn1/2) and optic atrophy type 1 (Opa1), as well as an increase in the fission protein dynamin-related protein 1 (Drp1). The results of this study suggest mitochondrial dysfunction is associated with dynamic change that is involved in the apoptosis and anti-angiogenesis elicited by P. urinaria.
Collapse
Affiliation(s)
- Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chao-Chun Huang
- Division of General Surgery, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Jer-Ming Sheen
- Department of Chinese Medicine and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Lin Liao
- Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Liang Huang
- Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Department of Internal Medicine and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Department of Neurology and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Division of Pediatric Surgery and Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Mao X, Wu LF, Guo HL, Chen WJ, Cui YP, Qi Q, Li S, Liang WY, Yang GH, Shao YY, Zhu D, She GM, You Y, Zhang LZ. The Genus Phyllanthus: An Ethnopharmacological, Phytochemical, and Pharmacological Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:7584952. [PMID: 27200104 PMCID: PMC4854999 DOI: 10.1155/2016/7584952] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 12/17/2022]
Abstract
The plants of the genus Phyllanthus (Euphorbiaceae) have been used as traditional medicinal materials for a long time in China, India, Brazil, and the Southeast Asian countries. They can be used for the treatment of digestive disease, jaundice, and renal calculus. This review discusses the ethnopharmacological, phytochemical, and pharmacological studies of Phyllanthus over the past few decades. More than 510 compounds have been isolated, the majority of which are lignins, triterpenoids, flavonoids, and tannins. The researches of their remarkable antiviral, antioxidant, antidiabetic, and anticancer activities have become hot topics. More pharmacological screenings and phytochemical investigations are required to support the traditional uses and develop leading compounds.
Collapse
Affiliation(s)
- Xin Mao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ling-Fang Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Hong-Ling Guo
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Jing Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Ya-Ping Cui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Qi Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Shi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Wen-Yi Liang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Guang-Hui Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yan-Yan Shao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Dan Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Gai-Mei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key laboratory of Chinese Internal Medicine, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Lan-Zhen Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| |
Collapse
|
17
|
Chung CY, Liu CH, Burnouf T, Wang GH, Chang SP, Jassey A, Tai CJ, Tai CJ, Huang CJ, Richardson CD, Yen MH, Lin CC, Lin LT. Activity-based and fraction-guided analysis of Phyllanthus urinaria identifies loliolide as a potent inhibitor of hepatitis C virus entry. Antiviral Res 2016; 130:58-68. [PMID: 27012176 DOI: 10.1016/j.antiviral.2016.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/16/2016] [Accepted: 03/19/2016] [Indexed: 12/22/2022]
Abstract
Without a vaccine, hepatitis C virus (HCV) remains a global medical and socio-economic burden, predisposing about 170 million carriers worldwide to end-stage liver diseases including cirrhosis and hepatocellular carcinoma. Although the recently developed direct-acting antivirals (DAAs) have revolutionized hepatitis C treatment, most of them are unsuitable for monotherapy due to risks of resistance, thus necessitating combination with interferon (IFN)-alpha, ribavirin, or additional DAAs. More importantly, the high cost associated with the DAAs restricts their accessibility to most parts of the world. Developing novel cost-effective anti-HCV therapeutics may help expand the scope of antivirals and treatment strategies against hepatitis C. Herein, we applied an activity-based and fraction-guided analysis of extracts from the medicinal plant Phyllanthus urinaria (P. urinaria), which yielded fraction 13 (F13) as possessing the most potent inhibitory activity against early viral entry of cell-culture HCV infection. Chemical analysis (silica gel chromatography followed by ESI LC-MS plus (1)H and (13)C NMR) of F13 identified loliolide (LOD), a monoterpenoid lactone, as a novel inhibitor of HCV entry. Specifically, LOD could efficiently inactivate HCV free virus particles, abrogate viral attachment, and impede viral entry/fusion, with minimal effect on viral replication/translation, particle production, and induction of type I IFN host antiviral immune response. ELISA-based binding analysis confirmed the monoterpenoid's ability in efficiently blocking HCV particle attachment to the host cell surface. Furthermore, LOD could inhibit infection by several genotypic strains of HCV. This is the first report characterizing P. urinaria and its bioactive compound LOD as potent HCV entry inhibitors, which merit further evaluation for development as candidate antiviral agents against hepatitis C.
Collapse
Affiliation(s)
- Chueh-Yao Chung
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen City, China
| | - Shun-Pang Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Alagie Jassey
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Jei Tai
- Department of Chinese Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Jeng Tai
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Jang Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Christopher D Richardson
- Department of Pediatrics and Canadian Center for Vaccinology, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Ching Lin
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
18
|
FAM3A attenuates ER stress-induced mitochondrial dysfunction and apoptosis via CHOP-Wnt pathway. Neurochem Int 2016; 94:82-9. [DOI: 10.1016/j.neuint.2016.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022]
|
19
|
Yang X, Dong QF, Li LW, Huo JL, Li PQ, Fei Z, Zhen HN. The cap-translation inhibitor 4EGI-1 induces mitochondrial dysfunction via regulation of mitochondrial dynamic proteins in human glioma U251 cells. Neurochem Int 2015. [DOI: 10.1016/j.neuint.2015.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Kaushik N, Lee SJ, Choi TG, Baik KY, Uhm HS, Kim CH, Kaushik NK, Choi EH. Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells. Sci Rep 2015; 5:8726. [PMID: 25735798 PMCID: PMC5390089 DOI: 10.1038/srep08726] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/03/2015] [Indexed: 12/21/2022] Open
Abstract
In this study, we show the selective and efficient anti-cancer effects of plasma (at a low dose) when cell metabolic modifiers are also included. 2-deoxy-D-glucose (2-DG), a glycolytic inhibitor, was used with effective doses of non-thermal plasma, synergistically attenuating cell metabolic viability and inducing caspase-dependent and independent cell death. The combination treatment decreased the intracellular ATP and lactate production in various types of blood cancer cells in vitro. Taken together, our findings suggest that 2-DG enhances the efficacy and selectivity of plasma and induces the synergistic inhibition of cancer cell growth by targeting glycolysis and apoptosis. Specifically, this treatment strategy demonstrated an enhanced growth inhibitory effect of plasma in the presence of a metabolic modifier that was selective against cancer cells, not non-malignant cells. This is the first study to report the advantage of combining plasma with 2-DG to eradicate blood cancer cells. Finally, we conclude that 2-DG with non-thermal plasma may be used as a combination treatment against blood cancer cells.
Collapse
Affiliation(s)
- Neha Kaushik
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701, Korea
| | - Su Jae Lee
- Laboratory of Molecular Biochemistry, Department of Life Science, Hanyang University, Seoul 133-791, Korea
| | - Tae Gyu Choi
- School of medicine, Department of Biochemistry and Molecular Biology, Kyunghee University, Seoul 130-701, Korea
| | - Ku Youn Baik
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701, Korea
| | - Han Sup Uhm
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701, Korea
| | - Chung Hyeok Kim
- Institute of Information Technology, Kwangwoon University, Seoul 139-701, Korea
| | | | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701, Korea
| |
Collapse
|