1
|
Sima Y, Shi S, Min Z, Chen Y, Lu Y, Sha H, Liu S. Mitochondrial FIS1 level in cumulus cells correlates with morphological grades of human cleavage-stage embryos. J Assist Reprod Genet 2025:10.1007/s10815-025-03431-7. [PMID: 40097857 DOI: 10.1007/s10815-025-03431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
PURPOSE Advanced-age women have a lower good-quality embryo rate (GQER) compared to young women. However, GQER varies widely within the same age group, suggesting that factors beyond age influence embryo quality. Mitochondria regulate cellular metabolism through dynamic fission and fusion alterations. Specifically, cumulus cell (CC) mitochondria regulate not only the metabolism of CCs but also of adjacent oocytes. This study aims to investigate the relationship between CC mitochondrial dynamics and oocyte developmental potential post-fertilization. METHODS CCs were collected from 183 women aged 25-45 undergoing single sperm intracytoplasmic injection-embryo transfer treatments. Samples were stratified by age into young (< 35) and advanced age (≥ 35) groups. Each group was further subdivided into high and low subgroups based on day 3 GQER. Mitochondrial morphology, dynamics, fission-fusion gene expression, and mitochondrial functions were compared among groups and subgroups. RESULTS Consistent with the literature, data analysis from our laboratory revealed significant variances in GQER among individuals of the same age group. Morphological analysis suggested a negative correlation between GQER and mitochondrial length in CCs (P < 0.0001, r = - 0.38). Live-cell imaging showed that both fission and fusion frequencies of CC mitochondria in the advanced-age group were lower than those in the young group (P = 0.009, P = 0.01). Additionally, within the advanced-age group, CC mitochondria from the low GQER subgroup exhibited lower fission frequency and fission-fusion ratios compared to the high GQER subgroup (P = 0.04, P = 0.01). Consequently, GQER positively correlated with mitochondrial fission-fusion ratio in CCs (P = 0.01, r = 0.44). Notably, there were no significant differences in the expression of mitochondrial fusion-related proteins (OPA1, MFN1, and MFN2) between the advanced-age and young groups or among the subgroups. However, levels of fission proteins, including FIS1 and MFF, were significantly lower in the advanced-age group compared to the young group and in the low GQER subgroup compared to their high GQER counterparts. qPCR results further indicated that fis1 and mff mRNA levels in CCs were positively correlated with GQER (P < 0.0001, r = 0.55; P = 0.0025, r = 0.41). The CCs from the low GQER subgroup exhibit a higher level of mitochondrial dysfunction. CONCLUSIONS Mitochondrial morphology, fission-fusion balance, and fission-fusion gene expression in CCs influence early embryonic development, independent of age. Of these factors, the FIS1 level shows the most robust correlation with GQER.
Collapse
Affiliation(s)
- Yizhen Sima
- Reproductive Medicine Center of Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Sanbao Shi
- Reproductive Medicine Center of Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhunyuan Min
- Reproductive Medicine Center of Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yuning Chen
- Reproductive Medicine Center of Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yongning Lu
- Reproductive Medicine Center of Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Hongying Sha
- Reproductive Medicine Center of Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Suying Liu
- Reproductive Medicine Center of Zhongshan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Liu Y, Guo X, Fan J, Xie C, Huang T, Fu Y, Zhou R. CREBRF regulates apoptosis and estradiol via ISG15/ISGylation in pig granulosa cells. Free Radic Biol Med 2024; 225:445-455. [PMID: 39419455 DOI: 10.1016/j.freeradbiomed.2024.10.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Granulosa cells play a crucial role in the reproductive processes of female animals, as their proliferation, apoptosis, and hormonal secretion are vital for follicular development and ovulation. Although the role and mechanisms of CREBRF in the reproductive system have been partly reported, its functions in ovarian granulosa cells have not been fully explored. In this study, the results indicated that the expression of CREBRF in the ovaries at 30 days after birth was significantly higher than that during puberty and sexual maturity. Studies on the function of CREBRF found that CREBRF could enhance the synthesis of estradiol and had no effect on progesterone synthesis in pig granulosa cells. At the same time, CREBRF could suppress apoptosis through the Bax/caspase3/caspase9 pathway and modulation of ISG15/ISGylation in pig granulosa cells. During this process, the expression of many genes changed in granulosa cells. Several genes (CMPK2, MX1, MX2, ZBP1, PML, CHAC1, and BAX) which were promoted apoptosis, were upregulated after CREBRF knockdown with siRNA. ISG15-protein conjugation genes (HERC5, UBA7, UBE2L6, ISG15) were also were upregulated. On the contrary, the expression of anti-apoptotic (RFK, SNAP23) genes decreased. In conclusion, CREBRF could enhance the synthesis of estradiol and acted as anti-apoptosis role in pig granulosa cells. This discovery can provide novel insights for further elucidating the molecular mechanisms of granulosa cells in the ovary and potentially identifies CREBRF as a molecular target for improving fertility.
Collapse
Affiliation(s)
- Ying Liu
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; School of Life Science and Technology, Inner Mongolia University of Science & Technology, Inner Mongolia Baotou, 014010, PR China
| | - Xiaorong Guo
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, 528231, PR China
| | - Jiazhen Fan
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Chundi Xie
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000, PR China
| | - Yaxin Fu
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Capital Medical University School of Basic Medical Sciences, Beijing, 100069, PR China
| | - Rong Zhou
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Liaocheng University, Liaocheng, 252059, PR China.
| |
Collapse
|
3
|
Del Bianco D, Gentile R, Sallicandro L, Biagini A, Quellari PT, Gliozheni E, Sabbatini P, Ragonese F, Malvasi A, D’Amato A, Baldini GM, Trojano G, Tinelli A, Fioretti B. Electro-Metabolic Coupling of Cumulus-Oocyte Complex. Int J Mol Sci 2024; 25:5349. [PMID: 38791387 PMCID: PMC11120766 DOI: 10.3390/ijms25105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Oocyte-cumulus cell interaction is essential for oocyte maturation and competence. The bidirectional crosstalk network mediated by gap junctions is fundamental for the metabolic cooperation between these cells. As cumulus cells exhibit a more glycolytic phenotype, they can provide metabolic substrates that the oocyte can use to produce ATP via oxidative phosphorylation. The impairment of mitochondrial activity plays a crucial role in ovarian aging and, thus, in fertility, determining the success or failure of assisted reproductive techniques. This review aims to deepen the knowledge about the electro-metabolic coupling of the cumulus-oocyte complex and to hypothesize a putative role of potassium channel modulators in order to improve fertility, promote intracellular Ca2+ influx, and increase the mitochondrial biogenesis and resulting ATP levels in cumulus cells.
Collapse
Affiliation(s)
- Diletta Del Bianco
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Rosaria Gentile
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Luana Sallicandro
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Biagini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Paola Tiziana Quellari
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| | - Elko Gliozheni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tirana, AL1005 Tirana, Albania
| | - Paola Sabbatini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Antonio Malvasi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Antonio D’Amato
- 1st Unit of Obstetrics and Gynecology, University of Bari, 70121 Bari, Italy;
| | | | - Giuseppe Trojano
- Department of Maternal and Child Health, “Madonna delle Grazie” Hospital ASM, 75100 Matera, Italy;
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology and CERICSAL (CEntro di RIcerca Clinico SALentino), Veris delli Ponti Hospital, Via Giuseppina delli Ponti, 73020 Scorrano, Lecce, Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
4
|
Fang X, Xia W, Qi Y, Yu Y, Sun Q, Zhang D, Zhou Z, Qin T, Tao C, Li J. SIRT2 regulates apoptosis by inducing mitophagy in sheep cumulus cells. Theriogenology 2024; 218:163-173. [PMID: 38330860 DOI: 10.1016/j.theriogenology.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Cumulus cells surrounding oocytes furnish nutritional support crucial for oocyte maturation in vitro, and thereby enhance oocyte quality significantly. Our previous studies affirmed the role of SIRT2 in regulation of mitochondrial function in sheep granulosa cells. However, the effect of SIRT2 action on mitophagy in these cells remain unclear. Here, RNA-seq was used to scrutinize pathways where differentially expressed genes (DEGs) are enriched following SIRT2 knockdown in cumulus cells. Prior to SIRT2 knock down, cumulus cells were treated with the mitophagy inhibitor Mdivi-1. Potential mechanisms by which SIRT2 affects apoptosis via mitophagy were explored. Results indicated that DEGs after SIRT2 knockdown were enriched in various pathways including mitochondria, mitophagy, and apoptosis. The expression levels of CASP3/CASP9 were significantly increased after mitophagy activation (P < 0.01), whereas inhibition of mitophagy had no effect on apoptosis (P > 0.05). Pretreatment of cumulus cells with Mdivi-1 prior to SIRT2 knockdown significantly reduced the expression of mitophagy-related genes, the number of autolysosomes, the expression of CASP3/CASP9, and the levels of Ca2+ and cytochrome C (P < 0.05). In addition, an improvement in mitochondrial morphology and increases in ATP levels and mitochondrial DNA (mtDNA) copy numbers were observed. Interestingly, double knockdown of SIRT2 and MAPK15 was found to reverse increased mitophagy and apoptosis activity caused by SIRT2 knockdown. Our findings indicate that SIRT2 modulate apoptosis in cumulus cells by regulating mitophagy, with MAPK15 likely playing a pivotal role in this process.
Collapse
Affiliation(s)
- Xiaohuan Fang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Wei Xia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China; Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, 071000, PR China
| | - Yatian Qi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Yang Yu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Qingyi Sun
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Di Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Zhenmin Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Tianmiao Qin
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China; Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, 071000, PR China.
| |
Collapse
|
5
|
Haug LM, Wilson RC, Gaustad AH, Jochems R, Kommisrud E, Grindflek E, Alm-Kristiansen AH. Cumulus Cell and Oocyte Gene Expression in Prepubertal Gilts and Sows Identifies Cumulus Cells as a Prime Informative Parameter of Oocyte Quality. BIOLOGY 2023; 12:1484. [PMID: 38132310 PMCID: PMC10740982 DOI: 10.3390/biology12121484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Cumulus cells (CCs) are pivotal during oocyte development. This study aimed to identify novel marker genes for porcine oocyte quality by examining the expression of selected genes in CCs and oocytes, employing the model of oocytes from prepubertal animals being of reduced quality compared to those from adult animals. Total RNA was extracted either directly after follicle aspiration or after in vitro maturation, followed by RT-qPCR. Immature gilt CCs accumulated BBOX1 transcripts, involved in L-carnitine biosynthesis, to a 14.8-fold higher level (p < 0.05) relative to sows, while for CPT2, participating in fatty acid oxidation, the level was 0.48 (p < 0.05). While showing no differences between gilt and sow CCs after maturation, CPT2 and BBOX1 levels in oocytes were higher in gilts at both time points. The apparent delayed lipid metabolism and reduced accumulation of ALDOA and G6PD transcripts in gilt CCs after maturation, implying downregulation of glycolysis and the pentose phosphate pathway, suggest gilt cumulus-oocyte complexes have inadequate ATP stores and oxidative stress balance compared to sows at the end of maturation. Reduced expression of BBOX1 and higher expression of CPT2 in CCs before maturation and higher expression of G6PD and ALDOA after maturation are new potential markers of oocyte quality.
Collapse
Affiliation(s)
- Linda Marijke Haug
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
| | - Robert C. Wilson
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
| | | | - Reina Jochems
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
- Norsvin SA, 2317 Hamar, Norway; (A.H.G.); (E.G.)
| | - Elisabeth Kommisrud
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
| | | | - Anne Hege Alm-Kristiansen
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
| |
Collapse
|
6
|
Rahmawati P, Wiweko B, Boediono A. Mitochondrial DNA copy number in cumulus granulosa cells as a predictor for embryo morphokinetics and chromosome status. Syst Biol Reprod Med 2022; 69:101-111. [PMID: 36426586 DOI: 10.1080/19396368.2022.2145248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
While morphokinetic evaluation of embryos has become the most commonly used technique in IVF to select embryos for transfer, studies have demonstrated that mitochondrial DNA (mtDNA) copy number is correlated with embryo viability and transfer outcomes. Correspondingly, this cohort study aims to evaluate the association between the mtDNA copy number in cumulus granulosa cells (CGCs) with embryo morphokinetic parameters and chromosomal status. Real-time PCR was employed to measure the mtDNA copy number of the 129 CGCs in samples obtained from 30 patients undergoing the IVF-IMSI program at Morula IVF Jakarta between July and October 2020. Bivariate and multiple analyses were utilized to determine its relationship with embryo morphokinetics, blastocyst yield, and chromosomal status. According to the analysis, there was a significant correlation between the mtDNA copy number and the blastocyst status after adjusting for the maternal age and sperm morphology (coefficient 0.832, p value = 0.032, RR value 2.299). Moreover, a significant link was observed between mtDNA copy number in CGC and early embryo developmental phase M1 (t2-t8), using the equation of M1 is 5.702-0.271 mtDNA copy number of CGCs + 0.017 maternal age + 0.013 sperm motility -0.115 sperm morphology (p value = 0.032). However, no correlation was found between the mtDNA copy number in CGCs with the other morphokinetic parameters (M2: tC-tEB, M3: t2-tEB, DC, RC, MN with p > 0.05), or the chromosomal status of the embryos (euploid: 139.44 ± 133.12, aneuploid: 142.40 ± 111.30, p = 0.806). In conclusion, our study suggests that mtDNA copy number in CGCs can serve as a useful biomarker for blastocyst status and early embryo developmental phase but not for chromosomal status.
Collapse
Affiliation(s)
- Pitra Rahmawati
- Master Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Morula IVF Jakarta, IVF Center, Jakarta, Indonesia
| | - Budi Wiweko
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Yasmin IVF Clinic, Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
- Human Reproductive, Infertility and Family Planning Research Center, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Arief Boediono
- Morula IVF Jakarta, IVF Center, Jakarta, Indonesia
- Department of Anatomy, Physiology and Pharmacology, IPB University, Bogor, Indonesia
| |
Collapse
|
7
|
Sun JT, Liu JH, Jiang XQ, Luo X, Yuan JD, Zhang Q, Qi XY, Lee S, Liu ZH, Jin JX. Tannin Reduces the Incidence of Polyspermic Penetration in Porcine Oocytes. Antioxidants (Basel) 2022; 11:antiox11102027. [PMID: 36290750 PMCID: PMC9598560 DOI: 10.3390/antiox11102027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 12/03/2022] Open
Abstract
Tannin (TA) improves porcine oocyte cytoplasmic maturation and subsequent embryonic development after in vitro fertilization (IVF). However, the mechanism through which TA blocks polyspermy after IVF remains unclear. Hence, the biological function of organelles (cortical granule [CG], Golgi apparatus, endoplasmic reticulum [ER], and mitochondria) and the incidence of polyspermic penetration were examined. We found no significant difference in oocyte nuclear maturation among the 1 µg/mL, 10 µg/mL TA, and control groups. Moreover, 100 μg/mL TA significantly reduced 1st polar body formation rate compared to the other groups. Additionally, 1 and 10 μg/mL TA significantly increased the protein levels of GDF9, BMP15, and CDK1 compared to the control and 100 μg/mL TA groups. Interestingly, 1 and 10 μg/mL TA improved the normal distribution of CGs, Golgi, ER, and mitochondria by upregulating organelle-related gene expression and downregulating ER stress (CHOP) gene expression. Simultaneously, 1 and 10 μg/mL TA significantly increased the proportion of normal fertilized oocytes (2 pronuclei; 2 PN) and blastocyst formation rate compared to the control, as well as that of 100 μg/mL TA after IVF by upregulating polyspermy-related genes. In conclusion, TA during IVM enhances 2PN and blastocyst formation rates by regulating organelles’ functions and activities.
Collapse
Affiliation(s)
- Jing-Tao Sun
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jia-Hui Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xi-Qing Jiang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Luo
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jin-Dong Yuan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qi Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Yue Qi
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Z.-H.L.); (J.-X.J.)
| | - Jun-Xue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Z.-H.L.); (J.-X.J.)
| |
Collapse
|
8
|
A 3D analysis revealed complexe mitochondria morphologies in porcine cumulus cells. Sci Rep 2022; 12:15403. [PMID: 36100690 PMCID: PMC9470746 DOI: 10.1038/s41598-022-19723-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
In the ovarian follicle, a bilateral cell-to-cell communication exists between the female germ cell and the cumulus cells which surround the oocyte. This communication allows the transit of small size molecules known to impact oocyte developmental competence. Pyruvate derivatives produced by mitochondria, are one of these transferred molecules. Interestingly, mitochondria may adopt a variety of morphologies to regulate their functions. In this study, we described mitochondrial morphologies in porcine cumulus cells. Active mitochondria were stained with TMRM (Tetramethylrhodamine, Methyl Ester, Perchlorate) and observed with 2D confocal microscopy showing mitochondria of different morphologies such as short, intermediate, long, and very long. The number of mitochondria of each phenotype was quantified in cells and the results showed that most cells contained elongated mitochondria. Scanning electron microscopy (SEM) analysis confirmed at nanoscale resolution the different mitochondrial morphologies including round, short, intermediate, and long. Interestingly, 3D visualisation by focused ion-beam scanning electron microscopy (FIB-SEM) revealed different complex mitochondrial morphologies including connected clusters of different sizes, branched mitochondria, as well as individual mitochondria. Since mitochondrial dynamics is a key regulator of function, the description of the mitochondrial network organisation will allow to further study mitochondrial dynamics in cumulus cells in response to various conditions such as in vitro maturation.
Collapse
|
9
|
Lee SH, Sun MH, Zhou D, Jiang WJ, Li XH, Heo G, Cui XS. High Temperature Disrupts Organelle Distribution and Functions Affecting Meiotic Maturation in Porcine Oocytes. Front Cell Dev Biol 2022; 10:826801. [PMID: 35252192 PMCID: PMC8894851 DOI: 10.3389/fcell.2022.826801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Heat stress (HS) has been known to cause reproductive failure in animals, especially in summer. HS severely affects the developmental potential of oocytes and leads to low fertility rates. Previous studies have reported that HS compromises embryo development in bovine oocytes, and reduces ovarian development in mice, thereby impairing reproductive function in animals. However, the effect of high temperature (HT) on the organelles of porcine oocytes is unknown. In this study, we reported that exposure to HT for 24 h (41°C) significantly decreased meiotic maturation in porcine oocytes (p < 0.05). Further experiments on organelles found that HT induced mitochondrial dysfunction, increased abnormal mitochondrial distribution, and decreased mitochondrial membrane potential (MMP). We also found that HT induced abnormal endoplasmic reticulum (ER) distribution and higher expression of glucose regulatory protein 78 (GRP78), suggesting that HT exposure induces ER stress. Our results also indicated that exposure to HT induced abnormal distribution and dysfunction of the Golgi apparatus, which resulted from a decrease in the expression of the vesicle transporter, Ras-related protein Rab-11A (RAB11A). In addition, we found that HT exposure led to lysosomal damage by increasing the expression of lysosome-associated membrane protein 2 (LAMP2) and microtubule-associated protein 1A/1B-light chain 3 (LC3). In summary, our study revealed that HT exposure disrupts organelle dynamics, which further leads to the failure of meiotic maturation in porcine oocytes.
Collapse
|
10
|
Chen JS, Tsai LK, Yeh TY, Li TS, Li CH, Wei ZH, Lo NW, Ju JC. Effects of electromagnetic waves on oocyte maturation and embryonic development in pigs. J Reprod Dev 2021; 67:392-401. [PMID: 34690215 PMCID: PMC8668371 DOI: 10.1262/jrd.2021-074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our living environment has been full of electromagnetic radiation (EMR) due to the prevailing electronic devices and equipment. Intermediate frequency electromagnetic field (IF-EMF) or waves constitute a significant part of EMR; therefore, an increasing number of household electrical appliances have become a source of IF-EMF, and concerns about IF-EMF on health are gaining more attention. However, little information is available about its impact on female reproductive traits, such as germ cell viability and early embryonic development, particularly at the cellular and molecular levels. In this study, we used porcine oocytes as a model system to explore the effect of IF-EMF at various intensities on the in vitro maturation (IVM) of oocytes and their subsequent embryonic development. Our results showed that no difference in oocyte maturation rates was detected among groups, but the cleavage and blastocyst rates of parthenotes derived from EMF-treated oocytes decreased with the weaker IF-EMF intensity (25 and 50 Gauss, G) groups compared to the control group (P < 0.05). For cytoplasmic maturation, the weaker IF-EMF intensity groups also showed a peripheral pattern of mitochondrial distribution resembling that of immature oocytes and increased autophagy activity. No obvious differences in cytoskeletal distribution and total cell numbers of blastocysts were investigated in the four IF-EMF treatments compared to those in the control group. Although the underlying mechanism associated with EMF effects on oocytes and embryos is still elusive, we have demonstrated that low intensity IF-EMF exerts harmful effects on porcine oocytes during the maturation stage, carrying over such effects to their subsequent embryonic development.
Collapse
Affiliation(s)
- Jia-Si Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Yu Yeh
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tzai-Shiuan Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Cheng-Han Li
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Zung-Hang Wei
- Department of Research and Development, Weistron Co., Ltd., Hsinchu 30013, Taiwan
| | - Neng-Wen Lo
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 40704, Taiwan
| | - Jyh-Cherng Ju
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan.,Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan.,Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
11
|
Lan Y, Zhang S, Gong F, Lu C, Lin G, Hu L. The mitochondrial DNA copy number of cumulus granulosa cells may be related to the maturity of oocyte cytoplasm. Hum Reprod 2021; 35:1120-1129. [PMID: 32358599 DOI: 10.1093/humrep/deaa085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 02/20/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Is the mitochondrial DNA (mtDNA) copy number of cumulus granulosa cells (CGCs) related to the maturation of oocyte cytoplasm? SUMMARY ANSWER Compared with the mtDNA copy number of CGCs from germinal vesicles (GV), CGCs from Metaphase I (MI) oocytes appear to have a lower mtDNA copy number. WHAT IS KNOWN ALREADY The growth and development of CGCs and oocyte are synchronised. The interaction between CGCs and the oocyte provides the appropriate balance of energy, which is necessary for mammalian oocyte development. Moreover, in the oocyte-cumulus complex (OCC), mature oocytes with higher mtDNA copy numbers tend to have corresponding CGCs with higher mtDNA copy numbers. STUDY DESIGN, SIZE, DURATION This is a prospective study of 302 OCCs obtained from 70 women undergoing in vitro fertilisation with intracytoplasmic sperm injection (ICSI) at the Reproductive and Genetic Hospital of CITIC-Xiangya, between 24 February 2018 and 21 December 2019. The CGCs were divided into three groups (GV, MI and MII stages) based on the maturation status of their corresponding oocyte. The sample sizes (n = 302) of CGCs in the three stages were 63 (CGCGV), 70 (CGCMI) and 169 (CGCMII), respectively. Some of the samples (n = 257) was used to quantify the mtDNA copy number, while the rest (n = 45) were used to analyse the expression level of mitochondrial genes. Furthermore, we retrieved 82 immature oocytes from among the 257 OCCs used for mtDNA copy numbers, including 36 GV oocytes and 46 MI oocytes, for analysis of oocyte mtDNA. PARTICIPANTS/MATERIALS, SETTING, METHODS We selected genes with high consistency of real-time PCR results to accurately measure the mtDNA copy number by testing the efficacy and the reproducibility in whole genome amplification (WGA) samples from a human embryonic stem cell line. The CGCs of each oocyte were individually isolated. The mtDNA copy number and gene expression of the CGCs were assessed using real-time PCR techniques. Mitochondrial DNA copy number of the corresponding immature oocytes was also evaluated. MAIN RESULTS AND THE ROLE OF CHANCE MT-ND1, MT-CO1 and β-globin genes were chosen for the assessment of mtDNA content, and mRNA expressions of MT-ND1, MT-CO1, PGC-1α and TFAM were also measured. The genome of 257 CGCs and 82 immature oocytes were amplified according to the multiple displacement amplification (MDA) protocol, and RNA was extracted from 45 CGCs. Compared with CGCGV, CGCMI had a significantly lower mtDNA copy number. In the MT-ND1 assay, the CGCGV: CGCMI was [270 ± 302]: [134 ± 201], P = 0.015. In the MT-CO1 assay, CGCGV: CGCMI was [205 ± 228]: [92 ± 112], P = 0.026. There was no statistical difference in mtDNA between CGCGV and CGCMII. In the MT-ND1 assay, CGCGV: CGCMII was [270 ± 302]: [175 ± 223], P = 0.074. In the MT-CO1 assay, CGCGV: CGCMII was [205 ± 228]: [119 ± 192], P = 0.077. No statistical difference of mtDNA copy number was observed between CGCMI and CGCMII. In the MT-ND1 assay, CGCMI: CGCMII was [134 ± 201]: [175 ± 223], P = 0.422. In the MT-CO1 assay, CGCMI: CGCMII was [92 ± 112]: [119 ± 192], P = 0.478. To verify the reliability of the above results, we further analysed the mtDNA copy number of CGCs of 14 patients with GV, MI and MII oocytes, and the results showed that the mtDNA copy number of CGCMI may be lower. The mtDNA copy number of CGCGV and CGCMI was statistically different in the MT-ND1 assay where CGCGV: CGCMI was [249 ± 173]: [118 ± 113], P = 0.016, but in the MT-CO1 assay, CGCGV: CGCMI was [208 ± 199]: [83 ± 98], P = 0.109. There was no significant difference in mtDNA between CGCGV and CGCMII. In the MT-ND1 assay, CGCGV: CGCMII was [249 ± 173]: [185 ± 200], P = 0.096. In the MT-CO1 assay, CGCGV: CGCMII was [208 ± 199]: [114 ± 139], P = 0.096. There was also no significant difference in mtDNA between CGCMI and CGCMII. In the MT-ND1 assay, CGCMI: CGCMII was [118 ± 113]: [185 ± 200], P = 0.198. In the MT-CO1 assay, CGCMI: CGCMII was [83 ± 98]: [114 ± 139], P = 0.470. Moreover, there were no statistical differences in the expression levels of MT-ND1, MT-CO1, PGC-1α and TFAM between CGCGV, CGCMI and CGCMII (P > 0.05). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Due to the ethical issues, the study did not quantify the mtDNA content of MII oocytes. Thus, whether the change in mtDNA copy number in CGCs is related to the different developmental stages of oocytes has not been further confirmed. Moreover, the sample size was relatively small. WIDER IMPLICATIONS OF THE FINDINGS The mtDNA copy number of CGCs decreases from the GV phase to the MI phase and stays steady from the MI to MII stage. At different stages of oocyte maturation, the mtDNA of CGCs may undergo self-degradation and replication to meet the energy requirements of the corresponding oocyte and the maturation of the oocyte cytoplasm. STUDY FUNDING/COMPETING INTEREST(S) Funding was provided by the National Key R&D Program of China (Grant 2018YFC1003100, to L.H.), the science and technology major project of the Ministry of Science and Technology of Hunan Province, China (grant 2017SK1030, to G.L.), the National Natural Science Foundation of China (grant 81873478, to L.H.), and Merck Serono China Research Fund for Fertility Experts (to L.H.). There is no conflict of interest.
Collapse
Affiliation(s)
- Yueyun Lan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.,Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shuoping Zhang
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.,Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Fei Gong
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.,NHC Key Laboratory of Human Stem Cell and Reproductive Engineering (Central South University), Changsha, Hunan, China.,Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Changfu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.,NHC Key Laboratory of Human Stem Cell and Reproductive Engineering (Central South University), Changsha, Hunan, China.,Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cells, Changsha, Hunan, China.,NHC Key Laboratory of Human Stem Cell and Reproductive Engineering (Central South University), Changsha, Hunan, China.,Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Liang Hu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cells, Changsha, Hunan, China.,NHC Key Laboratory of Human Stem Cell and Reproductive Engineering (Central South University), Changsha, Hunan, China.,Clinical Research Center For Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
12
|
Peng YX, Chen CZ, Luo D, Yu WJ, Li SP, Xiao Y, Yuan B, Liang S, Yao XR, Kim NH, Jiang H, Zhang JB. Carnosic acid improves porcine early embryonic development by inhibiting the accumulation of reactive oxygen species. J Reprod Dev 2020; 66:555-562. [PMID: 33055461 PMCID: PMC7768177 DOI: 10.1262/jrd.2020-086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Carnosic acid (CA), a natural catechol rosin diterpene, is used as an additive in animal feeds and human foods. However, the effects of CA on mammalian reproductive processes, especially early embryonic development, are unclear. In this study, we added CA to parthenogenetically activated porcine embryos in an in vitro culture medium to explore the influence of CA on apoptosis, proliferation, blastocyst formation, reactive oxygen species (ROS) levels, glutathione (GSH) levels, mitochondrial membrane potential, and embryonic development-related gene expression. The results showed that supplementation with 10 μM CA during in vitro culture significantly improved the cleavage rates, blastocyst formation rates, hatching rates, and total numbers of cells of parthenogenetically activated porcine embryos compared with no supplementation. More importantly, supplementation with CA also improved GSH levels and mitochondrial membrane potential, reduced natural ROS levels in blastomeres, upregulated Nanog, Sox2, Gata4, Cox2, Itga5, and Rictor expression, and downregulated Birc5 and Caspase3 expression. These results suggest that CA can improve early porcine embryonic development by regulating oxidative stress. This study elucidates the effects of CA on early embryonic development and their potential mechanisms, and provides new applications for improving the quality of in vitro-developed embryos.
Collapse
Affiliation(s)
- Yan-Xia Peng
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Cheng-Zhen Chen
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Dan Luo
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Wen-Jie Yu
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Sheng-Peng Li
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Yue Xiao
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Bao Yuan
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Shuang Liang
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Xue-Rui Yao
- Department of Animal Science, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Nam-Hyung Kim
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China.,Department of Animal Science, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Hao Jiang
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China.,Department of Animal Science, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Jia-Bao Zhang
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| |
Collapse
|
13
|
CoQ10 improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress. Theriogenology 2020; 159:77-86. [PMID: 33113448 DOI: 10.1016/j.theriogenology.2020.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Coenzyme Q10 (CoQ10) is essential to many fundamental biological processes. However, the effect of CoQ10 on meiotic maturation of pig oocytes still remains elusive. In the present study we aimed to understand the effects of CoQ10 on porcine oocyte maturation, by supplementing different concentrations of CoQ10 (25, 50 and 100 μM) into the maturation medium. We showed that CoQ10 at 50 μM had better capacity to promote the nuclear maturation of pig oocytes derived from both small and large antral follicles. Though the cleavage and blastocyst rates of parthenotes stayed stable, 50 μM CoQ10 treatment could accelerate the development of parthenotes to blastocyst stage, and increase the average cell number of blastocyst. For cumulus-oocyte complexes from large antral follicles categorized by the brilliant cresyl blue (BCB) test, 50 μM CoQ10 treatment could specifically promote the nuclear maturation of poor-quality oocytes in the BCB-negative group. Mitochondrial function of oocytes treated by 50 μM CoQ10 could be boosted, through increasing the levels of mitochondrial membrane potential, ATP production and CoQ6, and changing the pattern of mitochondrial distribution as well. Moreover, 50 μM CoQ10 treatment suppressed the level of reactive oxygen species and reduced the percentage of oocytes with early apoptosis signal. Taken together, CoQ10 could improve the meiotic maturation of pig oocytes, especially for poor-quality oocytes, mainly through enhancing mitochondrial function and suppressing oxidative stress to reduce apoptosis.
Collapse
|
14
|
Kordus RJ, Hossain A, Malter HE, LaVoie HA. Mitochondrial metabolic substrate utilization in granulosa cells reflects body mass index and total follicle stimulating hormone dosage in in vitro fertilization patients. J Assist Reprod Genet 2020; 37:2743-2756. [PMID: 32935173 DOI: 10.1007/s10815-020-01946-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To utilize a novel mitochondrial function assay with pooled granulosa cells to determine whether mitochondrial function would differ by patient demographics and embryo development. METHODS This was a prospective pilot study in a hospital-based assisted reproductive program and public university. Mitochondrial metabolic substrate utilization was assessed in pooled granulosa cells from 40 women undergoing in vitro fertilization during 2018 and 2019. RESULTS Assessment of mitochondrial substrate metabolism in pooled granulosa cells revealed higher citric acid, L-malic acid, and octanoyl-L-carnitine utilization with higher body mass index (BMI). Utilization of citric acid, cis-aconitic acid, D-alpha-keto-glutaric acid, L-glutamine, and alanine plus glycine was significantly lower as total dosage of FSH administered increased. Utilization of glycogen was significantly higher in patients with a higher percentage of fertilized oocytes. D-alpha-keto-glutaric acid utilization was significantly lower in patients with a higher percentage of good 8-cell embryos. L-glutamine utilization was significantly lower, with a higher percentage of blastocyst formation. Mitochondrial metabolic scores (MMS), which reflect overall mitochondrial activity of the granulosa pool, were significantly higher in patients with higher BMI and with greater numbers of mature oocytes retrieved. MMS in granulosa decreased as total FSH dose administered increased. CONCLUSIONS Granulosa cell utilization of substrates feeding into the citric acid cycle changed with total FSH dosage and BMI. Fertilization rate, 8-cell embryo quality, and blastocyst formation also associated with different energy substrate usage. Mitochondrial substrate utilization by granulosa cells from individual follicles could be further developed into a useful diagnostic tool.
Collapse
Affiliation(s)
- Richard J Kordus
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.,Department of Obstetrics and Gynecology, Fertility Center of the Carolinas, Prisma Health - Upstate, Greenville, SC, USA
| | - Akhtar Hossain
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Henry E Malter
- Department of Obstetrics and Gynecology, Fertility Center of the Carolinas, Prisma Health - Upstate, Greenville, SC, USA
| | - Holly A LaVoie
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
15
|
Yang Y, Cheung HH, Zhang C, Wu J, Chan WY. Melatonin as Potential Targets for Delaying Ovarian Aging. Curr Drug Targets 2020; 20:16-28. [PMID: 30156157 DOI: 10.2174/1389450119666180828144843] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Abstract
In previous studies, oxidative stress damage has been solely considered to be the mechanism of ovarian aging, and several antioxidants have been used to delay ovarian aging. But recently, more reports have found that endoplasmic reticulum stress, autophagy, sirtuins, mitochondrial dysfunction, telomeres, gene mutation, premature ovarian failure, and polycystic ovary syndrome are all closely related to ovarian aging, and these factors all interact with oxidative stress. These novel insights on ovarian aging are summarized in this review. Furthermore, as a pleiotropic molecule, melatonin is an important antioxidant and used as drugs for several diseases treatment. Melatonin regulates not only oxidative stress, but also the various molecules, and normal and pathological processes interact with ovarian functions and aging. Hence, the mechanism of ovarian aging and the extensive role of melatonin in the ovarian aging process are described herein. This systematic review supply new insights into ovarian aging and the use of melatonin to delay its onset, further supply a novel drug of melatonin for ovarian aging treatment.
Collapse
Affiliation(s)
- Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan, Ningxia, 75004, China
| | - Hoi-Hung Cheung
- Chinese University of Hong Kong - Shandong University Joint Laboratory for Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, SAR, Hong Kong
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan, Ningxia, 75004, China.,Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wai-Yee Chan
- Chinese University of Hong Kong - Shandong University Joint Laboratory for Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, SAR, Hong Kong
| |
Collapse
|
16
|
Yang L, Wang Q, Cui M, Li Q, Mu S, Zhao Z. Effect of Melatonin on the In Vitro Maturation of Porcine Oocytes, Development of Parthenogenetically Activated Embryos, and Expression of Genes Related to the Oocyte Developmental Capability. Animals (Basel) 2020; 10:ani10020209. [PMID: 32012669 PMCID: PMC7070577 DOI: 10.3390/ani10020209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Exogenous melatonin has beneficial effects on improving cumulus oophorus expansion; mitochondrial distribution; intracellular level of glutathione; and first polar body extrusion rate of porcine oocytes derived from in vitro maturation. Moreover; melatonin supplementation increases relative abundances of BMP15 and CAT mRNA; and decreases intracellular levels of reactive oxygen species; and expression values of P53 and BAX genes; which are related to in vitro development of porcine oocytes. Abstract Melatonin treatment can improve quality and in vitro development of porcine oocytes, but the mechanism of improving quality and developmental competence is not fully understood. In this study, porcine cumulus–oocyte complexes were cultured in TCM199 medium with non-treated (control), 10−5 M luzindole (melatonin receptor antagonist), 10−5 M melatonin, and melatonin + luzindole during in vitro maturation, and parthenogenetically activated (PA) embryos were treated with nothing (control), or 10−5 M melatonin. Cumulus oophorus expansion, oocyte survival rate, first polar body extrusion rate, mitochondrial distribution, and intracellular levels of reactive oxygen species (ROS) and glutathione of oocytes, and cleavage rate and blastocyst rate of the PA embryos were assessed. In addition, expression of growth differentiation factor 9 (GDF9), tumor protein p53 (P53), BCL2 associated X protein (BAX), catalase (CAT), and bone morphogenetic protein 15 (BMP15) were analyzed by real-time quantitative PCR. The results revealed that melatonin treatment not only improved the first polar body extrusion rate and cumulus expansion of oocytes via melatonin receptors, but also enhanced the rates of cleavage and blastocyst formation of PA embryos. Additionally, melatonin treatment significantly increased intraooplasmic level of glutathione independently of melatonin receptors. Furthermore, melatonin supplementation not only significantly enhanced mitochondrial distribution and relative abundances of BMP15 and CAT mRNA, but also decreased intracellular level of ROS and relative abundances of P53 and BAX mRNA of the oocytes. In conclusion, melatonin enhanced the quality and in vitro development of porcine oocytes, which may be related to antioxidant and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Ling Yang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China; (L.Y.); (Q.W.); (Z.Z.)
| | - Qingkai Wang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China; (L.Y.); (Q.W.); (Z.Z.)
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China; (Q.L.); (S.M.)
| | - Maosheng Cui
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China; (Q.L.); (S.M.)
- Correspondence:
| | - Qianjun Li
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China; (Q.L.); (S.M.)
| | - Shuqin Mu
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China; (Q.L.); (S.M.)
| | - Zimo Zhao
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China; (L.Y.); (Q.W.); (Z.Z.)
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin 300412, China; (Q.L.); (S.M.)
| |
Collapse
|
17
|
Krisher RL. Maternal age affects oocyte developmental potential at both ends of the age spectrum. Reprod Fertil Dev 2019; 31:1-9. [PMID: 32188537 DOI: 10.1071/rd18340] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maternal age has a significant effect on oocyte developmental competence. Overall, evidence suggests that oocytes from both prepubertal females and reproductively aged females are inherently less competent. Reduced oocyte quality in both age groups is problematic for human medicine and agriculture. Some of the cellular mechanisms implicated in poor oocyte quality associated with maternal age are mitochondrial function and location, reduction of oxygen radicals, balance of metabolic pathways, regulation of maternal mRNAs and appropriate communication between the oocyte and cumulus cells. However, additional knowledge must be gained about the deficiencies present in prepubertal and reproductively aged oocytes that result in poor developmental potential before significant improvement can be achieved. This review discusses the evidence currently available regarding oocyte quality at both ends of the maternal age spectrum, what we know, or hypothesise, about the mechanisms involved and current thoughts regarding potential treatment for improvement.
Collapse
Affiliation(s)
- Rebecca L Krisher
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA. Email
| |
Collapse
|
18
|
Mitochondrial and metabolic adjustments during the final phase of follicular development prior to IVM of bovine oocytes. Theriogenology 2018; 119:156-162. [DOI: 10.1016/j.theriogenology.2018.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 12/13/2022]
|
19
|
Borges AA, Santos MV, Queiroz Neta LB, Oliveira MF, Silva AR, Pereira AF. In vitro maturation of collared peccary (Pecari tajacu) oocytes after different incubation times. PESQUISA VETERINARIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-5471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Oocyte in vitro maturation (IVM) is the first step of the in vitro reproductive technologies that enables mature oocytes to be generated ex vivo and after used for embryo production. In this sense, the establishment of culture environment, as oocyte incubation time, is essential for the success of the IVM. Therefore, the study was carried out to investigate the relationship between the meiotic potential and the IVM times of collared peccary oocytes, wild mammals of great commercial and ecological interest. Thus, ovaries were collected of females derived from captivity and transported to the laboratory within 1 hour of slaughtering. The oocytes derived from follicles (3-6mm in diameter) were recovered by aspirated and sliced. Good quality oocytes (evenly granulated cytoplasm with a least one layer of surrounding cumulus cells) were selected and subjected to culture in TCM 199 supplemented with 10µg/mL FSH, 10% FBS and 100µM cysteamine at 38.5°C, 5% CO2 and maximum humidity for 24 or 48 hours. After the incubation period, the nuclear status, the presence of first polar body and the expansion of cumulus cells of oocytes were assessed. The data obtained were analyzed by Fisher exact test (P<0.05). A total of four sessions (2-3 females per session) were performed, resulting in eighteen aspirated and sliced ovaries with normal morphological characteristics. An oocyte recovery rate of about 83.1% (59/71) was obtained with 3.3 oocytes/ovary and 2.3 viable oocytes/ovary. After different incubation times, differences (P<0.05) were observed in 24 and 48 hours for expansion of the cumulus cells (38.1% vs. 100%), presence of first polar body (52.4% vs. 90.5%) and nuclear status in second metaphase (19.0% vs. 76.2%), respectively. In conclusion, 48 hours is suitable time for the in vitro maturation of oocytes derived from collared peccaries when compared to the time of 24 hours, according to the meiotic potential observed. Additional studies should be conducted to improve the quality of the oocyte culture environment, as medium composition, aiming to obtain viable mature oocytes for other in vitro biotechnologies.
Collapse
|
20
|
Amoushahi M, Salehnia M, Ghorbanmehr N. The mitochondrial DNA copy number, cytochrome c oxidase activity and reactive oxygen species level in metaphase II oocytes obtained from in vitro culture of cryopreserved ovarian tissue in comparison with in vivo-obtained oocyte. J Obstet Gynaecol Res 2018; 44:1937-1946. [PMID: 30084218 DOI: 10.1111/jog.13747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/15/2018] [Indexed: 12/20/2022]
Abstract
AIM To evaluate the mitochondrial DNA (mtDNA) copy number, reactive oxygen species (ROS) level and intensity of mitochondrial enzyme activity in metaphase II oocytes derived from vitrified cultured immature mouse ovarian tissue in comparison with nonvitrified group and in vivo-obtained oocytes. METHODS Vitrified and nonvitrified ovaries from neonate female mice were cultured for 7 days. Then, preantral follicles were isolated and cultured in a three-dimensional culture system. Follicular development and oocyte maturation were evaluated and compared in both groups. Some of the collected metaphase II oocytes derived from in vitro and in vivo conditions were inseminated with capacitated spermatozoa, and then, the fertilization and embryo developmental rates were assessed. In the other series of oocytes, mtDNA copy number, distribution and enzyme activity and ROS level were analyzed. RESULTS The embryo development, mtDNA copy number and mitochondrial enzyme activity in collected metaphase II oocytes from two in vitro-cultured groups were significantly lower, and the ROS level was higher than those of the in vivo group (P < 0.05), but there was no significant difference between vitrified and nonvitrified groups. CONCLUSION This study showed that a two-step in vitro culture of mouse ovarian tissue decreased the mtDNA copy number and cytochrome c oxidase activity of metaphase II oocytes through an increase in their ROS level in comparison with in vivo-obtained oocytes. Thus, the in vitro culture methods should be improved.
Collapse
Affiliation(s)
| | - Mojdeh Salehnia
- Department of Anatomy, Tarbiat Modares University, Tehran, Iran
| | - Nassim Ghorbanmehr
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
21
|
Desquiret-Dumas V, Clément A, Seegers V, Boucret L, Ferré-L'Hotellier V, Bouet PE, Descamps P, Procaccio V, Reynier P, May-Panloup P. The mitochondrial DNA content of cumulus granulosa cells is linked to embryo quality. Hum Reprod 2018; 32:607-614. [PMID: 28077604 DOI: 10.1093/humrep/dew341] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION Could the mitochondrial DNA (mtDNA) content of cumulus granulosa cells (CGCs) be related to oocyte competence? SUMMARY ANSWER The quality of embryos obtained during IVF procedures appears to be linked to mtDNA copy numbers in the CGCs. WHAT IS KNOWN ALREADY Oocyte quality is linked to oocyte mtDNA content in the human and other species, and the mtDNA copy number of the oocyte is related to that of the corresponding CGCs. Moreover, the quantification of CGC mtDNA has recently been proposed as a biomarker of embryo viability. STUDY DESIGN SIZE, DURATION An observational study was performed on 452 oocyte-cumulus complexes retrieved from 62 patients undergoing ICSI at the ART Center of the University Hospital of Angers, France, from January to May 2015. PARTICIPANTS/MATERIALS, SETTING, METHODS The average mtDNA content of CGCs was assessed by using a quantitative real-time PCR technique. The relationship between CGC mtDNA content and oocyte maturity and fertilizability, on one hand, and embryo quality, on the other, was investigated using univariate and multivariate generalized models with fixed and mixed effects. MAIN RESULTS AND THE ROLE OF CHANCE No relationship was found between CGC mtDNA content and oocyte maturity or fertilizability. In contrast, there was a significant link between the content of mtDNA in CGCs surrounding an oocyte and the embryo quality, with significantly higher mtDNA copy numbers being associated with good quality embryos compared with fair or poor quality embryos [interquartile range, respectively, 738 (250-1228) and 342 (159-818); P = 0.006]. However, the indication provided by the quantification of CGC mtDNA concerning the eventuality of good embryo quality was seriously subject to patient effect (AUC = 0.806, 95%CI = 0.719-0.869). The quantity of CGC mtDNA was influenced by BMI and smoking. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION The quantification of CGC mtDNA may indicate embryo quality. However, since it is affected by patient specificity, it should be used with caution. It remains to be seen whether this marker could directly predict the implantation capacity of the embryo, which is the main objective in IVF practice. WIDER IMPLICATIONS OF THE FINDINGS Our study suggests that the quantification of CGC mtDNA may be a novel biomarker of embryo viability. However, patient specificity makes it impossible to establish a general threshold value, valid for all patients. Nevertheless, further studies are needed to determine whether the quantification of CGC mtDNA may, in combination with the morpho-kinetic method, offer an additional criterion for selecting the best embryo for transfer from a given cohort. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the University Hospital of Angers, the University of Angers, France, and the French national research centres INSERM and the CNRS. There were no competing interests.
Collapse
Affiliation(s)
- V Desquiret-Dumas
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France.,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - A Clément
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - V Seegers
- SFR ICAT, Université Angers, Angers, France.,DRCI, Cellule Data Management, CHU Angers, Angers, France
| | - L Boucret
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - V Ferré-L'Hotellier
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - P E Bouet
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - P Descamps
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - V Procaccio
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France.,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - P Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France.,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - P May-Panloup
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| |
Collapse
|
22
|
Abstract
Imaging of living cells based on traditional fluorescence and confocal laser scanning microscopy has delivered an enormous amount of information critical for understanding biological processes in single cells. However, the requirement for a high numerical aperture and fluorescent markers still limits researchers’ ability to visualize the cellular architecture without causing short- and long-term photodamage. Optical coherence microscopy (OCM) is a promising alternative that circumvents the technical limitations of fluorescence imaging techniques and provides unique access to fundamental aspects of early embryonic development, without the requirement for sample pre-processing or labeling. In the present paper, we utilized the internal motion of cytoplasm, as well as custom scanning and signal processing protocols, to effectively reduce the speckle noise typical for standard OCM and enable high-resolution intracellular time-lapse imaging. To test our imaging system we used mouse and pig oocytes and embryos and visualized them through fertilization and the first embryonic division, as well as at selected stages of oogenesis and preimplantation development. Because all morphological and morphokinetic properties recorded by OCM are believed to be biomarkers of oocyte/embryo quality, OCM may represent a new chapter in imaging-based preimplantation embryo diagnostics.
Collapse
|
23
|
Abstract
The sole purpose of any mammalian oocyte is to combine with a spermatozoon and form a viable embryo that implants into the uterus and forms a viable foetus. Most of the structures and mechanisms for this reside within the oocyte itself. The sperm limits itself to fertilisation of the oocyte; apart from this, its only contribution is the male genome and the centrosome, required for cell division. Both intrinsic and extrinsic factors determine the formation of a viable embryo. However, the fundamental necessity for successful reproduction resides within the capacity for the developing embryo to generate sufficient levels of energy for optimal development to occur. Energy is generated principally within mitochondria. In this chapter, we discuss some of the fundamental processes of preimplantation embryo development and the role of mitochondria in providing sufficient energy for the successful completion of these processes. We discuss mitochondrial genetics, replication and energy production. Ageing appears to affect the capacity of the mitochondrion to produce sufficient energy to balance the requirements of the embryo. We discuss some of the theories of the effect of maternal age on mitochondrial physiology and the role this plays in reproduction. We propose that maternal age has longer-term effects on individuals than simply on the efficiency of reproduction. We also discuss some of the procedures assisted reproduction has proposed to alleviate the effect of maternal age on reproduction.
Collapse
Affiliation(s)
- Wilding Martin
- Centre for Reproduction and Advanced Technology (CREATE), 150 Cheapside, London, EC2V 6ET, UK.
| |
Collapse
|
24
|
May-Panloup P, Boucret L, Chao de la Barca JM, Desquiret-Dumas V, Ferré-L'Hotellier V, Morinière C, Descamps P, Procaccio V, Reynier P. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update 2016; 22:725-743. [PMID: 27562289 DOI: 10.1093/humupd/dmw028] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND There is a great inter-individual variability of ovarian ageing, and almost 20% of patients consulting for infertility show signs of premature ovarian ageing. This feature, taken together with delayed childbearing in modern society, leads to the emergence of age-related ovarian dysfunction concomitantly with the desire for pregnancy. Assisted reproductive technology is frequently inefficacious in cases of ovarian ageing, thus raising the economic, medical and societal costs of the procedures. OBJECTIVE AND RATIONAL Ovarian ageing is characterized by quantitative and qualitative alteration of the ovarian oocyte reserve. Mitochondria play a central role in follicular atresia and could be the main target of the ooplasmic factors determining oocyte quality adversely affected by ageing. Indeed, the oocyte is the richest cell of the body in mitochondria and depends largely on these organelles to acquire competence for fertilization and early embryonic development. Moreover, the oocyte ensures the uniparental transmission and stability of the mitochondrial genome across the generations. This review focuses on the role played by mitochondria in ovarian ageing and on the possible consequences over the generations. SEARCH METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews concerning mitochondria and ovarian ageing, in animal and human species. Searches were performed using keywords belonging to three groups: 'mitochondria' or 'mitochondrial DNA'; 'ovarian reserve', 'oocyte', 'ovary' or 'cumulus cells'; and 'ageing' or 'ovarian ageing'. These keywords were combined with other search phrases relevant to the topic. References from these articles were used to obtain additional articles. OUTCOMES There is a close relationship, in mammalian models and humans, between mitochondria and the decline of oocyte quality with ageing. Qualitatively, ageing-related mitochondrial (mt) DNA instability, which leads to the accumulation of mtDNA mutations in the oocyte, plays a key role in the deterioration of oocyte quality in terms of competence and of the risk of transmitting mitochondrial abnormalities to the offspring. In contrast, some mtDNA haplogroups are protective against the decline of ovarian reserve. Quantitatively, mitochondrial biogenesis is crucial during oogenesis for constituting a mitochondrial pool sufficiently large to allow normal early embryonic development and to avoid the untimely activation of mitochondrial biogenesis. Ovarian ageing also seriously affects the dynamic nature of mitochondrial biogenesis in the surrounding granulosa cells that may provide interesting alternative biomarkers of oocyte quality. WIDER IMPLICATIONS A fuller understanding of the involvement of mitochondria in cases of infertility linked to ovarian ageing would contribute to a better management of the disorder in the future.
Collapse
Affiliation(s)
- Pascale May-Panloup
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France .,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Lisa Boucret
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France.,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Juan-Manuel Chao de la Barca
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Valérie Desquiret-Dumas
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Véronique Ferré-L'Hotellier
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Catherine Morinière
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Philippe Descamps
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Vincent Procaccio
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Pascal Reynier
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| |
Collapse
|
25
|
Liu Q, Kang L, Wang L, Zhang L, Xiang W. Mitofusin 2 regulates the oocytes development and quality by modulating meiosis and mitochondrial function. Sci Rep 2016; 6:30561. [PMID: 27469431 PMCID: PMC4965743 DOI: 10.1038/srep30561] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/06/2016] [Indexed: 12/27/2022] Open
Abstract
Mitofusin-2 (Mfn2), one of the mitochondrial dynamic proteins plays a key role in maintaining the integrity of mitochondrial morphology and function. However, it is unknown if Mfn2 influences the quality of oocytes in the process of development by modulating mitochondrial function in vitro. In this study, immature oocytes were transfected with Mfn2-siRNA for 16 h. We found that the expression level of the Mfn2 gene was significantly lower than those of the control group. The rates of maturation and fertility were also found to have declined. Moreover, mitochondrial structure and function, especially the morphogenesis of spindles, were observed as abnormal during meiosis. Thus, the above findings indicate that down-regulation of Mfn2 may have an impact on the maturation and fertilization of immature oocytes in vitro by modulating meiosis and mitochondrial function.
Collapse
Affiliation(s)
- Qun Liu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lina Kang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingjuan Wang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenpei Xiang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|