1
|
Zheng BX, Long W, Zeng YX, She MT, Zheng Y, Zheng WD, Wang YK, Chan KH, Leung ASL, Chan CM, Lu YJ, Wong WL. A mitochondria-targeting and G-quadruplex structure-binding ligand inducing calcium overload and ferroptosis in human cancer cells. Br J Pharmacol 2025. [PMID: 40344208 DOI: 10.1111/bph.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/01/2025] [Accepted: 03/15/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND AND PURPOSE Regulation of mitochondrial calcium overload and ferroptosis with mitochondria-targeting ligands is an attractive anticancer strategy but it remains a challenge. The aim of the present study was to demonstrate that a mitochondria-targeting and mtDNA G-quadruplex-binding ligand, BYB, induced mitochondrial calcium overload and ferroptosis in HeLa cells and showed potent in vitro and in vivo anticancer activity. EXPERIMENTAL APPROACH Cellular functions and molecular mechanism were studied using cell viability assay, live-cell imaging, western blotting, immunofluorescence, cell uptake, cell cycle arrest and apoptosis analysis, mitochondrial metabolism analysis, Comet assay, and wound-healing analysis. Pharmacokinetic studies were conducted in rat. In vivo antitumor activity was studied in a cervical cancer HeLa cell xenograft mouse model. KEY RESULTS Cellular results showed that BYB induced mitochondrial calcium overload, attributed to ligand-induced mitochondrial dysfunction via the mechanism of inhibiting mitochondrial DNA replication and transcription. The expression of respiratory chain complexes was markedly downregulated in BYB-treated HeLa cells. The respiratory chain function was also dysregulated. Mitophagy and mitochondrial calcium overload were induced in BYB-treated HeLa cells. Mitochondrial calcium overload markedly induced mtROS production. The induced mtDNA stress activated cGAS-STING pathway, leading to autophagy-dependent ferroptosis. The antitumour efficacy of BYB, evaluated in a HeLa tumour xenograft mouse model, achieved over 60% tumour weight reduction. CONCLUSION AND IMPLICATIONS BYB, via targeting mitochondria and mtDNA G-quadruplexes, induced mitochondrial calcium overload and ferroptosis, exhibited high in vivo antitumour efficacy and low toxicity. It shows high potential to be a mitochondria-targeting lead compound for chemical biology and drug discovery.
Collapse
Affiliation(s)
- Bo-Xin Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wei Long
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yao-Xun Zeng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Meng-Ting She
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yingying Zheng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Wen-De Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ya-Kun Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ka-Hin Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Alan Siu-Lun Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chun-Ming Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Wing-Leung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
2
|
Sharma H, Garg R. Characterization of the Helicase activity of Pif-like Helicases from Arabidopsis thaliana and role in gene regulation and abiotic stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109771. [PMID: 40106934 DOI: 10.1016/j.plaphy.2025.109771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/10/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Regulation in gene expression is rendered by the dynamic structural transitions between classical B-form DNA and non-canonical DNA folds such as G-Quadruplexes (GQS). Several proteins interact with GQSes and regulate a range of biological processes including regulation of DNA replication, transcription, and translation. Several GQS helicases resolve these structures and contribute to maintaining genomic stability. Arabidopsis has 3 homologs of Pif-Like-Helicases (AtPLHs) which have been characterized in this study. Cellular localization and tissue-specific profiling of these homologs revealed nuclear localization and expression in seedling, leaves, and flower tissues suggesting they might play a role in gene regulation and plant development. Molecular characterization of recombinant AtPLH2 and AtPLH3 suggested DNA binding, ATPase, and helicase activity of these two proteins. Further, phenotyping of Atplh mutants revealed alterated seedling root and hypocotyl growth and pollen germination. Transcriptomic profiling of mutants revealed the upregulation of genes associated with processes like systemic acquired resistance, glutathione metabolic process, cellular oxidant detoxification, β-glucosidase activity, SAM-dependent methyltransferase activity, heme binding, calmodulin binding, etc, with these genes harboring WRKY and AP2/EREB TF binding sites in their promoters. These mutants showed susceptibility to different abiotic stresses like salinity and ABA stress as well as to hydroxyurea. Further, AtPLH2 and AtPLH3 mutants showed no root elongation under low pH suggesting root elongation is affected in the absence of these genes. Our study highlights the role of these GQS helicases in regulating genes involved in root development and stress tolerance.
Collapse
Affiliation(s)
- Himanshi Sharma
- Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Rohini Garg
- Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India.
| |
Collapse
|
3
|
Gao J, Proffitt D, Marecki J, Protacio R, Wahls W, Byrd A, Raney K. Two residues in the DNA binding site of Pif1 helicase are essential for nuclear functions but dispensable for mitochondrial respiratory growth. Nucleic Acids Res 2024; 52:6543-6557. [PMID: 38752483 PMCID: PMC11194084 DOI: 10.1093/nar/gkae403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Pif1 helicase functions in both the nucleus and mitochondria. Pif1 tightly couples ATP hydrolysis, single-stranded DNA translocation, and duplex DNA unwinding. We investigated two Pif1 variants (F723A and T464A) that have each lost one site of interaction of the protein with the DNA substrate. Both variants exhibit minor reductions in affinity for DNA and ATP hydrolysis but have impaired DNA unwinding activity. However, these variants translocate on single-stranded DNA faster than the wildtype enzyme and can slide on the DNA substrate in an ATP-independent manner. This suggests they have lost their grip on the DNA, interfering with coupling ATP hydrolysis to translocation and unwinding. Yeast expressing these variants have increased gross chromosomal rearrangements, increased telomere length, and can overcome the lethality of dna2Δ, similar to phenotypes of yeast lacking Pif1. However, unlike pif1Δ mutants, they are viable on glycerol containing media and maintain similar mitochondrial DNA copy numbers as Pif1 wildtype. Overall, our data indicate that a tight grip of the trailing edge of the Pif1 enzyme on the DNA couples ATP hydrolysis to DNA translocation and DNA unwinding. This tight grip appears to be essential for the Pif1 nuclear functions tested but is dispensable for mitochondrial respiratory growth.
Collapse
Affiliation(s)
- Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - David R Proffitt
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - John C Marecki
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (Slot 516), Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Zheng BX, Long W, Zheng W, Zeng Y, Guo XC, Chan KH, She MT, Leung ASL, Lu YJ, Wong WL. Mitochondria-Selective Dicationic Small-Molecule Ligand Targeting G-Quadruplex Structures for Human Colorectal Cancer Therapy. J Med Chem 2024; 67:6292-6312. [PMID: 38624086 DOI: 10.1021/acs.jmedchem.3c02240] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Mitochondria are important drug targets for anticancer and other disease therapies. Certain human mitochondrial DNA sequences capable of forming G-quadruplex structures (G4s) are emerging drug targets of small molecules. Despite some mitochondria-selective ligands being reported for drug delivery against cancers, the ligand design is mostly limited to the triphenylphosphonium scaffold. The ligand designed with lipophilic small-sized scaffolds bearing multipositive charges targeting the unique feature of high mitochondrial membrane potential (MMP) is lacking and most mitochondria-selective ligands are not G4-targeting. Herein, we report a new small-sized dicationic lipophilic ligand to target MMP and mitochondrial DNA G4s to enhance drug delivery for anticancer. The ligand showed marked alteration of mitochondrial gene expression and substantial induction of ROS production, mitochondrial dysfunction, DNA damage, cellular senescence, and apoptosis. The ligand also exhibited high anticancer activity against HCT116 cancer cells (IC50, 3.4 μM) and high antitumor efficacy in the HCT116 tumor xenograft mouse model (∼70% tumor weight reduction).
Collapse
Affiliation(s)
- Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wende Zheng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Yaoxun Zeng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Xiao-Chun Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ka-Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Meng-Ting She
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
5
|
Structural Studies of Pif1 Helicases from Thermophilic Bacteria. Microorganisms 2023; 11:microorganisms11020479. [PMID: 36838444 PMCID: PMC9964779 DOI: 10.3390/microorganisms11020479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Pif1 proteins are DNA helicases belonging to Superfamily 1, with 5' to 3' directionality. They are conserved from bacteria to human and have been shown to be particularly important in eukaryotes for replication and nuclear and mitochondrial genome stability. However, Pif1 functions in bacteria are less known. While most Pif1 from mesophilic bacteria consist of the helicase core with limited N-terminal and C-terminal extensions, some Pif1 from thermophilic bacteria exhibit a C-terminal WYL domain. We solved the crystal structures of Pif1 helicase cores from thermophilic bacteria Deferribacter desulfuricans and Sulfurihydrogenibium sp. in apo and nucleotide bound form. We show that the N-terminal part is important for ligand binding. The full-length Pif1 helicase was predicted based on the Alphafold algorithm and the nucleic acid binding on the Pif1 helicase core and the WYL domain was modelled based on known crystallographic structures. The model predicts that amino acids in the domains 1A, WYL, and linker between the Helicase core and WYL are important for nucleic acid binding. Therefore, the N-terminal and C-terminal extensions may be necessary to strengthen the binding of nucleic acid on these Pif1 helicases. This may be an adaptation to thermophilic conditions.
Collapse
|
6
|
Sahayasheela VJ, Yu Z, Hidaka T, Pandian GN, Sugiyama H. Mitochondria and G-quadruplex evolution: an intertwined relationship. Trends Genet 2023; 39:15-30. [PMID: 36414480 PMCID: PMC9772288 DOI: 10.1016/j.tig.2022.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022]
Abstract
G-quadruplexes (G4s) are non-canonical structures formed in guanine (G)-rich sequences through stacked G tetrads by Hoogsteen hydrogen bonding. Several studies have demonstrated the existence of G4s in the genome of various organisms, including humans, and have proposed that G4s have a regulatory role in various cellular functions. However, little is known regarding the dissemination of G4s in mitochondria. In this review, we report the observation that the number of potential G4-forming sequences in the mitochondrial genome increases with the evolutionary complexity of different species, suggesting that G4s have a beneficial role in higher-order organisms. We also discuss the possible function of G4s in mitochondrial (mt)DNA and long noncoding (lnc)RNA and their role in various biological processes.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Takuya Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
7
|
Kohzaki M. Mammalian Resilience Revealed by a Comparison of Human Diseases and Mouse Models Associated With DNA Helicase Deficiencies. Front Mol Biosci 2022; 9:934042. [PMID: 36032672 PMCID: PMC9403131 DOI: 10.3389/fmolb.2022.934042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 12/01/2022] Open
Abstract
Maintaining genomic integrity is critical for sustaining individual animals and passing on the genome to subsequent generations. Several enzymes, such as DNA helicases and DNA polymerases, are involved in maintaining genomic integrity by unwinding and synthesizing the genome, respectively. Indeed, several human diseases that arise caused by deficiencies in these enzymes have long been known. In this review, the author presents the DNA helicases associated with human diseases discovered to date using recent analyses, including exome sequences. Since several mouse models that reflect these human diseases have been developed and reported, this study also summarizes the current knowledge regarding the outcomes of DNA helicase deficiencies in humans and mice and discusses possible mechanisms by which DNA helicases maintain genomic integrity in mammals. It also highlights specific diseases that demonstrate mammalian resilience, in which, despite the presence of genomic instability, patients and mouse models have lifespans comparable to those of the general population if they do not develop cancers; finally, this study discusses future directions for therapeutic applications in humans that can be explored using these mouse models.
Collapse
|
8
|
Shammas MK, Huang X, Wu BP, Fessler E, Song I, Randolph NP, Li Y, Bleck CK, Springer DA, Fratter C, Barbosa IA, Powers AF, Quirós PM, Lopez-Otin C, Jae LT, Poulton J, Narendra DP. OMA1 mediates local and global stress responses against protein misfolding in CHCHD10 mitochondrial myopathy. J Clin Invest 2022; 132:157504. [PMID: 35700042 PMCID: PMC9282932 DOI: 10.1172/jci157504] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial stress triggers a response in the cell’s mitochondria and nucleus, but how these stress responses are coordinated in vivo is poorly understood. Here, we characterize a family with myopathy caused by a dominant p.G58R mutation in the mitochondrial protein CHCHD10. To understand the disease etiology, we developed a knockin (KI) mouse model and found that mutant CHCHD10 aggregated in affected tissues, applying a toxic protein stress to the inner mitochondrial membrane. Unexpectedly, the survival of CHCHD10-KI mice depended on a protective stress response mediated by the mitochondrial metalloendopeptidase OMA1. The OMA1 stress response acted both locally within mitochondria, causing mitochondrial fragmentation, and signaled outside the mitochondria, activating the integrated stress response through cleavage of DAP3-binding cell death enhancer 1 (DELE1). We additionally identified an isoform switch in the terminal complex of the electron transport chain as a component of this response. Our results demonstrate that OMA1 was critical for neonatal survival conditionally in the setting of inner mitochondrial membrane stress, coordinating local and global stress responses to reshape the mitochondrial network and proteome.
Collapse
Affiliation(s)
- Mario K Shammas
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| | - Xiaoping Huang
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| | - Beverly P Wu
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| | - Evelyn Fessler
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Insung Song
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| | - Nicholas P Randolph
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States of America
| | - Christopher Ke Bleck
- Electron Microscopy Core Facility, National Heart, Lung, and Blood Institute, Bethesda, United States of America
| | - Danielle A Springer
- Mouse Phenotyping Core, National Heart, Lung, and Blood Institute, Bethesda, United States of America
| | - Carl Fratter
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Ines A Barbosa
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | | | - Pedro M Quirós
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Lucas T Jae
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Derek P Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| |
Collapse
|
9
|
Malone EG, Thompson MD, Byrd AK. Role and Regulation of Pif1 Family Helicases at the Replication Fork. Int J Mol Sci 2022; 23:ijms23073736. [PMID: 35409096 PMCID: PMC8998199 DOI: 10.3390/ijms23073736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Pif1 helicases are a multifunctional family of DNA helicases that are important for many aspects of genomic stability in the nucleus and mitochondria. Pif1 helicases are conserved from bacteria to humans. Pif1 helicases play multiple roles at the replication fork, including promoting replication through many barriers such as G-quadruplex DNA, the rDNA replication fork barrier, tRNA genes, and R-loops. Pif1 helicases also regulate telomerase and promote replication termination, Okazaki fragment maturation, and break-induced replication. This review highlights many of the roles and regulations of Pif1 at the replication fork that promote cellular health and viability.
Collapse
Affiliation(s)
- Emory G. Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Matthew D. Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Alicia K. Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-526-6488
| |
Collapse
|
10
|
Chen XC, Tang GX, Luo WH, Shao W, Dai J, Zeng ST, Huang ZS, Chen SB, Tan JH. Monitoring and Modulating mtDNA G-Quadruplex Dynamics Reveal Its Close Relationship to Cell Glycolysis. J Am Chem Soc 2021; 143:20779-20791. [PMID: 34865478 DOI: 10.1021/jacs.1c08860] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mitochondrial DNA G-quadruplex (mtDNA G4) is a potential regulatory element for the regulation of mitochondrial functions; however, its relevance and specific roles in diseases remain largely unknown. Here, we engineered a set of chemical probes, including MitoISCH, an mtDNA G4-specific fluorescent probe, together with MitoPDS, a mitochondria-targeted G4-stabilizing agent, to thoroughly investigate mtDNA G4s. Using MitoISCH to monitor previously intractable dynamics of mtDNA G4s, we surprisingly found that their formation was prevalent only in endothelial and cancer cells that rely on glycolysis for energy production. Consistent with this, promotion of mtDNA G4 folding by MitoPDS in turn caused glycolysis-related gene activation and glycolysis enhancement. Remarkably, this close relationship among mtDNA G4s, glycolysis, and cancer cells further allowed MitoISCH to accumulate in tumors and label them in vivo. Our work reveals an unprecedented link between mtDNA G4s and cell glycolysis, suggesting that mtDNA G4s may be a novel cancer biomarker and therapeutic target deserving further exploration.
Collapse
Affiliation(s)
- Xiu-Cai Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wen-Hua Luo
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wen Shao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jing Dai
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shu-Tang Zeng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
11
|
Butler TJ, Estep KN, Sommers JA, Maul RW, Moore AZ, Bandinelli S, Cucca F, Tuke MA, Wood AR, Bharti SK, Bogenhagen DF, Yakubovskaya E, Garcia-Diaz M, Guilliam TA, Byrd AK, Raney KD, Doherty AJ, Ferrucci L, Schlessinger D, Ding J, Brosh RM. Mitochondrial genetic variation is enriched in G-quadruplex regions that stall DNA synthesis in vitro. Hum Mol Genet 2021; 29:1292-1309. [PMID: 32191790 DOI: 10.1093/hmg/ddaa043] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/27/2020] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
As the powerhouses of the eukaryotic cell, mitochondria must maintain their genomes which encode proteins essential for energy production. Mitochondria are characterized by guanine-rich DNA sequences that spontaneously form unusual three-dimensional structures known as G-quadruplexes (G4). G4 structures can be problematic for the essential processes of DNA replication and transcription because they deter normal progression of the enzymatic-driven processes. In this study, we addressed the hypothesis that mitochondrial G4 is a source of mutagenesis leading to base-pair substitutions. Our computational analysis of 2757 individual genomes from two Italian population cohorts (SardiNIA and InCHIANTI) revealed a statistically significant enrichment of mitochondrial mutations within sequences corresponding to stable G4 DNA structures. Guided by the computational analysis results, we designed biochemical reconstitution experiments and demonstrated that DNA synthesis by two known mitochondrial DNA polymerases (Pol γ, PrimPol) in vitro was strongly blocked by representative stable G4 mitochondrial DNA structures, which could be overcome in a specific manner by the ATP-dependent G4-resolving helicase Pif1. However, error-prone DNA synthesis by PrimPol using the G4 template sequence persisted even in the presence of Pif1. Altogether, our results suggest that genetic variation is enriched in G-quadruplex regions that impede mitochondrial DNA replication.
Collapse
Affiliation(s)
- Thomas J Butler
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Katrina N Estep
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Ann Zenobia Moore
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - Marcus A Tuke
- Genetics of Complex Traits, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Sanjay Kumar Bharti
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Daniel F Bogenhagen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Elena Yakubovskaya
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Thomas A Guilliam
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD 21224, USA
| | - Jun Ding
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| |
Collapse
|
12
|
Dahal S, Siddiqua H, Katapadi VK, Iyer D, Raghavan SC. Characterization of G4 DNA formation in mitochondrial DNA and their potential role in mitochondrial genome instability. FEBS J 2021; 289:163-182. [PMID: 34228888 DOI: 10.1111/febs.16113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/29/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022]
Abstract
Mitochondria possess their own genome which can be replicated independently of nuclear DNA. Mitochondria being the powerhouse of the cell produce reactive oxygen species, due to which the mitochondrial genome is frequently exposed to oxidative damage. Previous studies have demonstrated an association of mitochondrial deletions to aging and human disorders. Many of these deletions were present adjacent to non-B DNA structures. Thus, we investigate noncanonical structures associated with instability in mitochondrial genome. In silico studies revealed the presence of > 100 G-quadruplex motifs (of which 5 have the potential to form 3-plate G4 DNA), 23 inverted repeats, and 3 mirror repeats in the mitochondrial DNA (mtDNA). Further analysis revealed that among the deletion breakpoints from patients with mitochondrial disorders, majority are located at G4 DNA motifs. Interestingly, ~ 50% of the deletions were at base-pair positions 8271-8281, ~ 35% were due to deletion at 12362-12384, and ~ 12% due to deletion at 15516-15545. Formation of 3-plate G-quadruplex DNA structures at mitochondrial fragile regions was characterized using electromobility shift assay, circular dichroism (CD), and Taq polymerase stop assay. All 5 regions could fold into both intramolecular and intermolecular G-quadruplex structures in a KCl-dependent manner. G4 DNA formation was in parallel orientation, which was abolished in the presence of LiCl. The formation of G4 DNA affected both replication and transcription. Finally, immunolocalization of BG4 with MitoTracker confirmed the formation of G-quadruplex in mitochondrial genome. Thus, we characterize the formation of 5 different G-quadruplex structures in human mitochondrial region, which may contribute toward formation of mitochondrial deletions.
Collapse
Affiliation(s)
- Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Humaira Siddiqua
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Vijeth K Katapadi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Divyaanka Iyer
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
13
|
Ononye OE, Sausen CW, Bochman ML, Balakrishnan L. Dynamic regulation of Pif1 acetylation is crucial to the maintenance of genome stability. Curr Genet 2020; 67:85-92. [PMID: 33079209 DOI: 10.1007/s00294-020-01116-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 01/21/2023]
Abstract
PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell.
Collapse
Affiliation(s)
- Onyekachi E Ononye
- Department of Biology, School of Science, Indiana University Purdue University Indianapolis, Indianapolis, USA
| | - Christopher W Sausen
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, USA.
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University Purdue University Indianapolis, Indianapolis, USA.
| |
Collapse
|
14
|
Peter B, Falkenberg M. TWINKLE and Other Human Mitochondrial DNA Helicases: Structure, Function and Disease. Genes (Basel) 2020; 11:genes11040408. [PMID: 32283748 PMCID: PMC7231222 DOI: 10.3390/genes11040408] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
Mammalian mitochondria contain a circular genome (mtDNA) which encodes subunits of the oxidative phosphorylation machinery. The replication and maintenance of mtDNA is carried out by a set of nuclear-encoded factors—of which, helicases form an important group. The TWINKLE helicase is the main helicase in mitochondria and is the only helicase required for mtDNA replication. Mutations in TWINKLE cause a number of human disorders associated with mitochondrial dysfunction, neurodegeneration and premature ageing. In addition, a number of other helicases with a putative role in mitochondria have been identified. In this review, we discuss our current knowledge of TWINKLE structure and function and its role in diseases of mtDNA maintenance. We also briefly discuss other potential mitochondrial helicases and postulate on their role(s) in mitochondria.
Collapse
|
15
|
Oliveira MT, Pontes CDB, Ciesielski GL. Roles of the mitochondrial replisome in mitochondrial DNA deletion formation. Genet Mol Biol 2020; 43:e20190069. [PMID: 32141473 PMCID: PMC7197994 DOI: 10.1590/1678-4685-gmb-2019-0069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/12/2019] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) deletions are a common cause of human mitochondrial
diseases. Mutations in the genes encoding components of the mitochondrial
replisome, such as DNA polymerase gamma (Pol γ) and the mtDNA helicase Twinkle,
have been associated with the accumulation of such deletions and the development
of pathological conditions in humans. Recently, we demonstrated that changes in
the level of wild-type Twinkle promote mtDNA deletions, which implies that not
only mutations in, but also dysregulation of the stoichiometry between the
replisome components is potentially pathogenic. The mechanism(s) by which
alterations to the replisome function generate mtDNA deletions is(are) currently
under debate. It is commonly accepted that stalling of the replication fork at
sites likely to form secondary structures precedes the deletion formation. The
secondary structural elements can be bypassed by the replication-slippage
mechanism. Otherwise, stalling of the replication fork can generate single- and
double-strand breaks, which can be repaired through recombination leading to the
elimination of segments between the recombination sites. Here, we discuss
aberrances of the replisome in the context of the two debated outcomes, and
suggest new mechanistic explanations based on replication restart and template
switching that could account for all the deletion types reported for
patients.
Collapse
Affiliation(s)
- Marcos T Oliveira
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | | | | |
Collapse
|
16
|
Mishmar D, Levin R, Naeem MM, Sondheimer N. Higher Order Organization of the mtDNA: Beyond Mitochondrial Transcription Factor A. Front Genet 2019; 10:1285. [PMID: 31998357 PMCID: PMC6961661 DOI: 10.3389/fgene.2019.01285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/21/2019] [Indexed: 01/09/2023] Open
Abstract
The higher order organization of eukaryotic and prokaryotic genomes is pivotal in the regulation of gene expression. Specifically, chromatin accessibility in eukaryotes and nucleoid accessibility in bacteria are regulated by a cohort of proteins to alter gene expression in response to diverse physiological conditions. By contrast, prior studies have suggested that the mitochondrial genome (mtDNA) is coated solely by mitochondrial transcription factor A (TFAM), whose increased cellular concentration was proposed to be the major determinant of mtDNA packaging in the mitochondrial nucleoid. Nevertheless, recent analysis of DNase-seq and ATAC-seq experiments from multiple human and mouse samples suggest gradual increase in mtDNA occupancy during the course of embryonic development to generate a conserved footprinting pattern which correlate with sites that have low TFAM occupancy in vivo (ChIP-seq) and tend to adopt G-quadruplex structures. These findings, along with recent identification of mtDNA binding by known modulators of chromatin accessibility such as MOF, suggest that mtDNA higher order organization is generated by cross talk with the nuclear regulatory system, may have a role in mtDNA regulation, and is more complex than once thought.
Collapse
Affiliation(s)
- Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rotem Levin
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mansur M Naeem
- Institute of Medical Sciences and the Department of Paediatrics, The University of Toronto, Toronto, ON, Canada
| | - Neal Sondheimer
- Institute of Medical Sciences and the Department of Paediatrics, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Kocak E, Dykstra S, Nemeth A, Coughlin CG, Rodgers K, McVey M. The Drosophila melanogaster PIF1 Helicase Promotes Survival During Replication Stress and Processive DNA Synthesis During Double-Strand Gap Repair. Genetics 2019; 213:835-847. [PMID: 31537623 PMCID: PMC6827366 DOI: 10.1534/genetics.119.302665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/18/2019] [Indexed: 11/18/2022] Open
Abstract
PIF1 is a 5' to 3' DNA helicase that can unwind double-stranded DNA and disrupt nucleic acid-protein complexes. In Saccharomyces cerevisiae, Pif1 plays important roles in mitochondrial and nuclear genome maintenance, telomere length regulation, unwinding of G-quadruplex structures, and DNA synthesis during break-induced replication. Some, but not all, of these functions are shared with other eukaryotes. To gain insight into the evolutionarily conserved functions of PIF1, we created pif1 null mutants in Drosophila melanogaster and assessed their phenotypes throughout development. We found that pif1 mutant larvae exposed to high concentrations of hydroxyurea, but not other DNA damaging agents, experience reduced survival to adulthood. Embryos lacking PIF1 fail to segregate their chromosomes efficiently during early nuclear divisions, consistent with a defect in DNA replication. Furthermore, loss of the BRCA2 protein, which is required for stabilization of stalled replication forks in metazoans, causes synthetic lethality in third instar larvae lacking either PIF1 or the polymerase delta subunit POL32. Interestingly, pif1 mutants have a reduced ability to synthesize DNA during repair of a double-stranded gap, but only in the absence of POL32. Together, these results support a model in which Drosophila PIF1 functions with POL32 during times of replication stress but acts independently of POL32 to promote synthesis during double-strand gap repair.
Collapse
Affiliation(s)
- Ece Kocak
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| | - Sarah Dykstra
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| | - Alexandra Nemeth
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| | | | - Kasey Rodgers
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| |
Collapse
|
18
|
Genin EC, Madji Hounoum B, Bannwarth S, Fragaki K, Lacas-Gervais S, Mauri-Crouzet A, Lespinasse F, Neveu J, Ropert B, Augé G, Cochaud C, Lefebvre-Omar C, Bigou S, Chiot A, Mochel F, Boillée S, Lobsiger CS, Bohl D, Ricci JE, Paquis-Flucklinger V. Mitochondrial defect in muscle precedes neuromuscular junction degeneration and motor neuron death in CHCHD10 S59L/+ mouse. Acta Neuropathol 2019; 138:123-145. [PMID: 30874923 DOI: 10.1007/s00401-019-01988-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 12/30/2022]
Abstract
Recently, we provided genetic basis showing that mitochondrial dysfunction can trigger motor neuron degeneration, through identification of CHCHD10 encoding a mitochondrial protein. We reported patients, carrying the p.Ser59Leu heterozygous mutation in CHCHD10, from a large family with a mitochondrial myopathy associated with motor neuron disease (MND). Rapidly, our group and others reported CHCHD10 mutations in amyotrophic lateral sclerosis (ALS), frontotemporal dementia-ALS and other neurodegenerative diseases. Here, we generated knock-in (KI) mice, carrying the p.Ser59Leu mutation, that mimic the mitochondrial myopathy with mtDNA instability displayed by the patients from our original family. Before 14 months of age, all KI mice developed a fatal mitochondrial cardiomyopathy associated with enhanced mitophagy. CHCHD10S59L/+ mice also displayed neuromuscular junction (NMJ) and motor neuron degeneration with hyper-fragmentation of the motor end plate and moderate but significant motor neuron loss in lumbar spinal cord at the end stage of the disease. At this stage, we observed TDP-43 cytoplasmic aggregates in spinal neurons. We also showed that motor neurons differentiated from human iPSC carrying the p.Ser59Leu mutation were much more sensitive to Staurosporine or glutamate-induced caspase activation than control cells. These data confirm that mitochondrial deficiency associated with CHCHD10 mutations can be at the origin of MND. CHCHD10 is highly expressed in the NMJ post-synaptic part. Importantly, the fragmentation of the motor end plate was associated with abnormal CHCHD10 expression that was also observed closed to NMJs which were morphologically normal. Furthermore, we found OXPHOS deficiency in muscle of CHCHD10S59L/+ mice at 3 months of age in the absence of neuron loss in spinal cord. Our data show that the pathological effects of the p.Ser59Leu mutation target muscle prior to NMJ and motor neurons. They likely lead to OXPHOS deficiency, loss of cristae junctions and destabilization of internal membrane structure within mitochondria at motor end plate of NMJ, impairing neurotransmission. These data are in favor with a key role for muscle in MND associated with CHCHD10 mutations.
Collapse
|
19
|
Holt IJ. The Jekyll and Hyde character of RNase H1 and its multiple roles in mitochondrial DNA metabolism. DNA Repair (Amst) 2019; 84:102630. [PMID: 31178343 DOI: 10.1016/j.dnarep.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
The activity and specificity of ribonuclease H1, RNase H1, has been known for over half a century; like all enzymes in its class, it degrades RNA only when it is hybridized to DNA. However, the essential role of RNase H1 in mitochondrial DNA maintenance was not recognized until 2003, and empirical evidence that it is required to process RNA primers of mitochondrial DNA had to wait until 2015. In the same year, mutations in the RNASEH1 gene were linked to human mitochondrial diseases. The most recent studies suggest that in addition to primer-processing, RNase H1 determines the fate of R-loops, although not primarily those that might present an obstacle to DNA replication, but ones that contribute to the organization of mitochondrial DNA and the unusual mechanism of replication in mitochondria that utilizes transcripts for the strand-asynchronous mechanism of mitochondrial DNA replication. A full understanding of the role of RNase H1 in mtDNA metabolism will depend on further study, including careful consideration of its ability to stabilize, as well as to degrade RNA/DNA hybrids, and its regulation by oxidation or other mechanisms. Nevertheless, RNase H1 is already staking a strong claim to be the most versatile factor involved in propagating the DNA in the mitochondria.
Collapse
Affiliation(s)
- Ian J Holt
- Biodonostia Health Research Institute, 20014 San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), Madrid, Spain.
| |
Collapse
|
20
|
Belmonte FR, Dedousis N, Sipula I, Desai NA, Singhi AD, Chu Y, Zhang Y, Bannwarth S, Paquis-Flucklinger V, Harrington L, Shiva S, Jurczak MJ, O’Doherty RM, Kaufman BA. Petite Integration Factor 1 (PIF1) helicase deficiency increases weight gain in Western diet-fed female mice without increased inflammatory markers or decreased glucose clearance. PLoS One 2019; 14:e0203101. [PMID: 31136580 PMCID: PMC6538152 DOI: 10.1371/journal.pone.0203101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 05/09/2019] [Indexed: 11/19/2022] Open
Abstract
Petite Integration Factor 1 (PIF1) is a multifunctional helicase present in nuclei and mitochondria. PIF1 knock out (KO) mice exhibit accelerated weight gain and decreased wheel running on a normal chow diet. In the current study, we investigated whether Pif1 ablation alters whole body metabolism in response to weight gain. PIF1 KO and wild type (WT) C57BL/6J mice were fed a Western diet (WD) rich in fat and carbohydrates before evaluation of their metabolic phenotype. Compared with weight gain-resistant WT female mice, WD-fed PIF1 KO females, but not males, showed accelerated adipose deposition, decreased locomotor activity, and reduced whole-body energy expenditure without increased dietary intake. Surprisingly, PIF1 KO females did not show obesity-induced alterations in fasting blood glucose and glucose clearance. WD-fed PIF1 KO females developed mild hepatic steatosis and associated changes in liver gene expression that were absent in weight-matched, WD-fed female controls, linking hepatic steatosis to Pif1 ablation rather than increased body weight. WD-fed PIF1 KO females also showed decreased expression of inflammation-associated genes in adipose tissue. Collectively, these data separated weight gain from inflammation and impaired glucose homeostasis. They also support a role for Pif1 in weight gain resistance and liver metabolic dysregulation during nutrient stress.
Collapse
Affiliation(s)
- Frances R. Belmonte
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine, and Vascular Medicine Institute, Pittsburgh, PA, United States of America
| | - Nikolaos Dedousis
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Biomedical Science Tower, Pittsburgh, PA, United States of America
| | - Ian Sipula
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Biomedical Science Tower, Pittsburgh, PA, United States of America
| | - Nikita A. Desai
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine, and Vascular Medicine Institute, Pittsburgh, PA, United States of America
| | - Aatur D. Singhi
- Department of Pathology and Pittsburgh Liver Research Center, University of Pittsburgh, Scaife Hall, Pittsburgh, PA, United States of America
| | - Yanxia Chu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, UPMC Montefiore Hospital, Pittsburgh, PA, United States of America
| | - Yingze Zhang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, UPMC Montefiore Hospital, Pittsburgh, PA, United States of America
| | - Sylvie Bannwarth
- Université Côte d'Azur, CHU de Nice, Inserm, CNRS, IRCAN, France
| | | | - Lea Harrington
- Université de Montréal, Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
| | - Sruti Shiva
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine, and Vascular Medicine Institute, Pittsburgh, PA, United States of America
| | - Michael J. Jurczak
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Biomedical Science Tower, Pittsburgh, PA, United States of America
| | - Robert M. O’Doherty
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Biomedical Science Tower, Pittsburgh, PA, United States of America
| | - Brett A. Kaufman
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine, and Vascular Medicine Institute, Pittsburgh, PA, United States of America
| |
Collapse
|
21
|
G-quadruplex dynamics contribute to regulation of mitochondrial gene expression. Sci Rep 2019; 9:5605. [PMID: 30944353 PMCID: PMC6447596 DOI: 10.1038/s41598-019-41464-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Single-stranded DNA or RNA sequences rich in guanine (G) can adopt non-canonical structures known as G-quadruplexes (G4). Mitochondrial DNA (mtDNA) sequences that are predicted to form G4 are enriched on the heavy-strand and have been associated with formation of deletion breakpoints. Increasing evidence supports the ability of mtDNA to form G4 in cancer cells; however, the functional roles of G4 structures in regulating mitochondrial nucleic acid homeostasis in non-cancerous cells remain unclear. Here, we demonstrate by live cell imaging that the G4-ligand RHPS4 localizes primarily to mitochondria at low doses. We find that low doses of RHPS4 do not induce a nuclear DNA damage response but do cause an acute inhibition of mitochondrial transcript elongation, leading to respiratory complex depletion. We also observe that RHPS4 interferes with mtDNA levels or synthesis both in cells and isolated mitochondria. Importantly, a mtDNA variant that increases G4 stability and anti-parallel G4-forming character shows a stronger respiratory defect in response to RHPS4, supporting the conclusion that mitochondrial sensitivity to RHPS4 is G4-mediated. Taken together, our results indicate a direct role for G4 perturbation in mitochondrial genome replication, transcription processivity, and respiratory function in normal cells.
Collapse
|
22
|
Lerner LK, Sale JE. Replication of G Quadruplex DNA. Genes (Basel) 2019; 10:genes10020095. [PMID: 30700033 PMCID: PMC6409989 DOI: 10.3390/genes10020095] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/03/2023] Open
Abstract
A cursory look at any textbook image of DNA replication might suggest that the complex machine that is the replisome runs smoothly along the chromosomal DNA. However, many DNA sequences can adopt non-B form secondary structures and these have the potential to impede progression of the replisome. A picture is emerging in which the maintenance of processive DNA replication requires the action of a significant number of additional proteins beyond the core replisome to resolve secondary structures in the DNA template. By ensuring that DNA synthesis remains closely coupled to DNA unwinding by the replicative helicase, these factors prevent impediments to the replisome from causing genetic and epigenetic instability. This review considers the circumstances in which DNA forms secondary structures, the potential responses of the eukaryotic replisome to these impediments in the light of recent advances in our understanding of its structure and operation and the mechanisms cells deploy to remove secondary structure from the DNA. To illustrate the principles involved, we focus on one of the best understood DNA secondary structures, G quadruplexes (G4s), and on the helicases that promote their resolution.
Collapse
Affiliation(s)
- Leticia Koch Lerner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Julian E Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
23
|
Falabella M, Fernandez RJ, Johnson FB, Kaufman BA. Potential Roles for G-Quadruplexes in Mitochondria. Curr Med Chem 2019; 26:2918-2932. [PMID: 29493440 PMCID: PMC6113130 DOI: 10.2174/0929867325666180228165527] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
Some DNA or RNA sequences rich in guanine (G) nucleotides can adopt noncanonical conformations known as G-quadruplexes (G4). In the nuclear genome, G4 motifs have been associated with genome instability and gene expression defects, but they are increasingly recognized to be regulatory structures. Recent studies have revealed that G4 structures can form in the mitochondrial genome (mtDNA) and potential G4 forming sequences are associated with the origin of mtDNA deletions. However, little is known about the regulatory role of G4 structures in mitochondria. In this short review, we will explore the potential for G4 structures to regulate mitochondrial function, based on evidence from the nucleus.
Collapse
Affiliation(s)
- Micol Falabella
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| | - Rafael J Fernandez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Brett A Kaufman
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| |
Collapse
|
24
|
Vasileiou PVS, Mourouzis I, Pantos C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int J Mol Sci 2017; 18:E1821. [PMID: 28829360 PMCID: PMC5578207 DOI: 10.3390/ijms18081821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
Mitochondria have emerged as key players regarding cellular homeostasis not only due to their contribution regarding energy production through oxidative phosphorylation, but also due to their involvement in signaling, ion regulation, and programmed cell death. Indeed, current knowledge supports the notion that mitochondrial dysfunction is a hallmark in the pathogenesis of various diseases. Mitochondrial biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial. Unfortunately, both intrinsic and environmental genotoxic insults constantly threaten the integrity of nuclear as well as mitochondrial DNA. Despite the extensive research that has been made regarding nuclear genome instability, the importance of mitochondrial genome integrity has only recently begun to be elucidated. The specific architecture and repair mechanisms of mitochondrial DNA, as well as the dynamic behavior that mitochondria exert regarding fusion, fission, and autophagy participate in mitochondrial genome stability, and therefore, cell homeostasis.
Collapse
Affiliation(s)
- Panagiotis V S Vasileiou
- Department of Basic Medical Sciences, Laboratory of Histology & Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 MikrasAsias Avenue, Goudi, Athens 11527, Greece.
| | - Iordanis Mourouzis
- Department of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, 75 MikrasAsias Avenue, Goudi, Athens 11527, Greece.
| | - Constantinos Pantos
- Department of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, 75 MikrasAsias Avenue, Goudi, Athens 11527, Greece.
| |
Collapse
|
25
|
Tran PLT, Pohl TJ, Chen CF, Chan A, Pott S, Zakian VA. PIF1 family DNA helicases suppress R-loop mediated genome instability at tRNA genes. Nat Commun 2017; 8:15025. [PMID: 28429714 PMCID: PMC5413955 DOI: 10.1038/ncomms15025] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/17/2017] [Indexed: 01/21/2023] Open
Abstract
Saccharomyces cerevisiae encodes two Pif1 family DNA helicases, Pif1 and Rrm3. Rrm3 promotes DNA replication past stable protein complexes at tRNA genes (tDNAs). We identify a new role for the Pif1 helicase: promotion of replication and suppression of DNA damage at tDNAs. Pif1 binds multiple tDNAs, and this binding is higher in rrm3Δ cells. Accumulation of replication intermediates and DNA damage at tDNAs is higher in pif1Δ rrm3Δ than in rrm3Δ cells. DNA damage at tDNAs in the absence of these helicases is suppressed by destabilizing R-loops while Pif1 and Rrm3 binding to tDNAs is increased upon R-loop stabilization. We propose that Rrm3 and Pif1 promote genome stability at tDNAs by displacing the stable multi-protein transcription complex and by removing R-loops. Thus, we identify tDNAs as a new source of R-loop-mediated DNA damage. Given their large number and high transcription rate, tDNAs may be a potent source of genome instability. The budding yeast genome encodes two Pif1 family helicases, Pif1 and Rrm3, previously shown to have distinct functions in the maintenance of telomeres and other aspects of genome stability. Here the authors identify a role for Pif1 (and Rrm3) in promoting DNA replication and suppressing R-loop mediated DNA damage at tRNA genes.
Collapse
Affiliation(s)
- Phong Lan Thao Tran
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | - Thomas J Pohl
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | - Chi-Fu Chen
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | - Angela Chan
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | - Sebastian Pott
- Department of Human Genetics, University of Chicago, 920 E 58th St, Chicago, Illinois 60637, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
26
|
The functions of the multi-tasking Pfh1 Pif1 helicase. Curr Genet 2017; 63:621-626. [PMID: 28054200 PMCID: PMC5504263 DOI: 10.1007/s00294-016-0675-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/03/2022]
Abstract
Approximately, 1% of the genes in eukaryotic genomes encode for helicases, which make the number of helicases expressed in the cell considerably high. Helicases are motor proteins that participate in many central aspects of the nuclear and mitochondrial genomes, and based on their helicase motif conservation, they are divided into different helicase families. The Pif1 family of helicases is an evolutionarily conserved helicase family that is associated with familial breast cancer in humans. The Schizosaccharomyces pombe Pfh1 helicase belongs to the Pif1 helicase family and is a multi-tasking helicase that is important for replication fork progression through natural fork barriers, for G-quadruplex unwinding, and for Okazaki fragment maturation, and these activities are potentially shared by the human Pif1 helicase. This review discusses the known functions of the Pfh1 helicase, the study of which has led to a better understanding of nucleic acid metabolism in eukaryotes.
Collapse
|
27
|
Garcia I, Jones E, Ramos M, Innis-Whitehouse W, Gilkerson R. The little big genome: the organization of mitochondrial DNA. Front Biosci (Landmark Ed) 2017; 22:710-721. [PMID: 27814641 DOI: 10.2741/4511] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The small (16,569 base pair) human mitochondrial genome plays a significant role in cell metabolism and homeostasis. Mitochondrial DNA (mtDNA) contributes to the generation of complexes which are essential to oxidative phosphorylation (OXPHOS). As such, mtDNA is directly integrated into mitochondrial biogenesis and signaling and regulates mitochondrial metabolism in concert with nuclear-encoded mitochondrial factors. Mitochondria are a highly dynamic, pleiomorphic network that undergoes fission and fusion events. Within this network, mtDNAs are packaged into structures called nucleoids which are actively distributed in discrete foci within the network. This sensitive organelle is frequently disrupted by insults such as oxidants and inflammatory cytokines, and undergoes genomic damage with double- and single-strand breaks that impair its function. Collectively, mtDNA is emerging as a highly sensitive indicator of cellular stress, which is directly integrated into the mitochondrial network as a contributor of a wide range of critical signaling pathways.
Collapse
Affiliation(s)
| | | | - Manuel Ramos
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539 USA
| | - Wendy Innis-Whitehouse
- Department of Biomedical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539 USA
| | - Robert Gilkerson
- Departments of Biology and Clinical Laboratory Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539-2999,
| |
Collapse
|