1
|
Saez-Carrion E, Aguilar-Aragon M, García-López L, Dominguez M, Uribe ML. Metabolic Adaptations in Cancer and the Host Using Drosophila Models and Advanced Tools. Cells 2024; 13:1977. [PMID: 39682725 PMCID: PMC11640731 DOI: 10.3390/cells13231977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer is a multifactorial process involving genetic, epigenetic, physiological, and metabolic changes. The ability of tumours to regulate new reactive pathways is essential for their survival. A key aspect of this involves the decision-making process of cancer cells as they balance the exploitation of surrounding and distant tissues for their own benefit while avoiding the rapid destruction of the host. Nutrition plays a central role in these processes but is inherently limited. Understanding how tumour cells interact with non-tumoural tissues to acquire nutrients is crucial. In this review, we emphasise the utility of Drosophila melanogaster as a model organism for dissecting the complex oncogenic networks underlying these interactions. By studying various levels-from individual tumour cells to systemic markers-we can gain new insights into how cancer adapts and thrives. Moreover, developing innovative technologies, such as high-throughput methods and metabolic interventions, enhances our ability to explore how tumours adapt to different conditions. These technological advances allow us to explore tumour adaptations and open new opportunities for potential therapeutic strategies.
Collapse
Affiliation(s)
- Ernesto Saez-Carrion
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d’Alacant, Spain; (M.A.-A.); (L.G.-L.); (M.D.)
| | - Mario Aguilar-Aragon
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d’Alacant, Spain; (M.A.-A.); (L.G.-L.); (M.D.)
| | - Lucia García-López
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d’Alacant, Spain; (M.A.-A.); (L.G.-L.); (M.D.)
- Faculty of Health Sciences, Universidad Europea de Valencia, 03016 Alicante, Spain
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d’Alacant, Spain; (M.A.-A.); (L.G.-L.); (M.D.)
| | - Mary Luz Uribe
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández (UMH), Campus de Sant Joan, 03550 Sant Joan d’Alacant, Spain; (M.A.-A.); (L.G.-L.); (M.D.)
| |
Collapse
|
2
|
Kumar P, Kumar R, Kumar P, Kushwaha S, Kumari S, Yadav N, Srikrishna S. LC-Orbitrap HRMS-Based Proteomics Reveals Novel Mitochondrial Dynamics Regulatory Proteins Associated with RasV12-Induced Glioblastoma (GBM) of Drosophila. J Proteome Res 2024; 23:5030-5047. [PMID: 39413821 DOI: 10.1021/acs.jproteome.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive brain tumor found in adult humans with a poor prognosis and average survival of 14-15 months. In order to have a comprehensive understanding of proteome and identify novel therapeutic targets, this study focused mainly on the differentially abundant proteins (DAPs) of RasV12-induced GBM. RasV12 is a constitutively active Ras mutant form essential for tumor progression by continuously activating signaling pathways leading to uncontrolled tumor growth. This study used a transgenic Drosophila model with RasV12 overexpression using the repo-GAL4 driver line, specifically in glial cells, to study GBM. The high-resolution mass spectrometry (HRMS)-based proteomic analysis of the GBM larval central nervous system identified three novel DAPs specific to mitochondria. These DAPs, probable maleylacetoacetate isomerase 2 (Q9VHD2), bifunctional methylene tetrahydrofolate dehydrogenase (Q04448), and glutamine synthetase1 (P20477), identified through HRMS were further validated by qRT-PCR. The protein-protein interaction analysis revealed interactions between RasV12 and DAPs, with functional links to mitochondrial dynamics regulators such as Drp1, Marf, Parkin, and HtrA2. Notably, altered expressions of Q9VHD2, P20477, and Q04448 were observed during GBM progression, which offers new insights into the involvement of mitochondrial dynamic regulators in RasV12-induced GBM pathophysiology.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Rohit Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Prabhat Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sunaina Kushwaha
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sandhya Kumari
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Neha Yadav
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
3
|
Design, synthesis, in vitro, and in vivo anti-cancer evaluation of the novel spirobibenzopyrans on epithelial cancer model of Drosophila melanogaster. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Chauhan BS, Kumar R, Kumar P, Kumar P, Sinha S, Mishra SK, Kumar P, Tiwari KN, Critchley AT, Prithiviraj B, Srikrishna S. Neuroprotective potential of flavonoid rich Ascophyllum nodosum (FRAN) fraction from the brown seaweed on an Aβ 42 induced Alzheimer's model of Drosophila. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153872. [PMID: 34906893 DOI: 10.1016/j.phymed.2021.153872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND In Alzheimer Disease (AD) pathogenesis, aggregation of Aβ42 fibrils strongly correlates with memory dysfunction and neurotoxicity. Till date, no promising cures for AD. Report shows that flavonoids contributed anti-oxidant, anti-cancer and neuroprotection activity by regulating the mitochondrial machinery. Here, we first report the identification of flavonoids from Ascophyllum nodosum as having the ability to dissolve Aβ42 fibrils in an AD model of Drosophila. FRAN could be superior anti-AD agents for neuroprotection, their underlying mechanism and how they collectively halted amyloidogenesis is currently being investigated. PURPOSE This study aimed to investigate the neuroprotective role of FRAN in the Aβ42 expressing AD model of Drosophila. METHODS Drosophila stocks: OregonR+, ey-GAL4/CyO, elavc155-GAL4, UAS-mitoGFP, UAS-mcherry.mito.OMM, UAS-Aβ42/CyO were used, cultured at 28±1 °C in a BOD incubator. Ascophyllum extract rich in flavonoids as revealed by LC-MS study and employed against the AD flies. The validation of Aβ42 expression was done by immunostaining and q-RT PCR. The eye roughness of AD flies was scored in a dose-dependent manner. Further, In vivo and in silico studies of FRAN extract was executed against Aβ42 induced neurotoxicity. RESULTS In order to determine the most effective lethal dose of FRAN extract concentration 1, 2, 5, 10 mg/ml were screened using OregonR+flies. Extract 1 and 2 mg/ml did not show any lethality. Hence, extract 2 mg/ml was employed on AD flies and a ≥ 50% rescue in the eye phenotype was observed using SEM images. This dose had a strong effect on cell apoptosis, viability, longevity, mitochondrial dysfunction and oxidative stress by regulating mitochondrial dynamic markers in comparable to control. Extract also scavenging free radicals in order to maintain in situ cellular ROS and prevent Aβ42-induced neurotoxicity in vivo and in silico. Hence, we suggest its great potential as a future therapeutic agent for AD treatment. CONCLUSION In conclusion, FRAN extract rich in flavonoids as having largest neuroprotective activity against Aβ42 aggregation in eye tissue of Drosophila. Extract shows strong effect against Aβ42-induced neurotoxicity by altering the various cellular and molecular events. So, it could be considered as strong anti-AD agents for neuroprotection.
Collapse
Affiliation(s)
- Brijesh Singh Chauhan
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rohit Kumar
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Kumar
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prabhat Kumar
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Saket Sinha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | | | - Alan T Critchley
- Verschuren Centre for Sustainability in Energy and the Environment, Cape Breton University, Sydney, Nova Scotia, B1P 6L2 Canada
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3 Canada
| | - Saripella Srikrishna
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
5
|
Marongiu F, Cheri S, Laconi E. Cell competition, cooperation, and cancer. Neoplasia 2021; 23:1029-1036. [PMID: 34500336 PMCID: PMC8429595 DOI: 10.1016/j.neo.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 12/29/2022]
Abstract
Complex multicellular organisms require quantitative and qualitative assessments on each of their constitutive cell types to ensure coordinated and cooperative behavior towards overall functional proficiency. Cell competition represents one of the operating arms of such quality control mechanisms and relies on fitness comparison among individual cells. However, what is exactly included in the fitness equation for each cell type is still uncertain. Evidence will be discussed to suggest that the ability of the cell to integrate and collaborate within the organismal community represents an integral part of the best fitness phenotype. Thus, under normal conditions, cell competition will select against the emergence of altered cells with disruptive behavior towards tissue integrity and/or tissue pattern formation. On the other hand, the winner phenotype prevailing as a result of cell competition does not entail, by itself, any degree of growth autonomy. While cell competition per se should not be considered as a biological driving force towards the emergence of the neoplastic phenotype, it is possible that the molecular machinery involved in the winner/loser interaction could be hijacked by evolving cancer cell populations.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Samuele Cheri
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Italy.
| |
Collapse
|
6
|
Lam Wong KK, Verheyen EM. Metabolic reprogramming in cancer: mechanistic insights from Drosophila. Dis Model Mech 2021; 14:1-17. [PMID: 34240146 PMCID: PMC8277969 DOI: 10.1242/dmm.048934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer cells constantly reprogram their metabolism as the disease progresses. However, our understanding of the metabolic complexity of cancer remains incomplete. Extensive research in the fruit fly Drosophila has established numerous tumor models ranging from hyperplasia to neoplasia. These fly tumor models exhibit a broad range of metabolic profiles and varying nutrient sensitivity. Genetic studies show that fly tumors can use various alternative strategies, such as feedback circuits and nutrient-sensing machinery, to acquire and consolidate distinct metabolic profiles. These studies not only provide fresh insights into the causes and functional relevance of metabolic reprogramming but also identify metabolic vulnerabilities as potential targets for cancer therapy. Here, we review the conceptual advances in cancer metabolism derived from comparing and contrasting the metabolic profiles of fly tumor models, with a particular focus on the Warburg effect, mitochondrial metabolism, and the links between diet and cancer. Summary: Recent research in fruit flies has demonstrated that tumors rewire their metabolism by using diverse strategies that involve feedback regulation, nutrient sensing, intercellular or even inter-organ interactions, yielding new molecules as potential cancer markers or drug targets.
Collapse
Affiliation(s)
- Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
7
|
Lima A, Rodriguez TA. Cell Competition: A Choreographed Dance of Death. Curr Biol 2021; 31:R255-R257. [PMID: 33689726 DOI: 10.1016/j.cub.2021.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
During cell competition fitter cells eliminate the weaker ones. New work identifies FGF21 as a factor that is secreted by the prospective loser cells of this competition and that acts to attract the winners towards them.
Collapse
Affiliation(s)
- Ana Lima
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | |
Collapse
|
8
|
Han P, Ren X, Qu X, Meng Y. The Regulatory Mechanisms of Dynamin-Related Protein 1 in Tumor Development and Therapy. Cancer Biother Radiopharm 2020; 36:10-17. [PMID: 32762544 DOI: 10.1089/cbr.2020.3791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Various types of tumors are likely to acquire drug resistance over time. Hence, the development of novel therapies to overcome drug resistance is critical. Studies have demonstrated that drug resistance is closely associated with the dynamic regulation of mitochondria in tumor cells. The dynamin-related protein 1 (Drp1) is involved in the regulation of mitochondrial fission and plays an important role in maintaining mitochondrial morphology, function, and distribution. It is a key protein in mitochondrial quality control. Drp1 is a GTPase localized to the cytoplasm and is a potential target in cancer therapy. A variety of drugs targeting Drp1 have shown great promise in reducing the viability and proliferation of cancer cells. The dynamic regulation of Drp1-mediated mitochondria is closely associated with tumor development, and treatment. Aim: In this article, the authors reviewed the occurrence and progression of mitochondrial fission regulated by Drp1, and its influence on cell cycle, autophagy, apoptosis, migration, invasion, the molecular mechanism of tumor stemness, and metabolic reprogramming. Targeted inhibition of Drp1 and mitochondrial fission could reduce or prevent tumor occurrence and progression in a variety of cancers. Drp1 inhibitors could reduce tumor stemness and enhance tumor sensitivity to chemotherapeutic drugs. Conclusion: Research into identifying compounds that could specifically target Drp1 will be valuable for overcoming drug resistance in tumors.
Collapse
Affiliation(s)
- Peiyu Han
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xinlu Ren
- Department of Clinical Medicine, Queen Mary College of Nanchang University, Nanchang, China
| | - Xiuxia Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yiteng Meng
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Fomicheva M, Tross EM, Macara IG. Polarity proteins in oncogenesis. Curr Opin Cell Biol 2019; 62:26-30. [PMID: 31509786 DOI: 10.1016/j.ceb.2019.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 02/02/2023]
Abstract
Most human cancers arise from epithelial tissues, which are apical-basally polarized and possess intercellular adhesive junctions. Epithelial cells grow to characteristic densities, often from proliferative progenitors, which arrest as they mature. Homeostatic mechanisms can maintain this characteristic density if it is exceeded (crowding) or is too low (e.g. in response to wounding). During tumor initiation and progression this homeostatic mechanism is lost. Some aspects of cell polarity are also lost, although many carcinomas retain intercellular junctions and even apical domains. In other cases, and particularly in recurrent tumors, however, the cells become predominantly mesenchymal. A major question, still only incompletely answered, is whether the proteins that determine cell polarity function as tumor suppressors or tumor promoters. Here we discuss recent advances in understanding the role of polarity proteins and homeostasis in cancer.
Collapse
Affiliation(s)
- Maria Fomicheva
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37424, USA
| | - Erica M Tross
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37424, USA
| | - Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37424, USA.
| |
Collapse
|
10
|
Transcriptional versus metabolic control of cell fitness during cell competition. Semin Cancer Biol 2019; 63:36-43. [PMID: 31102668 PMCID: PMC7221347 DOI: 10.1016/j.semcancer.2019.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
The maintenance of tissue homeostasis and health relies on the efficient removal of damaged or otherwise suboptimal cells. One way this is achieved is through cell competition, a fitness quality control mechanism that eliminates cells that are less fit than their neighbours. Through this process, cell competition has been shown to play diverse roles in development and in the adult, including in homeostasis and tumour suppression. However, over the last few years it has also become apparent that certain oncogenic mutations can provide cells with a competitive advantage that promotes their expansion via the elimination of surrounding wild-type cells. Thus, understanding how this process is initiated and regulated will provide important insights with relevance to a number of different research areas. A key question in cell competition is what determines the competitive fitness of a cell. Here, we will review what is known about this question by focussing on two non-mutually exclusive possibilities; first, that the activity of a subset of transcription factors determines competitive fitness, and second, that the outcome of cell competition is determined by the relative cellular metabolic status.
Collapse
|