1
|
Disha B, Mathew RP, Dalal AB, Mahato AK, Satyamoorthy K, Singh KK, Thangaraj K, Govindaraj P. Mitochondria in biology and medicine - 2023. Mitochondrion 2024; 76:101853. [PMID: 38423268 DOI: 10.1016/j.mito.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Mitochondria are an indispensable part of the cell that plays a crucial role in regulating various signaling pathways, energy metabolism, cell differentiation, proliferation, and cell death. Since mitochondria have their own genetic material, they differ from their nuclear counterparts, and dysregulation is responsible for a broad spectrum of diseases. Mitochondrial dysfunction is associated with several disorders, including neuro-muscular disorders, cancer, and premature aging, among others. The intricacy of the field is due to the cross-talk between nuclear and mitochondrial genes, which has also improved our knowledge of mitochondrial functions and their pathogenesis. Therefore, interdisciplinary research and communication are crucial for mitochondrial biology and medicine due to the challenges they pose for diagnosis and treatment. The ninth annual conference of the Society for Mitochondria Research and Medicine (SMRM)- India, titled "Mitochondria in Biology and Medicine" was organized at the Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India, on June 21-23, 2023. The latest advancements in the field of mitochondrial biology and medicine were discussed at the conference. In this article, we summarize the entire event for the benefit of researchers working in the field of mitochondrial biology and medicine.
Collapse
Affiliation(s)
- B Disha
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India; Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Rohan Peter Mathew
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India; Manipal Academy of Higher Education, Manipal 576104, India
| | - Ashwin B Dalal
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Ajay K Mahato
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Kapaettu Satyamoorthy
- Shri Dharmasthala Manjunatheshwara (SDM) University, SDM College of Medical Sciences and Hospital, Manjushree Nagar, Sattur, Dharwad 580009, India
| | - Keshav K Singh
- Department of Genetics, School of Medicine, The University of Alabama at Birmingham, Kaul Genetics Building, Rm. 620, 720 20th St. South, Birmingham, AL, 35294, USA
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Periyasamy Govindaraj
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India; Department of Neuropathology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru 560029, India.
| |
Collapse
|
2
|
Huang Y, Zhou B. Mitochondrial Dysfunction in Cardiac Diseases and Therapeutic Strategies. Biomedicines 2023; 11:biomedicines11051500. [PMID: 37239170 DOI: 10.3390/biomedicines11051500] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria are the main site of intracellular synthesis of ATP, which provides energy for various physiological activities of the cell. Cardiomyocytes have a high density of mitochondria and mitochondrial damage is present in a variety of cardiovascular diseases. In this paper, we describe mitochondrial damage in mitochondrial cardiomyopathy, congenital heart disease, coronary heart disease, myocardial ischemia-reperfusion injury, heart failure, and drug-induced cardiotoxicity, in the context of the key roles of mitochondria in cardiac development and homeostasis. Finally, we discuss the main current therapeutic strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction, including pharmacological strategies, gene therapy, mitochondrial replacement therapy, and mitochondrial transplantation. It is hoped that this will provide new ideas for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yafei Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing 100037, China
| |
Collapse
|
3
|
Mori V, Sawhney J, Verma I, Mehta A, Saxena R, Passey R, Mohanty A, Kandpal B, Vivek B, Sharma M, Jain AK, Katare D. Molecular studies in familial dilated cardiomyopathy – A pilot study. IJC HEART & VASCULATURE 2022; 40:101023. [PMID: 35463915 PMCID: PMC9019217 DOI: 10.1016/j.ijcha.2022.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/06/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Aim Methodology Results Discussion
Collapse
Affiliation(s)
- Vyom Mori
- Department of Cardiology, Sir Ganga Ram Hospital, New Delhi 110060, India
- Corresponding author at: Department of Cardiology, Sir Ganga Ram Hospital, Old Rajinger Nagar, Delhi 110060, India.
| | - J.P.S. Sawhney
- Department of Cardiology, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - I.C. Verma
- Department of Genetics, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Ashwani Mehta
- Department of Cardiology, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Renu Saxena
- Department of Genetics, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rajiv Passey
- Department of Cardiology, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Arun Mohanty
- Department of Cardiology, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Bhuwanesh Kandpal
- Department of Cardiology, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - B.S. Vivek
- Department of Cardiology, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Manish Sharma
- Department of Cardiology, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Ashish Kumar Jain
- Department of Cardiology, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Dipak Katare
- Department of Cardiology, Sir Ganga Ram Hospital, New Delhi 110060, India
| |
Collapse
|
4
|
Kucher AN, Sleptcov AA, Nazarenko MS. Genetic Landscape of Dilated Cardiomyopathy. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Rani DS, Vijaya Kumar A, Nallari P, Sampathkumar K, Dhandapany PS, Narasimhan C, Rathinavel A, Thangaraj K. Novel Mutations in β-MYH7 Gene in Indian Patients With Dilated Cardiomyopathy. CJC Open 2022; 4:1-11. [PMID: 35072022 PMCID: PMC8767027 DOI: 10.1016/j.cjco.2021.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 07/30/2021] [Indexed: 11/29/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Deepa Selvi Rani
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, India
- Corresponding authors: Drs Deepa Selvi Rani and Kumarasamy Thangaraj, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India. Tel.: +91-40-27192637.
| | - Archana Vijaya Kumar
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, India
- Department of Pathology and Immunology, University of Geneva Hospital, Geneva, Switzerland
| | | | - Katakam Sampathkumar
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Andiappan Rathinavel
- Department of Cardio-Thoracic Surgery, Government Rajaji Hospital, Madurai, India
| | - Kumarasamy Thangaraj
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, India
- Department of Biotechnology-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Costa MC, Calderon-Dominguez M, Mangas A, Campuzano O, Sarquella-Brugada G, Ramos M, Quezada-Feijoo M, Pinilla JMG, Robles-Mezcua A, del Aguila Pacheco-Cruz G, Belmonte T, Enguita FJ, Toro R. Circulating circRNA as biomarkers for dilated cardiomyopathy etiology. J Mol Med (Berl) 2021; 99:1711-1725. [PMID: 34498126 PMCID: PMC8599237 DOI: 10.1007/s00109-021-02119-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
Dilated cardiomyopathy (DCM) is the third most common cause of heart failure. The multidisciplinary nature of testing - involving genetics, imaging, or cardiovascular techniques - makes its diagnosis challenging. Novel and reliable biomarkers are needed for early identification and tailored personalized management. Peripheral circular RNAs (circRNAs), a leading research topic, remain mostly unexplored in DCM. We aimed to assess whether peripheral circRNAs are expressed differentially among etiology-based DCM. The study was based on a case-control multicentric study. We enrolled 130 subjects: healthy controls (n = 20), idiopathic DCM (n = 30), ischemic DCM (n = 20), and familial DCM patients which included pathogen variants of (i) LMNA gene (n = 30) and (ii) BCL2-associated athanogene 3 (BAG3) gene (n = 30). Differentially expressed circRNAs were analyzed in plasma samples by quantitative RT-PCR and correlated to relevant systolic and diastolic parameters. The pathophysiological implications were explored through bioinformatics tools. Four circRNAs were overexpressed compared to controls: hsa_circ_0003258, hsa_circ_0051238, and hsa_circ_0051239 in LMNA-related DCM and hsa_circ_0089762 in the ischemic DCM cohort. The obtained areas under the curve confirm the discriminative capacity of circRNAs. The circRNAs correlated with some diastolic and systolic echocardiographic parameters with notable diagnostic potential in DCM. Circulating circRNAs may be helpful for the etiology-based diagnosis of DCM as a non-invasive biomarker. KEY MESSAGES: The limitations of cardiac diagnostic imaging and the absence of a robust biomarker reveal the need for a diagnostic tool for dilated cardiomyopathy (DCM). The circular RNA (circRNA) expression pattern is paramount for categorizing the DCM etiologies. Our peripheral circRNAs fingerprint discriminates between various among etiology-based DCM and correlates with some echocardiographic parameters. We provide a potential non-invasive biomarker for the etiology-based diagnosis of LMNA-related DCM and ischemic DCM.
Collapse
Affiliation(s)
- Marina C. Costa
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Maria Calderon-Dominguez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Alipio Mangas
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, Cadiz, Spain
- Medicine Department, School of Medicine, University of Cádiz, Cadiz, Spain
| | - Oscar Campuzano
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Mónica Ramos
- Cardiology Department Hospital Cruz Roja, Alfonso X University, Madrid, Spain
| | | | - José Manuel García Pinilla
- Servicio de Cardiología, Unidad de Insuficiencia Cardíaca Y Cardiopatías FamiliaresHospital Universitario Virgen de La VictoriaIBIMA, Malaga, Spain
- Consumo Y Bienestar Social, CIBER-Cardiovascular, Instituto de Salud Carlos III, Ministerio de Sanidad, Madrid, Spain
| | - Ainhoa Robles-Mezcua
- Servicio de Cardiología, Unidad de Insuficiencia Cardíaca Y Cardiopatías FamiliaresHospital Universitario Virgen de La VictoriaIBIMA, Malaga, Spain
- Consumo Y Bienestar Social, CIBER-Cardiovascular, Instituto de Salud Carlos III, Ministerio de Sanidad, Madrid, Spain
| | - Galan del Aguila Pacheco-Cruz
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Thalia Belmonte
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Francisco J. Enguita
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Rocío Toro
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
- Medicine Department, School of Medicine, University of Cádiz, Cadiz, Spain
| |
Collapse
|
7
|
Mazzaccara C, Mirra B, Barretta F, Caiazza M, Lombardo B, Scudiero O, Tinto N, Limongelli G, Frisso G. Molecular Epidemiology of Mitochondrial Cardiomyopathy: A Search Among Mitochondrial and Nuclear Genes. Int J Mol Sci 2021; 22:ijms22115742. [PMID: 34072184 PMCID: PMC8197938 DOI: 10.3390/ijms22115742] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial Cardiomyopathy (MCM) is a common manifestation of multi-organ Mitochondrial Diseases (MDs), occasionally present in non-syndromic cases. Diagnosis of MCM is complex because of wide clinical and genetic heterogeneity and requires medical, laboratory, and neuroimaging investigations. Currently, the molecular screening for MCM is fundamental part of MDs management and allows achieving the definitive diagnosis. In this article, we review the current genetic knowledge associated with MDs, focusing on diagnosis of MCM and MDs showing cardiac involvement. We searched for publications on mitochondrial and nuclear genes involved in MCM, mainly focusing on genetic screening based on targeted gene panels for the molecular diagnosis of the MCM, by using Next Generation Sequencing. Here we report twelve case reports, four case-control studies, eleven retrospective studies, and two prospective studies, for a total of twenty-nine papers concerning the evaluation of cardiac manifestations in mitochondrial diseases. From the analysis of published causal mutations, we identified 130 genes to be associated with mitochondrial heart diseases. A large proportion of these genes (34.3%) encode for key proteins involved in the oxidative phosphorylation system (OXPHOS), either as directly OXPHOS subunits (22.8%), and as OXPHOS assembly factors (11.5%). Mutations in several mitochondrial tRNA genes have been also reported in multi-organ or isolated MCM (15.3%). This review highlights the main disease-genes, identified by extensive genetic analysis, which could be included as target genes in next generation panels for the molecular diagnosis of patients with clinical suspect of mitochondrial cardiomyopathies.
Collapse
Affiliation(s)
- Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
- Correspondence: ; Tel.: +39-0817-462-422
| | - Bruno Mirra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Ferdinando Barretta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Martina Caiazza
- Monaldi Hospital, AO Colli, 80131 Naples, Italy; (M.C.); (G.L.)
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Giuseppe Limongelli
- Monaldi Hospital, AO Colli, 80131 Naples, Italy; (M.C.); (G.L.)
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| |
Collapse
|
8
|
Sazonova MA, Ryzhkova AI, Sinyov VV, Sazonova MD, Kirichenko TV, Doroschuk NA, Karagodin VP, Orekhov AN, Sobenin IA. Mutations of mtDNA in some Vascular and Metabolic Diseases. Curr Pharm Des 2021; 27:177-184. [PMID: 32867647 DOI: 10.2174/1381612826999200820162154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The present review article considers some chronic diseases of vascular and metabolic genesis, the causes of which may be mitochondrial dysfunction. Very often, in the long course of the disease, complications may occur, leading to myocardial infarction or ischemic stroke and, as a result, death. In particular, a large percentage of human deaths nowadays belongs to cardiovascular diseases, such as coronary heart disease (CHD), arterial hypertension, cardiomyopathies, and type 2 diabetes mellitus. OBJECTIVE The aim of the present review was the analysis of literature sources, devoted to an investigation of a link of mitochondrial DNA mutations with chronic diseases of vascular and metabolic genesis. RESULTS The analysis of literature indicates the association of the mitochondrial genome mutations with coronary heart disease, type 2 diabetes mellitus, hypertension, and various types of cardiomyopathies. CONCLUSION The detected mutations can be used to analyze the predisposition to chronic diseases of vascular and metabolic genesis. They can also be used to create molecular-cell models necessary to evaluate the effectiveness of drugs developed for the treatment of these pathologies. MtDNA mutations associated with the absence of diseases of vascular and metabolic genesis could be potential candidates for gene therapy of the said diseases.
Collapse
Affiliation(s)
- Margarita A Sazonova
- Laboratory of angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Anastasia I Ryzhkova
- Laboratory of angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Vasily V Sinyov
- Laboratory of angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Marina D Sazonova
- Laboratory of angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Tatiana V Kirichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, Moscow, Russian Federation
| | - Natalya A Doroschuk
- Laboratory of angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Vasily P Karagodin
- Laboratory of angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Alexander N Orekhov
- Laboratory of angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Igor A Sobenin
- Laboratory of angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 0
| |
Collapse
|
9
|
Jin Y, Luan G, Li J, Wang H, Wang Z, Bai B. Effect of mtDNA depletion from C6 glioma cells and characteristics of the generated C6ρ0 cells. Mol Med Rep 2021; 23:265. [PMID: 33576438 PMCID: PMC7893707 DOI: 10.3892/mmr.2021.11904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/08/2020] [Indexed: 01/24/2023] Open
Abstract
Malignant tumors of the central nervous system (CNS) are among the types of cancer with the poorest prognosis and glioma is the commonest primary CNS tumor. A mitochondrial DNA (mtDNA)-depleted cell line C6ρ0 was generated from C6 glioma cells after long-term exposure to ethidium bromide and 2′,3′-dideoxycytidine in order to determine the effect of mtDNA damage on cell proliferation and pathological changes in glioma cells. Single cell clones were isolated and identified after 42 days of incubation. Repopulated cybrids were formed when the clonal C6ρ0 cells were fused with rat platelets and no difference was observed in their growth in a selective medium without uridine and pyruvate compared with the growth of the parent C6 cells. Disruption of mtDNA resulted in changes in mitochondrial morphology, decreased cell proliferation, reduced intracellular reactive oxygen species and intracellular ATP, along with decreased mtDNA and mitochondrial membrane potential in C6ρ0 cells compared with the C6 cells. Taken together, C6ρ0 cells without mtDNA were established for the first time and their characteristics were compared with parent cells. This C6ρ0 cell line could be used to explore the contribution of mitochondrial dysfunction and mtDNA mutations in the pathogenesis of glioma.
Collapse
Affiliation(s)
- Youcai Jin
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, P.R. China
| | - Guangxiang Luan
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, P.R. China
| | - Ji Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, P.R. China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Bo Bai
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, P.R. China
| |
Collapse
|
10
|
Qiao Q, Zhao CM, Yang CX, Gu JN, Guo YH, Zhang M, Li RG, Qiu XB, Xu YJ, Yang YQ. Detection and functional characterization of a novel MEF2A variation responsible for familial dilated cardiomyopathy. Clin Chem Lab Med 2020; 59:955-963. [PMID: 33554560 DOI: 10.1515/cclm-2020-1318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Dilated cardiomyopathy (DCM) represents the most frequent form of cardiomyopathy, leading to heart failure, cardiac arrhythmias and death. Accumulating evidence convincingly demonstrates the crucial role of genetic defects in the pathogenesis of DCM, and over 100 culprit genes have been implicated with DCM. However, DCM is of substantial genetic heterogeneity, and the genetic determinants underpinning DCM remain largely elusive. METHODS Whole-exome sequencing and bioinformatical analyses were implemented in a consanguineous Chinese family with DCM. A total of 380 clinically annotated control individuals and 166 more DCM index cases then underwent Sanger sequencing analysis for the identified genetic variation. The functional characteristics of the variant were delineated by utilizing a dual-luciferase assay system. RESULTS A heterozygous variation in the MEF2A gene (encoding myocyte enhancer factor 2A, a transcription factor pivotal for embryonic cardiogenesis and postnatal cardiac adaptation), NM_001365204.1: c.718G>T; p. (Gly240*), was identified, and verified by Sanger sequencing to segregate with autosome-dominant DCM in the family with complete penetrance. The nonsense variation was neither detected in 760 control chromosomes nor found in 166 more DCM probands. Functional analyses revealed that the variant lost transactivation on the validated target genes MYH6 and FHL2, both causally linked to DCM. Furthermore, the variation nullified the synergistic activation between MEF2A and GATA4, another key transcription factor involved in DCM. CONCLUSIONS The findings firstly indicate that MEF2A loss-of-function variation predisposes to DCM in humans, providing novel insight into the molecular mechanisms of DCM and suggesting potential implications for genetic testing and prognostic evaluation of DCM patients.
Collapse
Affiliation(s)
- Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China.,Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China.,Center Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
11
|
Bayona-Bafaluy MP, Iglesias E, López-Gallardo E, Emperador S, Pacheu-Grau D, Labarta L, Montoya J, Ruiz-Pesini E. Genetic aspects of the oxidative phosphorylation dysfunction in dilated cardiomyopathy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108334. [PMID: 33339579 DOI: 10.1016/j.mrrev.2020.108334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022]
Abstract
Dilated cardiomyopathy is a frequent and extremely heterogeneous medical condition. Deficits in the oxidative phosphorylation system have been described in patients suffering from dilated cardiomyopathy. Hence, mutations in proteins related to this biochemical pathway could be etiological factors for some of these patients. Here, we review the clinical phenotypes of patients harboring pathological mutations in genes related to the oxidative phosphorylation system, either encoded in the mitochondrial or in the nuclear genome, presenting with dilated cardiomyopathy. In addition to the clinical heterogeneity of these patients, the large genetic heterogeneity has contributed to an improper allocation of pathogenicity for many candidate mutations. We suggest criteria to avoid incorrect assignment of pathogenicity to newly found mutations and discuss possible therapies targeting the oxidative phosphorylation function.
Collapse
Affiliation(s)
- M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Eldris Iglesias
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain.
| | - Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center, Georg-August University,Humboldtalle, 23., 37073, Göttingen, Germany.
| | - Lorenzo Labarta
- Unidad de Cuidados Intensivos, Hospital San Jorge, Av. Martínez de Velasco, 36., 22004, Huesca, Spain.
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Fundación ARAID, Av. de Ranillas, 1-D., 50018, Zaragoza, Spain.
| |
Collapse
|
12
|
Alimadadi A, Manandhar I, Aryal S, Munroe PB, Joe B, Cheng X. Machine learning-based classification and diagnosis of clinical cardiomyopathies. Physiol Genomics 2020; 52:391-400. [PMID: 32744882 DOI: 10.1152/physiolgenomics.00063.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) are two common types of cardiomyopathies leading to heart failure. Accurate diagnostic classification of different types of cardiomyopathies is critical for precision medicine in clinical practice. In this study, we hypothesized that machine learning (ML) can be used as a novel diagnostic approach to analyze cardiac transcriptomic data for classifying clinical cardiomyopathies. RNA-Seq data of human left ventricle tissues were collected from 41 DCM patients, 47 ICM patients, and 49 nonfailure controls (NF) and tested using five ML algorithms: support vector machine with radial kernel (svmRadial), neural networks with principal component analysis (pcaNNet), decision tree (DT), elastic net (ENet), and random forest (RF). Initial ML classifications achieved ~93% accuracy (svmRadial) for NF vs. DCM, ~82% accuracy (RF) for NF vs. ICM, and ~80% accuracy (ENet and svmRadial) for DCM vs. ICM. Next, 50 highly contributing genes (HCGs) for classifying NF and DCM, 68 HCGs for classifying NF and ICM, and 59 HCGs for classifying DCM and ICM were selected for retraining ML models. Impressively, the retrained models achieved ~90% accuracy (RF) for NF vs. DCM, ~90% accuracy (pcaNNet) for NF vs. ICM, and ~85% accuracy (pcaNNet and RF) for DCM vs. ICM. Pathway analyses further confirmed the involvement of those selected HCGs in cardiac dysfunctions such as cardiomyopathies, cardiac hypertrophies, and fibrosis. Overall, our study demonstrates the promising potential of using artificial intelligence via ML modeling as a novel approach to achieve a greater level of precision in diagnosing different types of cardiomyopathies.
Collapse
Affiliation(s)
- Ahmad Alimadadi
- Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Bioinformatics Program, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Ishan Manandhar
- Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Bioinformatics Program, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Sachin Aryal
- Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Bioinformatics Program, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute & National Institute of Health Research Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Bina Joe
- Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Bioinformatics Program, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Xi Cheng
- Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
13
|
Easing US restrictions on mitochondrial replacement therapy would protect research interests but grease the slippery slope. J Assist Reprod Genet 2019; 36:1781-1785. [PMID: 31463871 DOI: 10.1007/s10815-019-01529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022] Open
|