1
|
Zhang J, Wang XY, Yang S, Xie X, Pan SJ, Xu XQ, Li Y. Relationship of dietary natural folate and synthetic folic acid co-exposure patterns with biological aging: findings from NHANES 2003-2018. Food Funct 2024; 15:10121-10135. [PMID: 39291860 DOI: 10.1039/d4fo01241k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Background: The mandatory folic acid fortification program in the United States has inevitably exposed most Americans to both natural folate and synthetic folic acid. We aim to examine the association of dietary folate co-exposure patterns with biological aging indicators. Methods: A total of 18 889 participants were enrolled from 2003 to 2018. Dietary intake of folate from diverse sources was evaluated by 24-hour dietary recall. Biological aging indicators were developed based on age-related clinical indicators, including the phenotypic age (PA), Klemera-Doubal method (KDM), homeostatic dysregulation (HD), and allostatic load (AL). The unsupervised K-means clustering method, logistic regression model, and restricted cubic spline (RCS) regression model were used to explore the relationship of natural folate and synthetic folic acid co-exposure with biological aging indicators. Results: The results indicated that higher intake of total folate, dietary folate, and food natural folate was associated with lower PA [OR = 0.75 (0.64, 0.88); OR = 0.79 (0.70, 0.90); OR = 0.65 (0.57, 0.75)], KDM [OR = 0.63 (0.53, 0.75); OR = 0.80 (0.65, 0.98); OR = 0.62 (0.49, 0.77)], HD [OR = 0.69 (0.56, 0.84); OR = 0.78 (0.67, 0.92); OR = 0.78 (0.68, 0.90)], and AL [OR = 0.69 (0.58, 0.82); OR = 0.73 (0.63, 0.85); OR = 0.74 (0.62, 0.90)], consistently. Four co-exposure patterns were generated based on the intake of folate from diverse sources, as follows: "low folate exposure group" to cluster 1, "dietary folate exposure group" to cluster 2, "mixed source high folate exposure group" to cluster 3, and "mixed source excessive folate exposure group" to cluster 4. Compared with cluster 1, participants in cluster 2 are associated with lower biological age indicators (ORPA = 0.82 [0.72, 0.93]; ORKDM = 0.58 [0.47, 0.70]; ORHD = 0.85 [0.75, 0.97]; ORAL = 0.87 [0.77, 0.98]), while participants in cluster 3 and cluster 4 are not. Conclusion: For individuals subjected to folic acid fortification programs, a higher intake of dietary folate, especially natural folate, coupled with a lower consumption of folic acid supplements, was found to be associated with lower biological age indicators.
Collapse
Affiliation(s)
- Jia Zhang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China.
| | - Xuan-Yang Wang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China.
| | - Shuo Yang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China.
| | - Xun Xie
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China.
| | - Si-Jia Pan
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China.
| | - Xiao-Qing Xu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China.
| | - Ying Li
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China.
| |
Collapse
|
2
|
Barbosa de Sousa A, Rohr P, Silveira HCS. Analysis of mitochondrial DNA copy number variation in Brazilian farmers occupationally exposed to pesticides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2913-2922. [PMID: 37967258 DOI: 10.1080/09603123.2023.2280147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
The use of pesticide use has been linked to the higher production of reactive oxygen species, resulting in oxidative stress, which in turn can cause genomic instability. A marker for instability is the copy number variation of the mitochondrial genome (mtDNAcn), which has been found to be altered in diverse human diseases, including tumors. This research aimed to examine the variation of mtDNAcn in individuals occupationally exposed to pesticides. Real-time PCR assays were conducted on 154 individuals (78 exposed and 76 non-exposed). Pesticide-exposed ndividuals exhibited a significant reduction in mtDNAcn (1.11 ± 0.37mtDNAcn/genome) compared to non-exposed individuals (1.30 ± 0.33mtDNAcn/genome; p = 0.001). The multivariate analysis indicated that individuals who reported using haloxyfop and copper sulfate demonstrated an increase (β = 0.200, p = 0.053) and a decrease (β=-0.2, p = 0.021), respectively, in mtDNAcn. In conclusion, our findings suggest that chronic exposure to pesticides results in changes in mtDNAcn.
Collapse
Affiliation(s)
| | - Paula Rohr
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, SP, Brazil
| | - Henrique C S Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, SP, Brazil
- University of Anhanguera, São Paulo, Brazil
| |
Collapse
|
3
|
Yan X, Yang P, Li Y, Liu T, Zha Y, Wang T, Zhang J, Feng Z, Li M. New insights from bidirectional Mendelian randomization: causal relationships between telomere length and mitochondrial DNA copy number in aging biomarkers. Aging (Albany NY) 2024; 16:7387-7404. [PMID: 38663933 PMCID: PMC11087129 DOI: 10.18632/aging.205765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024]
Abstract
Mitochondrial DNA (mtDNA) copy number and telomere length (TL) are dynamic factors that have been linked to the aging process in organisms. However, the causal relationship between these variables remains uncertain. In this research, instrumental variables (IVs) related to mtDNA copy number and TL were obtained from publicly available genome-wide association studies (GWAS). Through bidirectional Mendelian randomization (MR) analysis, we examined the potential causal relationship between these factors. The forward analysis, with mtDNA copy number as the exposure and TL as the outcome, did not reveal a significant effect (B=-0.004, P>0.05). On the contrary, upon conducting a reverse analysis, it was found that there exists a positive causal relationship (B=0.054, P<0.05). Sensitivity analyses further confirmed the reliability of these results. The outcomes of this study indicate a one-way positive causal relationship, indicating that telomere shortening in the aging process may lead to a decrease in mtDNA copy number, providing new perspectives on their biological mechanisms.
Collapse
Affiliation(s)
- Xinyu Yan
- Zhongshan City People’s Hospital, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Peixuan Yang
- Zhongshan City People’s Hospital, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yani Li
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Ting Liu
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Yawen Zha
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Ting Wang
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Jingjing Zhang
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| | - Zhijun Feng
- Department of Radiation Oncology, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, China
| | - Minying Li
- Department of Radiation Oncology, Zhongshan City People’s Hospital, Zhongshan 528403, Guangdong, China
| |
Collapse
|
4
|
Levy MA, Tian J, Gandelman M, Cheng H, Tsapekos M, Crego SR, Maddela R, Sinnott R. A Multivitamin Mixture Protects against Oxidative Stress-Mediated Telomere Shortening. J Diet Suppl 2023; 21:53-70. [PMID: 36847305 DOI: 10.1080/19390211.2023.2179153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Telomeres are nucleotide repeat sequences located at the end of chromosomes that protect them from degradation and maintain chromosomal stability. Telomeres shorten with each cell division; hence telomere length is associated with aging and longevity. Numerous lifestyle factors have been identified that impact the rate of telomere shortening; high vitamin consumption has been associated with longer telomere length, whereas oxidative stress is associated with telomere shortening. In this paper, we sought to determine if a multivitamin mixture containing both vitamins and a blend of polyphenolic compounds, could reduce telomere shortening consequent to an oxidative stress (10 uM H2O2 for 8 weeks) in a primary fibroblast cell culture model. Under conditions of oxidative stress, the median and 20th percentile telomere length were significantly greater (p < 0.05), and the percentage of critically short telomeres (<3000 bp) was significantly less (p < 0.05) in cells treated with the multivitamin mixture at 4, 15 and 60 ug/ml compared to control (0 ug/ml). Median and 20th percentile telomere shortening rate was also reduced under the same conditions (p < 0.05). Taken together, these findings demonstrate that the multivitamin mixture protects against oxidative stress-mediated telomere shortening in cell culture, findings which may have implications in human health.
Collapse
Affiliation(s)
- Mark A Levy
- Department of Research and Development, USANA Health Science, Inc., Salt Lake City, Utah, USA
| | - Junqiang Tian
- Department of Research and Development, USANA Health Science, Inc., Salt Lake City, Utah, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Haojie Cheng
- Department of Research and Development, USANA Health Science, Inc., Salt Lake City, Utah, USA
| | | | | | - Rolando Maddela
- Department of Research and Development, USANA Health Science, Inc., Salt Lake City, Utah, USA
| | - Robert Sinnott
- Department of Research and Development, USANA Health Science, Inc., Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Li Z, Cai K, Sun Y, Zhou D, Yan J, Luo S, Huang G, Gao Y, Li W. Folic acid protects against age-associated apoptosis and telomere attrition of neural stem cells in senescence-accelerated mouse prone 8. Appl Physiol Nutr Metab 2023; 48:393-402. [PMID: 36809211 DOI: 10.1139/apnm-2022-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Folic acid (FA) could improve cognitive performance and attenuate brain cell injury in the aging brain; FA supplementation is also associated with inhibiting neural stem cell (NSC) apoptosis. However, its role in age-associated telomere attrition remains unclear. We hypothesized that FA supplementation attenuates age-associated apoptosis of NSCs in mice via alleviating telomere attrition in senescence-accelerated mouse prone 8 (SAMP8). In this study, 4-month-old male SAMP8 mice were assigned equal numbers to four different diet groups (n = 15). Fifteen age-matched senescence-accelerated mouse resistant 1 mice, fed with the FA-normal diet, were used as the standard aging control group. After FA treatment for 6 months, all mice were sacrificed. NSC apoptosis, proliferation, oxidative damage, and telomere length were evaluated by immunofluorescence and Q-fluorescent in situ hybridization. The results showed that FA supplementation inhibited age-associated NSC apoptosis and prevented telomere attrition in the cerebral cortex of SAMP8 mice. Importantly, this effect might be explained by the decreased levels of oxidative damage. In conclusion, we demonstrate it may be one of the mechanisms by which FA inhibits age-associated NSC apoptosis by alleviating telomere length shortening.
Collapse
Affiliation(s)
- Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Ke Cai
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yue Sun
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jing Yan
- Department of Social Medicine and Health Administration, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Suhui Luo
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Yuxia Gao
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| |
Collapse
|
6
|
Fan G, Song L, Liu Q, Wu M, Bi J, Xu L, Xiong C, Cao Z, Xu S, Wang Y. Association of maternal folic acid supplementation during pregnancy with newborn telomere length. Reprod Toxicol 2022; 114:52-56. [DOI: 10.1016/j.reprotox.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
7
|
Vela-Sebastián A, López-Gallardo E, Emperador S, Hernández-Ainsa C, Pacheu-Grau D, Blanco I, Ros A, Pascual-Benito E, Rabaneda-Lombarte N, Presas-Rodríguez S, García-Robles P, Montoya J, Ruiz-Pesini E. Toxic and nutritional factors trigger leber hereditary optic neuropathy due to a mitochondrial tRNA mutation. Clin Genet 2022; 102:339-344. [PMID: 35808913 PMCID: PMC9543827 DOI: 10.1111/cge.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022]
Abstract
Leber hereditary optic neuropathy is a mitochondrial disease mainly due to pathologic mutations in mitochondrial genes related to the respiratory complex I of the oxidative phosphorylation system. Genetic, physiological, and environmental factors modulate the penetrance of these mutations. We report two patients suffering from this disease and harboring a m.15950G > A mutation in the mitochondrial DNA‐encoded gene for the threonine transfer RNA. We also provide evidences supporting the pathogenicity of this mutation.
Collapse
Affiliation(s)
- Ana Vela-Sebastián
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain
| | - Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Carmen Hernández-Ainsa
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - David Pacheu-Grau
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | | | | | - Neus Rabaneda-Lombarte
- Departamento de Neurociencias, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Pilar García-Robles
- Servicio de Oftalmología. Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
8
|
Ge Y, Zadeh M, Mohamadzadeh M. Vitamin B12 coordinates ileal epithelial cell and microbiota functions to resist Salmonella infection in mice. J Exp Med 2022; 219:e20220057. [PMID: 35674742 PMCID: PMC9184849 DOI: 10.1084/jem.20220057] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Deprivation of vitamin B12 (VB12) is linked to various diseases, but the underlying mechanisms in disease progression are poorly understood. Using multiomic approaches, we elucidated the responses of ileal epithelial cells (iECs) and gut microbiome to VB12 dietary restriction. Here, VB12 deficiency impaired the transcriptional and metabolic programming of iECs and reduced epithelial mitochondrial respiration and carnitine shuttling during intestinal Salmonella Typhimurium (STm) infection. Fecal microbial and untargeted metabolomic profiling identified marked changes related to VB12 deficiency, including reductions of metabolites potentially activating mitochondrial β-oxidation in iECs and short-chain fatty acids (SCFAs). Depletion of SCFA-producing microbes by streptomycin treatment decreased the VB12-dependent STm protection. Moreover, compromised mitochondrial function of iECs correlated with declined cell capability to utilize oxygen, leading to uncontrolled oxygen-dependent STm expansion in VB12-deficient mice. Our findings uncovered previously unrecognized mechanisms through which VB12 coordinates ileal epithelial mitochondrial homeostasis and gut microbiota to regulate epithelial oxygenation, resulting in the control of aerobic STm infection.
Collapse
Affiliation(s)
- Yong Ge
- Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL
| | - Mojgan Zadeh
- Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL
| | - Mansour Mohamadzadeh
- Division of Gastroenterology & Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL
| |
Collapse
|
9
|
Early Life Stage Folic Acid Deficiency Delays the Neurobehavioral Development and Cognitive Function of Rat Offspring by Hindering De Novo Telomere Synthesis. Int J Mol Sci 2022; 23:ijms23136948. [PMID: 35805953 PMCID: PMC9266327 DOI: 10.3390/ijms23136948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
Early life stage folate status may influence neurodevelopment in offspring. The developmental origin of health and disease highlights the importance of the period of the first 1000 days (from conception to 2 years) of life. This study aimed to evaluate the effect of early life stage folic acid deficiency on de novo telomere synthesis, neurobehavioral development, and the cognitive function of offspring rats. The rats were divided into three diet treatment groups: folate-deficient, folate-normal, and folate-supplemented. They were fed the corresponding diet from 5 weeks of age to the end of the lactation period. After weaning, the offspring rats were still fed with the corresponding diet for up to 100 days. Neurobehavioral tests, folic acid and homocysteine (Hcy) levels, relative telomere length in brain tissue, and uracil incorporation in telomere in offspring were measured at different time points. The results showed that folic acid deficiency decreased the level of folic acid, increased the level of Hcy of brain tissue in offspring, increased the wrong incorporation of uracil into telomeres, and hindered de novo telomere synthesis. However, folic acid supplementation increased the level of folic acid, reduced the level of Hcy of brain tissue in offspring, reduced the wrong incorporation of uracil into telomeres, and protected de novo telomere synthesis of offspring, which was beneficial to the development of early sensory-motor function, spatial learning, and memory in adolescence and adulthood. In conclusion, early life stage folic acid deficiency had long-term inhibiting effects on neurodevelopment and cognitive function in offspring.
Collapse
|
10
|
Siopis G, Porter J. Contribution of Biological Age-Predictive Biomarkers to Nutrition Research: A Systematic Review of the Current Evidence and Implications for Future Research and Clinical Practice. Adv Nutr 2022; 13:1930-1946. [PMID: 35612976 PMCID: PMC9526820 DOI: 10.1093/advances/nmac060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/11/2022] [Accepted: 05/16/2022] [Indexed: 01/28/2023] Open
Abstract
The global population is living longer; however, not everyone ages at the same rate with regard to their physical and cognitive abilities and their vulnerability to certain diseases and death. This review aimed to synthesize the contribution of biological age-predictive biomarkers to nutrition research and highlight the implications for future research and clinical practice. MEDLINE, CINAHL, and Cochrane CENTRAL were systematically searched on 30 September 2021 for randomized controlled trials and cross-sectional studies examining the association between nutrition and biological age in older adults reporting on genetic, clinical, or molecular biomarkers of biological aging. Cochrane's ROB 2 and ROBINS-I were used to assess the quality of included studies. Synthesis was undertaken narratively. Of 1245 records identified from the search, 13 studies from 8 countries and territories, involving 5043 participants, were included. Seven studies assessed associations between nutrient food intake and telomere attrition, reporting protective effects for branched-chain amino acids, calcium and vitamin D, and a diet of a lower inflammatory index; whereas they found shorter telomeres in people consuming more processed foods and arachidonic acid and other proinflammatory compounds. Five studies examined the associations between plasma nutrition biomarkers and cognitive function, and found a protective effect for HDL cholesterol, lycopene, carotenoids, ω-3 and ω-6 fatty acids, and vitamins B, C, D, and E; whereas trans fatty acids and fibrinogen correlated with a decline in cognitive function. One study used Horvath's clock and reported the epigenetic rejuvenation effect of a Mediterranean diet. In conclusion, biological aging was negatively associated with an anti-inflammatory diet. However, a few studies did not control for the confounding effect of other lifestyle factors. Future research should address this and also assess the synergistic effect of different nutrients, their combinations, and evaluate their dose-response relations. Nutrition practice can incorporate updated screening procedures for older people that include relevant biological aging nutrition markers, leading to anti-aging precision nutrition therapy. The methodology of this systematic review was registered in PROSPERO (CRD42021288122).
Collapse
Affiliation(s)
| | - Judi Porter
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
11
|
Abstract
Telomeres are non-coding nucleoprotein structures consisting of a highly conserved tandem repeat DNA sequence that caps the ends of chromosomes in eukaryotes. Telomeres confer chromosomal stability, protect the genome from nucleolytic degradation, avoid aberrant recombination and improper repair, and prevent random fusion of chromosomes. The end-replication problem results in telomere shortening with every cell division, eventually leading to cellular senescence and aging. Telomere length (TL) is thereby an ideal candidate for "biological aging." Telomeres possess guanine-rich repeats, which are highly susceptible to oxidative stress. Epidemiological studies have indicated the association of telomere attrition with mortality and various age-related diseases. Micronutrients comprising vitamins and minerals act as potential modulators of stress and can influence TL. Research has indicated that vitamin B12 (B12) regulates oxidative stress and maintains genomic stability, thereby influencing telomere integrity and cellular aging. The deficiency of B12 leads to elevated levels of homocysteine, which reduces the methylation potential and increases oxidative stress, thereby compromising the TL. Telomere shortening and mitochondrial dysfunction are independently linked to aging. However, they are connected through telomerase reverse transcriptase activity, which regulates mitochondrial biogenesis. Further, experimental evidence indicated the positive association of B12 with relative TL and mitochondrial DNA copy number, an indirect index of mitochondrial biogenesis. The present chapter provides some insights into the role of B12 in influencing TL. Exploring their association might open new avenues to understand the pathophysiology of aging and age-related diseases.
Collapse
|
12
|
Casas-Recasens S, Mendoza N, López-Giraldo A, Garcia T, Cosio BG, Pascual-Guardia S, Acosta-Castro A, Borras-Santos A, Gea J, Garrabou G, Agusti A, Faner R. Telomere Length but Not Mitochondrial DNA Copy Number Is Altered in Both Young and Old COPD. Front Med (Lausanne) 2021; 8:761767. [PMID: 34901077 PMCID: PMC8652089 DOI: 10.3389/fmed.2021.761767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Accelerated ageing is implicated in the pathogenesis of respiratory diseases as chronic obstructive pulmonary disease (COPD), but recent evidence indicates that the COPD can have roots early in life. Here we hypothesise that the accelerated ageing markers might have a role in the pathobiology of young COPD. The objective of this study was to compare two hallmarks of ageing, telomere length (TL), and mitochondrial DNA copy number (mtDNA-CN, as a surrogate marker of mitochondrial dysfunction) in young (≤ 50 years) and old (>50 years) smokers, with and without COPD. Both, TL and mtDNA-CN were measured in whole blood DNA by quantitative PCR [qPCR] in: (1) young ever smokers with (n = 81) or without (n = 166) COPD; and (2) old ever smokers with (n = 159) or without (n = 29) COPD. A multivariable linear regression was used to assess the association of TL and mtDNA-CN with lung function. We observed that in the entire study population, TL and mtDNA-CN decreased with age, and the former but not the latter related to FEV1/FVC (%), FEV1 (% ref.), and DLCO (% ref.). The short telomeres were found both in the young and old patients with severe COPD (FEV1 <50% ref.). In addition, we found that TL and mtDNA-CN were significantly correlated, but their relationship was positive in younger while negative in the older patients with COPD, suggesting a mitochondrial dysfunction. We conclude that TL, but not mtDNA-CN, is associated with the lung function impairment. Both young and old patients with severe COPD have evidence of accelerated ageing (shorter TL) but differ in the direction of the correlation between TL and mtDNA-CN in relation to age.
Collapse
Affiliation(s)
- Sandra Casas-Recasens
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Nuria Mendoza
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alejandra López-Giraldo
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Respiratory Institute, Hospital Clinic, Barcelona, Spain
| | - Tamara Garcia
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Borja G Cosio
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Pneumology, University Hospital Son Espases, Palma de Mallorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), University Hospital Son Espases, Palma de Mallorca, Spain
| | - Sergi Pascual-Guardia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Servei de Pneumologia, Hospital del Mar - IMIM, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Ady Acosta-Castro
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Pulmonary Service and Research Institute, Doce de Octubre University Hospital, Madrid, Spain
| | - Alicia Borras-Santos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,ISGlobal, Barcelona, Spain
| | - Joaquim Gea
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Servei de Pneumologia, Hospital del Mar - IMIM, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Gloria Garrabou
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Muscle Research and Mitochondrial Function Laboratory, Internal Medicine Service, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Alvar Agusti
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Respiratory Institute, Hospital Clinic, Barcelona, Spain.,Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Rosa Faner
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
13
|
Habibi N, Bianco-Miotto T, Phoi YY, Jankovic-Karasoulos T, Roberts CT, Grieger JA. Maternal diet and offspring telomere length: a systematic review. Nutr Rev 2021; 79:148-159. [PMID: 32968801 DOI: 10.1093/nutrit/nuaa097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CONTEXT Many studies assert a negative influence of inappropriate maternal diet and nutritional status during pregnancy on offspring, not only in utero but throughout life, because of the role in the programing of noncommunicable diseases. Telomere length is a biomarker of aging, and shorter telomeres are associated with chronic disease later in life. Maternal nutrition and nutritional status may be an important determinant of offspring telomere length. OBJECTIVE A systematic review was conducted to determine the effect of maternal nutrition and nutritional status in pregnancy on offspring telomere length. DATA SOURCES This systematic review was conducted according to PRISMA guidelines. Database searches of PubMed, CINAHL, Scopus, Medline, and Web of Science were performed. STUDY SELECTION Included studies assessed the association between maternal nutrition (dietary intake and nutritional status) during pregnancy and offspring telomere length measured in cord blood, serum, plasma, and peripheral blood mononuclear cells. DATA EXTRACTION Three authors screened and determined the quality of the articles; disagreements were resolved by a fourth author. All authors compared the compiled data. RESULTS Seven studies were extracted and evaluated. Studies comprised a double-blind placebo-controlled trial (n = 1), prospective cohort studies (n = 5), and a cross-sectional study (n = 1). Higher circulating maternal folate and 25-hydroxyvitamin D3 concentrations, along with higher maternal dietary caffeine intakes, were associated with longer offspring telomere length, whereas higher dietary intake of carbohydrate, folate, n-3 polyunsaturated fatty acids, vitamin C, or sodium was not. CONCLUSION The limited but suggestive evidence highlights the need for further research to be conducted in this area, particularly longitudinal studies involving larger cohorts of pregnant women. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42019136506.
Collapse
Affiliation(s)
- Nahal Habibi
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Yan Yin Phoi
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Tanja Jankovic-Karasoulos
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Claire T Roberts
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Jessica A Grieger
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Nwanaji-Enwerem JC, Colicino E, Gao X, Wang C, Vokonas P, Boyer EW, Baccarelli AA, Schwartz J. Associations of Plasma Folate and Vitamin B6 With Blood DNA Methylation Age: An Analysis of One-Carbon Metabolites in the VA Normative Aging Study. J Gerontol A Biol Sci Med Sci 2021; 76:760-769. [PMID: 33027507 DOI: 10.1093/gerona/glaa257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 02/01/2023] Open
Abstract
One-carbon metabolism is an important contributor to aging-related diseases; nevertheless, relationships of one-carbon metabolites with novel DNA methylation-based measures of biological aging remain poorly characterized. We examined relationships of one-carbon metabolites with 3 DNA methylation-based measures of biological aging: DNAmAge, GrimAge, and PhenoAge. We measured plasma levels of 4 common one-carbon metabolites (vitamin B6, vitamin B12, folate, and homocysteine) in 715 VA Normative Aging Study participants with at least 1 visit between 1999 and 2008 (observations = 1153). DNA methylation age metrics were calculated using the HumanMethylation450 BeadChip. We utilized Bayesian Kernel Machine Regression models adjusted for chronological age, lifestyle factors, age-related diseases, and study visits to determine metabolites important to the aging outcomes. Bayesian Kernel Machine Regression models allowed for the estimation of the relationships of single metabolites and the cumulative metabolite mixture with methylation age. Log vitamin B6 was selected as important to PhenoAge (β = -1.62 years, 95% CI: -2.28, -0.96). Log folate was selected as important to GrimAge (β = 0.75 years, 95% CI: 0.41, 1.09) and PhenoAge (β = 1.62 years, 95% CI: 0.95, 2.29). Compared to a model where each metabolite in the mixture is set to its 50th percentile, the log cumulative mixture with each metabolite at its 30th (β = -0.13 years, 95% CI: -0.26, -0.005) and 40th percentile (β = -0.06 years, 95% CI: -0.11, -0.005) was associated with decreased GrimAge. Our results provide novel characterizations of the relationships between one-carbon metabolites and DNA methylation age in a human population study. Further research is required to confirm these findings and establish their generalizability.
Collapse
Affiliation(s)
- Jamaji C Nwanaji-Enwerem
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, and MD/PhD Program, Harvard Medical School, Boston, Massachusetts
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xu Gao
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, New York
| | - Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Pantel Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Massachusetts
| | - Edward W Boyer
- Division of Medical Toxicology, Department of Emergency Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, New York
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
15
|
Leuthner TC, Hartman JH, Ryde IT, Meyer JN. PCR-Based Determination of Mitochondrial DNA Copy Number in Multiple Species. Methods Mol Biol 2021; 2310:91-111. [PMID: 34096001 DOI: 10.1007/978-1-0716-1433-4_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mitochondrial DNA (mtDNA) copy number is a critical component of overall mitochondrial health. In this chapter, we describe methods for simultaneous isolation of mtDNA and nuclear DNA (nucDNA), and measurement of their respective copy numbers using quantitative PCR. Methods differ depending on the species and cell type of the starting material, and availability of specific PCR reagents. We also briefly describe factors that affect mtDNA copy number and discuss caveats to its use as a biomarker.
Collapse
Affiliation(s)
- Tess C Leuthner
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Ian T Ryde
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| |
Collapse
|
16
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|