1
|
Ambrose A, Bahl S, Sharma S, Zhang D, Hung C, Jain-Ghai S, Chan A, Mercimek-Andrews S. Genetic landscape of primary mitochondrial diseases in children and adults using molecular genetics and genomic investigations of mitochondrial and nuclear genome. Orphanet J Rare Dis 2024; 19:424. [PMID: 39533303 PMCID: PMC11555972 DOI: 10.1186/s13023-024-03437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Primary mitochondrial diseases (PMD) are one of the most common metabolic genetic disorders. They are due to pathogenic variants in the mitochondrial genome (mtDNA) or nuclear genome (nDNA) that impair mitochondrial function and/or structure. We hypothesize that there is overlap between PMD and other genetic diseases that are mimicking PMD. For this reason, we performed a retrospective cohort study. METHODS All individuals with suspected PMD that underwent molecular genetic and genomic investigations were included. Individuals were grouped for comparison: (1) individuals with mtDNA-PMD; (2) individuals with nDNA-PMD; (3) individuals with other genetic diseases mimicking PMD (non-PMD); (4) individuals without a confirmed genetic diagnosis. RESULTS 297 individuals fulfilled inclusion criteria. The diagnostic yield of molecular genetics and genomic investigations was 31.3%, including 37% for clinical exome sequencing and 15.8% for mitochondrial genome sequencing. We identified 71 individuals with PMD (mtDNA n = 41, nDNA n = 30) and 22 individuals with non-PMD. Adults had higher percentage of mtDNA-PMD compared to children (p-value = 0.00123). There is a statistically significant phenotypic difference between children and adults with PMD. CONCLUSION We report a large cohort of individuals with PMD and the diagnostic yield of urine mitochondrial genome sequencing (16.1%). We think liver phenotype might be progressive and should be studied further in PMD. We showed a relationship between non-PMD genes and their indirect effects on mitochondrial machinery. Differentiation of PMD from non-PMD can be achieved using specific phenotypes as there was a statistically significant difference for muscular, cardiac, and ophthalmologic phenotypes, seizures, hearing loss, peripheral neuropathy in PMD group compared to non-PMD group.
Collapse
Affiliation(s)
- Anastasia Ambrose
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Shalini Bahl
- Princess Margaret Cancer Centre, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Saloni Sharma
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Dan Zhang
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Clara Hung
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Shailly Jain-Ghai
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Alicia Chan
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Saadet Mercimek-Andrews
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
- Alberta Health Services, Edmonton Zone, AB, Canada.
| |
Collapse
|
2
|
Perfilyeva A, Bespalova K, Kuzovleva Y, Mussabayev R, Begmanova М, Amirgalyeva A, Vishnyakova O, Nazarenko I, Zhaxsylykova A, Yerzhan A, Perfilyeva Y, Dzhaembaeva T, Khamchukova A, Plakhov K, Torekhanov A, Djansugurova L, Zhunussova G, Bekmanov B. Genetic diversity and origin of Kazakh Tobet Dogs. Sci Rep 2024; 14:23137. [PMID: 39367220 PMCID: PMC11452641 DOI: 10.1038/s41598-024-74061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
The Kazakh Tobet is an indigenous Kazakh dog breed that has been used to guard livestock since ancient times. To understand the genetic structure and phylogenetic relationship of the Kazakh Tobet breed with other herding and livestock guarding dog breeds, we analysed short tandem repeat data of 107 Kazakh Tobet dogs from different regions of Kazakhstan and Mongolia, as well as whole genome sequencing data from two Kazakh Tobet dogs and 43 dogs from 24 working breeds. Our results indicate a high genetic diversity of the Kazakh Tobet, with the average number of alleles per locus ranging from 6.00 to 10.22 and observed heterozygosity ranging from 76 to 78%. The breed has a complex genetic structure characterised by seven different clusters. The neighbour-joining tree constructed based on 14,668,406 autosomal and the maximum likelihood tree based on mitochondrial D-loop sequences indicate a common genetic heritage between the Kazakh Tobet, the Central Asian Shepherd Dog and the Turkish Akbash. The presence of haplotype A18 in the Kazakh Tobets supports the hypothesis of the ancient origin of the breed, which was previously suggested by archaeological finds and written sources. These results provide an important genetic basis for the ongoing efforts to improve the Kazakh Tobet breed, to ensure its preservation as an independent genetic lineage and to recognise a breed on an international level.
Collapse
Affiliation(s)
- Anastassiya Perfilyeva
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty, 050060, Kazakhstan
| | - Kira Bespalova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty, 050060, Kazakhstan.
| | - Yelena Kuzovleva
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty, 050060, Kazakhstan
| | - Rustam Mussabayev
- Laboratory of Informational Processes Analysis and Modelling, Institute of Information and Computational Technologies, Almaty, 050000, Kazakhstan
| | - Мamura Begmanova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty, 050060, Kazakhstan
| | - Almira Amirgalyeva
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty, 050060, Kazakhstan
| | - Olga Vishnyakova
- Department of Сynology, Republican Federation of Public Associations of Hunters and Hunting Societies "Kansonar", Almaty, 050008, Kazakhstan
| | - Inna Nazarenko
- Department of Сynology, Republican Federation of Public Associations of Hunters and Hunting Societies "Kansonar", Astana, 020000, Kazakhstan
| | - Assel Zhaxsylykova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty, 050060, Kazakhstan
| | - Arailym Yerzhan
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty, 050060, Kazakhstan
| | - Yuliya Perfilyeva
- Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, 050012, Kazakhstan
| | | | - Anna Khamchukova
- Laboratory of Biocenology and Hunting management, Institute of Zoology, Almaty, 050060, Kazakhstan
| | - Konstantin Plakhov
- Laboratory of Biocenology and Hunting management, Institute of Zoology, Almaty, 050060, Kazakhstan
| | - Aibyn Torekhanov
- Kazakh Research Institute of Livestock and Fodder Production, Almaty, 050071, Kazakhstan
| | - Leyla Djansugurova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty, 050060, Kazakhstan
| | - Gulnur Zhunussova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty, 050060, Kazakhstan
| | - Bakhytzhan Bekmanov
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty, 050060, Kazakhstan
| |
Collapse
|
3
|
Wang ZY, Wang Y, Hu HL, Ma L, He K, Ding GH. Two complete mitochondrial genomes of Boulenophrys (Anura: Megophryidae: Megophryinae): characteristics and phylogenetic implications. Mitochondrial DNA B Resour 2024; 9:1098-1102. [PMID: 39165385 PMCID: PMC11334740 DOI: 10.1080/23802359.2024.2392745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/10/2024] [Indexed: 08/22/2024] Open
Abstract
The Chinese horned toads, Boulenophrys boettgeri (Boulenger, 1899) and Boulenophrys kuatunensis (Pope, 1929), are two captivating species within the family Megophryidae, which inhabit the mountainous streams in the Eastern of China. In this study, two new complete mitochondrial genomes of B. boettgeri and B. kuatunensis were sequenced, assembled, and annotated using next-generation sequencing. The length of mitochondrial genomes of B. boettgeri and B. kuatunensis was 16,597 and 17,921 bp, respectively, with both containing 13 protein coding genes, 22 tRNA genes, two rRNA genes, and one putative control region. Phylogenetic relationships based on protein-coding mitochondrial genes showed that the two Boulenophrys species formed a cluster with other Boulenophrys species. The two new sequences provide valuable insights into the mitochondrial genomes of these two species, offering important data for understanding the phylogenetic relationships of the genus Boulenophrys.
Collapse
Affiliation(s)
- Zi-Ying Wang
- College of Animal Science and Technology, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
- College of Ecology, Lishui University, Lishui, China
| | - Yu Wang
- Administration Center of Zhejiang, Jiulongshan National Nature Reserve, Lishui, China
| | - Hua-Li Hu
- Administration Center of Zhejiang, Jiulongshan National Nature Reserve, Lishui, China
| | - Li Ma
- College of Ecology, Lishui University, Lishui, China
| | - Ke He
- College of Animal Science and Technology, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Guo-Hua Ding
- College of Ecology, Lishui University, Lishui, China
| |
Collapse
|
4
|
Liang D, Zhu L, Zhu Y, Huang M, Lin Y, Li H, Hu P, Zhang J, Shen B, Xu Z. A PCR-independent approach for mtDNA enrichment and next-generation sequencing: comprehensive evaluation and clinical application. J Transl Med 2024; 22:386. [PMID: 38664838 PMCID: PMC11044483 DOI: 10.1186/s12967-024-05213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Sequencing the mitochondrial genome has been increasingly important for the investigation of primary mitochondrial diseases (PMD) and mitochondrial genetics. To overcome the limitations originating from PCR-based mtDNA enrichment, we set out to develop and evaluate a PCR-independent approach in this study, named Pime-Seq (PCR-independent mtDNA enrichment and next generation Sequencing). RESULTS By using the optimized mtDNA enrichment procedure, the mtDNA reads ratio reached 88.0 ± 7.9% in the sequencing library when applied on human PBMC samples. We found the variants called by Pime-Seq were highly consistent among technical repeats. To evaluate the accuracy and reliability of this method, we compared Pime-Seq with lrPCR based NGS by performing both methods simultaneously on 45 samples, yielding 1677 concordant variants, as well as 146 discordant variants with low-level heteroplasmic fraction, in which Pime-Seq showed higher reliability. Furthermore, we applied Pime-Seq on 4 samples of PMD patients retrospectively, and successfully detected all the pathogenic mtDNA variants. In addition, we performed a prospective study on 192 apparently healthy pregnant women during prenatal screening, in which Pime-Seq identified pathogenic mtDNA variants in 4 samples, providing extra information for better health monitoring in these cases. CONCLUSIONS Pime-Seq can obtain highly enriched mtDNA in a PCR-independent manner for high quality and reliable mtDNA deep-sequencing, which provides us an effective and promising tool for detecting mtDNA variants for both clinical and research purposes.
Collapse
Affiliation(s)
- Dong Liang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Yuqing Zhu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Mingtao Huang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Ying Lin
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Hang Li
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China
| | - Jun Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China.
| |
Collapse
|
5
|
Yang Y, del Gaudio D, Santani A, Scott SA. Applications of genome sequencing as a single platform for clinical constitutional genetic testing. GENETICS IN MEDICINE OPEN 2024; 2:101840. [PMID: 39822265 PMCID: PMC11736070 DOI: 10.1016/j.gimo.2024.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 01/19/2025]
Abstract
The number of human disease genes has dramatically increased over the past decade, largely fueled by ongoing advances in sequencing technologies. In parallel, the number of available clinical genetic tests has also increased, including the utilization of exome sequencing for undiagnosed diseases. Although most clinical sequencing tests have been centered on enrichment-based multigene panels and exome sequencing, the continued improvements in performance and throughput of genome sequencing suggest that this technology is emerging as a potential platform for routine clinical genetic testing. A notable advantage is a single workflow with the opportunity to reflexively interrogate content as clinically indicated; however, challenges with implementing routine clinical genome sequencing still remain. This review is centered on evaluating the applications of genome sequencing as a single platform for clinical constitutional genetic testing, including its potential utility for diagnostic testing, carrier screening, cytogenomic molecular karyotyping, prenatal testing, mitochondrial genome interrogation, and pharmacogenomic and polygenic risk score testing.
Collapse
Affiliation(s)
- Yao Yang
- Department of Pathology, Stanford University, Stanford, CA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, CA
| | | | | | - Stuart A. Scott
- Department of Pathology, Stanford University, Stanford, CA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, CA
| |
Collapse
|
6
|
Seither K, Thompson W, Suhrie K. A Practical Guide to Whole Genome Sequencing in the NICU. Neoreviews 2024; 25:e139-e150. [PMID: 38425198 DOI: 10.1542/neo.25-3-e139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The neonatal period is a peak time for the presentation of genetic disorders that can be diagnosed using whole genome sequencing (WGS). While any one genetic disorder is individually rare, they collectively contribute to significant morbidity, mortality, and health-care costs. As the cost of WGS continues to decline and becomes increasingly available, the ordering of rapid WGS for NICU patients with signs or symptoms of an underlying genetic condition is now feasible. However, many neonatal clinicians are not comfortable with the testing, and unfortunately, there is a dearth of geneticists to facilitate testing for every patient that needs it. Here, we will review the science behind WGS, diagnostic capabilities, limitations of testing, time to consider testing, test initiation, interpretation of results, developing a plan of care that incorporates genomic information, and returning WGS results to families.
Collapse
Affiliation(s)
- Katelyn Seither
- Division of Neonatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Whitney Thompson
- Division of Neonatal Medicine, and the Department of Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Kristen Suhrie
- Division of Neonatology, Department of Pediatrics, and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
7
|
Ling MK, Yap NWL, Iesa IB, Yip ZT, Huang D, Quek ZBR. Revisiting mitogenome evolution in Medusozoa with eight new mitochondrial genomes. iScience 2023; 26:108252. [PMID: 37965150 PMCID: PMC10641506 DOI: 10.1016/j.isci.2023.108252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Mitogenomics has improved our understanding of medusozoan phylogeny. However, sequenced medusozoan mitogenomes remain scarce, and Medusozoa phylogeny studies often analyze mitogenomic sequences without incorporating mitogenome rearrangements. To better understand medusozoan evolution, we analyzed Medusozoa mitogenome phylogeny by sequencing and assembling eight mitogenomes from three classes (Cubozoa, Hydrozoa, and Scyphozoa). We reconstructed the mitogenome phylogeny using these mitogenomes and 84 other existing cnidarian mitogenomes to study mitochondrial gene rearrangements. All reconstructed mitogenomes had 13 mitochondrial protein-coding genes and two ribosomal genes typical for Medusozoa. Non-cubozoan mitogenomes were all linear and had typical gene orders, while arrangement of genes in the fragmented Cubozoa (Morbakka sp.) mitogenome differed from other Cubozoa mitogenomes. Gene order comparisons and ancestral state reconstruction suggest minimal rearrangements within medusozoan classes except for Hydrozoa. Our findings support a staurozoan ancestral medusozoan gene order, expand the pool of available medusozoan mitogenomes, and enhance our understanding of medusozoan phylogenetic relationships.
Collapse
Affiliation(s)
- Min Kang Ling
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Nicholas Wei Liang Yap
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
- St. John’s Island National Marine Laboratory, c/o Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
| | - Iffah Binte Iesa
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore
| | - Zhi Ting Yip
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore
| | - Zheng Bin Randolph Quek
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Yale-NUS College, National University of Singapore, Singapore 138527, Singapore
| |
Collapse
|
8
|
Hernández CL. Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era. Genes (Basel) 2023; 14:1534. [PMID: 37628587 PMCID: PMC10453943 DOI: 10.3390/genes14081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small fraction of our hereditary material. However, this molecule has had an overwhelming presence in scientific research for decades until the arrival of high-throughput studies. Several appealing properties justify the application of mtDNA to understand how human populations are-from a genetic perspective-and how individuals exhibit phenotypes of biomedical importance. Here, I review the basics of mitochondrial studies with a focus on the dawn of the field, analysis methods and the connection between two sides of mitochondrial genetics: anthropological and biomedical. The particularities of mtDNA, with respect to inheritance pattern, evolutionary rate and dependence on the nuclear genome, explain the challenges of associating mtDNA composition and diseases. Finally, I consider the relevance of this single locus in the context of omics research. The present work may serve as a tribute to a tool that has provided important insights into the past and present of humankind.
Collapse
Affiliation(s)
- Candela L Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
9
|
Balciuniene J, Liu R, Bean L, Guo F, Nallamilli BRR, Guruju N, Chen-Deutsch X, Yousaf R, Fura K, Chin E, Mathur A, Ma Z, Carmichael J, da Silva C, Collins C, Hegde M. At-Risk Genomic Findings for Pediatric-Onset Disorders From Genome Sequencing vs Medically Actionable Gene Panel in Proactive Screening of Newborns and Children. JAMA Netw Open 2023; 6:e2326445. [PMID: 37523181 PMCID: PMC10391308 DOI: 10.1001/jamanetworkopen.2023.26445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Importance Although the clinical utility of genome sequencing for critically ill children is well recognized, its utility for proactive pediatric screening is not well explored. Objective To evaluate molecular findings from screening ostensibly healthy children with genome sequencing compared with a gene panel for medically actionable pediatric conditions. Design, Setting, and Participants This case series study was conducted among consecutive, apparently healthy children undergoing proactive genetic screening for pediatric disorders by genome sequencing (n = 562) or an exome-based panel of 268 genes (n = 606) from March 1, 2018, through July 31, 2022. Exposures Genetic screening for pediatric-onset disorders using genome sequencing or an exome-based panel of 268 genes. Main Outcomes and Measures Molecular findings indicative of genetic disease risk. Results Of 562 apparently healthy children (286 girls [50.9%]; median age, 29 days [IQR, 9-117 days]) undergoing screening by genome sequencing, 46 (8.2%; 95% CI, 5.9%-10.5%) were found to be at risk for pediatric-onset disease, including 22 children (3.9%) at risk for high-penetrance disorders. Sequence analysis uncovered molecular diagnoses among 32 individuals (5.7%), while copy number variant analysis uncovered molecular diagnoses among 14 individuals (2.5%), including 4 individuals (0.7%) with chromosome scale abnormalities. Overall, there were 47 molecular diagnoses, with 1 individual receiving 2 diagnoses; of the 47 potential diagnoses, 22 (46.8%) were associated with high-penetrance conditions. Pathogenic variants in medically actionable pediatric genes were found in 6 individuals (1.1%), constituting 12.8% (6 of 47) of all diagnoses. At least 1 pharmacogenomic variant was reported for 89.0% (500 of 562) of the cohort. In contrast, of 606 children (293 girls [48.3%]; median age, 26 days [IQR, 10-67 days]) undergoing gene panel screening, only 13 (2.1%; 95% CI, 1.0%-3.3%) resulted in potential childhood-onset diagnoses, a significantly lower rate than those screened by genome sequencing (P < .001). Conclusions and Relevance In this case series study, genome sequencing as a proactive screening approach for children, due to its unrestrictive gene content and technical advantages in comparison with an exome-based gene panel for medically actionable childhood conditions, uncovered a wide range of heterogeneous high-penetrance pediatric conditions that could guide early interventions and medical management.
Collapse
Affiliation(s)
| | - Ruby Liu
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Lora Bean
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Fen Guo
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | - Naga Guruju
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | - Rizwan Yousaf
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Kristina Fura
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Ephrem Chin
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Abhinav Mathur
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Zeqiang Ma
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | | | | | - Madhuri Hegde
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Targeting mitochondrial impairment for the treatment of cardiovascular diseases: From hypertension to ischemia-reperfusion injury, searching for new pharmacological targets. Biochem Pharmacol 2023; 208:115405. [PMID: 36603686 DOI: 10.1016/j.bcp.2022.115405] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Mitochondria and mitochondrial proteins represent a group of promising pharmacological target candidates in the search of new molecular targets and drugs to counteract the onset of hypertension and more in general cardiovascular diseases (CVDs). Indeed, several mitochondrial pathways result impaired in CVDs, showing ATP depletion and ROS production as common traits of cardiac tissue degeneration. Thus, targeting mitochondrial dysfunction in cardiomyocytes can represent a successful strategy to prevent heart failure. In this context, the identification of new pharmacological targets among mitochondrial proteins paves the way for the design of new selective drugs. Thanks to the advances in omics approaches, to a greater availability of mitochondrial crystallized protein structures and to the development of new computational approaches for protein 3D-modelling and drug design, it is now possible to investigate in detail impaired mitochondrial pathways in CVDs. Furthermore, it is possible to design new powerful drugs able to hit the selected pharmacological targets in a highly selective way to rescue mitochondrial dysfunction and prevent cardiac tissue degeneration. The role of mitochondrial dysfunction in the onset of CVDs appears increasingly evident, as reflected by the impairment of proteins involved in lipid peroxidation, mitochondrial dynamics, respiratory chain complexes, and membrane polarization maintenance in CVD patients. Conversely, little is known about proteins responsible for the cross-talk between mitochondria and cytoplasm in cardiomyocytes. Mitochondrial transporters of the SLC25A family, in particular, are responsible for the translocation of nucleotides (e.g., ATP), amino acids (e.g., aspartate, glutamate, ornithine), organic acids (e.g. malate and 2-oxoglutarate), and other cofactors (e.g., inorganic phosphate, NAD+, FAD, carnitine, CoA derivatives) between the mitochondrial and cytosolic compartments. Thus, mitochondrial transporters play a key role in the mitochondria-cytosol cross-talk by leading metabolic pathways such as the malate/aspartate shuttle, the carnitine shuttle, the ATP export from mitochondria, and the regulation of permeability transition pore opening. Since all these pathways are crucial for maintaining healthy cardiomyocytes, mitochondrial carriers emerge as an interesting class of new possible pharmacological targets for CVD treatments.
Collapse
|
11
|
Danilevsky A, Polsky AL, Shomron N. Adaptive sequencing using nanopores and deep learning of mitochondrial DNA. Brief Bioinform 2022; 23:6634223. [PMID: 35804265 DOI: 10.1093/bib/bbac251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Nanopore sequencing is an emerging technology that reads DNA by utilizing a unique method of detecting nucleic acid sequences and identifies the various chemical modifications they carry. Deep learning has increased in popularity as a useful technique to solve many complex computational tasks. 'Adaptive sequencing' is an implementation of selective sequencing, intended for use on the nanopore sequencing platform. In this study, we demonstrated an alternative method of software-based selective sequencing that is performed in real time by combining nanopore sequencing and deep learning. Our results showed the feasibility of using deep learning for classifying signals from only the first 200 nucleotides in a raw nanopore sequencing signal format. This was further demonstrated by comparing the accuracy of our deep learning classification model across data from several human cell lines and other eukaryotic organisms. We used custom deep learning models and a script that utilizes a 'Read Until' framework to target mitochondrial molecules in real time from a human cell line sample. This achieved a significant separation and enrichment ability of 2.3-fold. In a series of very short sequencing experiments (10, 30 and 120 min), we identified genomic and mitochondrial reads with accuracy above 90%, although mitochondrial DNA comprised only 0.1% of the total input material. The uniqueness of our method is the ability to distinguish two groups of DNA even without a labeled reference. This contrasts with studies that required a well-defined reference, whether of a DNA sequence or of another type of representation. Additionally, our method showed higher correlation to the theoretically possible enrichment factor, compared with other published methods. We believe that our results will lay the foundation for rapid and selective sequencing using nanopore technology and will pave the approach for clinical applications that use nanopore sequencing data.
Collapse
Affiliation(s)
- Artem Danilevsky
- Faculty of Medicine and Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Avital Luba Polsky
- Faculty of Medicine and Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Faculty of Medicine and Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
12
|
Vilne B, Sawant A, Rudaka I. Examining the Association between Mitochondrial Genome Variation and Coronary Artery Disease. Genes (Basel) 2022; 13:genes13030516. [PMID: 35328073 PMCID: PMC8953999 DOI: 10.3390/genes13030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Large-scale genome-wide association studies have identified hundreds of single-nucleotide variants (SNVs) significantly associated with coronary artery disease (CAD). However, collectively, these explain <20% of the heritability. Hypothesis: Here, we hypothesize that mitochondrial (MT)-SNVs might present one potential source of this “missing heritability”. Methods: We analyzed 265 MT-SNVs in ~500,000 UK Biobank individuals, exploring two different CAD definitions: a more stringent (myocardial infarction and/or revascularization; HARD = 20,405), and a more inclusive (angina and chronic ischemic heart disease; SOFT = 34,782). Results: In HARD cases, the most significant (p < 0.05) associations were for m.295C>T (control region) and m.12612A>G (ND5), found more frequently in cases (OR = 1.05), potentially related to reduced cardiorespiratory fitness in response to exercise, as well as for m.12372G>A (ND5) and m.11467A>G (ND4), present more frequently in controls (OR = 0.97), previously associated with lower ROS production rate. In SOFT cases, four MT-SNVs survived multiple testing corrections (at FDR < 5%), all potentially conferring increased CAD risk. Of those, m.11251A>G (ND4) and m.15452C>A (CYB) have previously shown significant associations with body height. In line with this, we observed that CAD cases were slightly less physically active, and their average body height was ~2.00 cm lower compared to controls; both traits are known to be related to increased CAD risk. Gene-based tests identified CO2 associated with HARD/SOFT CAD, whereas ND3 and CYB associated with SOFT cases (p < 0.05), dysfunction of which has been related to MT oxidative stress, obesity/T2D (CO2), BMI (ND3), and angina/exercise intolerance (CYB). Finally, we observed that macro-haplogroup I was significantly (p < 0.05) more frequent in HARD cases vs. controls (3.35% vs. 3.08%), potentially associated with response to exercise. Conclusions: We found only spurious associations between MT genome variation and HARD/SOFT CAD and conclude that more MT-SNV data in even larger study cohorts may be needed to conclusively determine the role of MT DNA in CAD.
Collapse
Affiliation(s)
- Baiba Vilne
- Bioinformatics Lab, Rīga Stradiņš University, LV-1007 Riga, Latvia;
- Correspondence:
| | - Aniket Sawant
- Bioinformatics Lab, Rīga Stradiņš University, LV-1007 Riga, Latvia;
| | - Irina Rudaka
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia;
| |
Collapse
|
13
|
Wang J, Balciuniene J, Diaz-Miranda MA, McCormick EM, Aref-Eshghi E, Muir AM, Cao K, Troiani J, Moseley A, Fan Z, Zolkipli-Cunningham Z, Goldstein A, Ganetzky RD, Muraresku CC, Peterson JT, Spinner NB, Wallace DC, Dulik MC, Falk MJ. Advanced approach for comprehensive mtDNA genome testing in mitochondrial disease. Mol Genet Metab 2022; 135:93-101. [PMID: 34969639 PMCID: PMC8877466 DOI: 10.1016/j.ymgme.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/16/2023]
Abstract
Mitochondrial disease diagnosis requires interrogation of both nuclear and mitochondrial (mtDNA) genomes for single-nucleotide variants (SNVs) and copy number alterations, both in the proband and often maternal relatives, together with careful phenotype correlation. We developed a comprehensive mtDNA sequencing test ('MitoGenome') using long-range PCR (LR-PCR) to amplify the full length of the mtDNA genome followed by next generation sequencing (NGS) to accurately detect SNVs and large-scale mtDNA deletions (LSMD), combined with droplet digital PCR (ddPCR) for LSMD heteroplasmy quantification. Overall, MitoGenome tests were performed on 428 samples from 394 patients with suspected or confirmed mitochondrial disease. The positive yield was 11% (43/394), including 34 patients with pathogenic or likely pathogenic SNVs (the most common being m.3243A > G in 8/34 (24%) patients), 8 patients with single LSMD, and 3 patients with multiple LSMD exceeding 10% heteroplasmy levels. Two patients with both LSMD and pathogenic SNV were detected. Overall, this LR-PCR/NGS assay provides a highly accurate and comprehensive diagnostic method for simultaneous mtDNA SNV detection at heteroplasmy levels as low as 1% and LSMD detection at heteroplasmy levels below 10%. Inclusion of maternal samples for variant classification and ddPCR to quantify LSMD heteroplasmy levels further enables accurate pathogenicity assessment and clinical correlation interpretation of mtDNA genome sequence variants and copy number alterations.
Collapse
Affiliation(s)
- Jing Wang
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jorune Balciuniene
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maria Alejandra Diaz-Miranda
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erfan Aref-Eshghi
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alison M Muir
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kajia Cao
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Juliana Troiani
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alicia Moseley
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zhiqian Fan
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca D Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colleen C Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James T Peterson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nancy B Spinner
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew C Dulik
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|