1
|
Kim J, Mun DG, Ding H, Forsberg EM, Meyer SW, Barsch A, Pandey A, Byeon SK. Single Cell Untargeted Lipidomics Using Liquid Chromatography Ion Mobility-Mass Spectrometry. J Proteome Res 2025; 24:1579-1585. [PMID: 39950635 DOI: 10.1021/acs.jproteome.4c00658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Advancements in technology over the years have propelled omics analysis to the level of single cell resolution. Following the breakthroughs in single cell transcriptomics and genomics, single cell proteomics has recently rapidly progressed, aided by highly sensitive mass spectrometry instrumentation. However, there is currently a paucity of studies and methodologies for single cell lipidomics, aside from imaging-based approaches. Profiling lipids at the single cell level holds promise for providing novel insights into the complex heterogeneity of cells in various human disorders. Further, by integrating single cell lipidomics with other single cell omics including proteomics, it becomes possible to achieve single cell multiomics, enabling the discovery of novel molecular signatures. We developed untargeted single cell lipidomics using nanoflow liquid chromatography-ion mobility spectrometry-mass spectrometry. To enhance lipid coverage at the single cell level, the method was conducted in both positive and negative ion modes. We identified an average of 161 lipids spanning phospholipids, sphingolipids, cholesteryl esters, and glycerides in positive ion mode from single cells of human cholangiocarcinoma cells based on a rule-based lipid annotation. Additionally, an average of 20 species of phospholipids was identified in the negative ion mode. These preliminary data demonstrate a new methodology to profile lipids at a single or low input of cells.
Collapse
Affiliation(s)
- Jinyong Kim
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Husheng Ding
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | | | - Sven W Meyer
- Bruker Daltonics GmbH & Co. KG, Bremen 28359, Germany
| | - Aiko Barsch
- Bruker Daltonics GmbH & Co. KG, Bremen 28359, Germany
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
2
|
Vázquez-Carrada M, Vilchis-Landeros MM, Vázquez-Meza H, Uribe-Ramírez D, Matuz-Mares D. A New Perspective on the Role of Alterations in Mitochondrial Proteins Involved in ATP Synthesis and Mobilization in Cardiomyopathies. Int J Mol Sci 2025; 26:2768. [PMID: 40141413 PMCID: PMC11943459 DOI: 10.3390/ijms26062768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The heart requires a continuous energy supply to sustain its unceasing contraction-relaxation cycle. Mitochondria, a double-membrane organelle, generate approximately 90% of cellular energy as adenosine triphosphate (ATP) through oxidative phosphorylation, utilizing the electrochemical gradient established by the respiratory chain. Mitochondrial function is compromised by damage to mitochondrial DNA, including point mutations, deletions, duplications, or inversions. Additionally, disruptions to proteins associated with mitochondrial membranes regulating metabolic homeostasis can impair the respiratory chain's efficiency. This results in diminished ATP production and increased generation of reactive oxygen species. This review provides an overview of mutations affecting mitochondrial transporters and proteins involved in mitochondrial energy synthesis, particularly those involved in ATP synthesis and mobilization, and it examines their role in the pathogenesis of specific cardiomyopathies.
Collapse
Affiliation(s)
- Melissa Vázquez-Carrada
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Av, Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Ciudad de México C.P. 07738, Mexico;
| | - Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| |
Collapse
|
3
|
Venkatraman K, Lee CT, Budin I. Setting the curve: the biophysical properties of lipids in mitochondrial form and function. J Lipid Res 2024; 65:100643. [PMID: 39303982 PMCID: PMC11513603 DOI: 10.1016/j.jlr.2024.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024] Open
Abstract
Mitochondrial membranes are defined by their diverse functions, complex geometries, and unique lipidomes. In the inner mitochondrial membrane, highly curved membrane folds known as cristae house the electron transport chain and are the primary sites of cellular energy production. The outer mitochondrial membrane is flat by contrast, but is critical for the initiation and mediation of processes key to mitochondrial physiology: mitophagy, interorganelle contacts, fission and fusion dynamics, and metabolite transport. While the lipid composition of both the inner mitochondrial membrane and outer mitochondrial membrane have been characterized across a variety of cell types, a mechanistic understanding for how individual lipid classes contribute to mitochondrial structure and function remains nebulous. In this review, we address the biophysical properties of mitochondrial lipids and their related functional roles. We highlight the intrinsic curvature of the bulk mitochondrial phospholipid pool, with an emphasis on the nuances surrounding the mitochondrially-synthesized cardiolipin. We also outline emerging questions about other lipid classes - ether lipids, and sterols - with potential roles in mitochondrial physiology. We propose that further investigation is warranted to elucidate the specific properties of these lipids and their influence on mitochondrial architecture and function.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Christopher T Lee
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Vieira Neto E, Wang M, Szuminsky AJ, Ferraro L, Koppes E, Wang Y, Van’t Land C, Mohsen AW, Zanatta G, El-Gharbawy AH, Anthonymuthu TS, Tyurina YY, Tyurin VA, Kagan V, Bayır H, Vockley J. Mitochondrial bioenergetics and cardiolipin remodeling abnormalities in mitochondrial trifunctional protein deficiency. JCI Insight 2024; 9:e176887. [PMID: 39088276 PMCID: PMC11385086 DOI: 10.1172/jci.insight.176887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Mitochondrial trifunctional protein (TFP) deficiency is an inherited metabolic disorder leading to a block in long-chain fatty acid β-oxidation. Mutations in HADHA and HADHB, which encode the TFP α and β subunits, respectively, usually result in combined TFP deficiency. A single common mutation, HADHA c.1528G>C (p.E510Q), leads to isolated 3-hydroxyacyl-CoA dehydrogenase deficiency. TFP also catalyzes a step in the remodeling of cardiolipin (CL), a phospholipid critical to mitochondrial membrane stability and function. We explored the effect of mutations in TFP subunits on CL and other phospholipid content and composition and the consequences of these changes on mitochondrial bioenergetics in patient-derived fibroblasts. Abnormalities in these parameters varied extensively among different fibroblasts, and some cells were able to maintain basal oxygen consumption rates similar to controls. Although CL reduction was universally identified, a simultaneous increase in monolysocardiolipins was discrepant among cells. A similar profile was seen in liver mitochondria isolates from a TFP-deficient mouse model. Response to new potential drugs targeting CL metabolism might be dependent on patient genotype.
Collapse
Affiliation(s)
- Eduardo Vieira Neto
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
- Children’s Neuroscience Institute, Department of Pediatrics, School of Medicine, and
| | - Meicheng Wang
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Austin J. Szuminsky
- Department of Biological Sciences, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lethicia Ferraro
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
- School of Medicine and
| | - Erik Koppes
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Yudong Wang
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Clinton Van’t Land
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Al-Walid Mohsen
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Geancarlo Zanatta
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Areeg H. El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health
| | - Vladimir A. Tyurin
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health
| | - Valerian Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health
- Department of Pharmacology and Chemical Biology, School of Medicine; Department of Chemistry, Kenneth P. Dietrich School of Arts and Sciences; and Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Jerry Vockley
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
- Department of Human Genetics, School of Public Health, Center for Rare Disease Therapy, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Venkatraman K, Budin I. Cardiolipin remodeling maintains the inner mitochondrial membrane in cells with saturated lipidomes. J Lipid Res 2024; 65:100601. [PMID: 39038656 PMCID: PMC11381790 DOI: 10.1016/j.jlr.2024.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Cardiolipin (CL) is a unique, four-chain phospholipid synthesized in the inner mitochondrial membrane (IMM). The acyl chain composition of CL is regulated through a remodeling pathway, whose loss causes mitochondrial dysfunction in Barth syndrome (BTHS). Yeast has been used extensively as a model system to characterize CL metabolism, but mutants lacking its two remodeling enzymes, Cld1p and Taz1p, exhibit mild structural and respiratory phenotypes compared to mammalian cells. Here, we show an essential role for CL remodeling in the structure and function of the IMM in yeast grown under reduced oxygenation. Microaerobic fermentation, which mimics natural yeast environments, caused the accumulation of saturated fatty acids and, under these conditions, remodeling mutants showed a loss of IMM ultrastructure. We extended this observation to HEK293 cells, where phospholipase A2 inhibition by Bromoenol lactone resulted in respiratory dysfunction and cristae loss upon mild treatment with exogenous saturated fatty acids. In microaerobic yeast, remodeling mutants accumulated unremodeled, saturated CL, but also displayed reduced total CL levels, highlighting the interplay between saturation and CL biosynthesis and/or breakdown. We identified the mitochondrial phospholipase A1 Ddl1p as a regulator of CL levels, and those of its precursors phosphatidylglycerol and phosphatidic acid, under these conditions. Loss of Ddl1p partially rescued IMM structure in cells unable to initiate CL remodeling and had differing lipidomic effects depending on oxygenation. These results introduce a revised yeast model for investigating CL remodeling and suggest that its structural functions are dependent on the overall lipid environment in the mitochondrion.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Hachmann M, Gülcan G, Rajendran R, Höring M, Liebisch G, Bachhuka A, Kohlhaas M, Maack C, Ergün S, Dudek J, Karnati S. Tafazzin deficiency causes substantial remodeling in the lipidome of a mouse model of Barth Syndrome cardiomyopathy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1389456. [PMID: 39086433 PMCID: PMC11285559 DOI: 10.3389/fmmed.2024.1389456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/09/2024] [Indexed: 08/02/2024]
Abstract
Barth Syndrome (BTHS) is a rare X-linked disease, characterized clinically by cardiomyopathy, skeletal myopathy, neutropenia, and growth retardation. BTHS is caused by mutations in the phospholipid acyltransferase tafazzin (Gene: TAFAZZIN, TAZ). Tafazzin catalyzes the final step in the remodeling of cardiolipin (CL), a glycerophospholipid located in the inner mitochondrial membrane. As the phospholipid composition strongly determines membrane properties, correct biosynthesis of CL and other membrane lipids is essential for mitochondrial function. Mitochondria provide 95% of the energy demand in the heart, particularly due to their role in fatty acid oxidation. Alterations in lipid homeostasis in BTHS have an impact on mitochondrial membrane proteins and thereby contribute to cardiomyopathy. We analyzed a transgenic TAFAZZIN-knockdown (TAZ-KD) BTHS mouse model and determined the distribution of 193 individual lipid species in TAZ-KD and WT hearts at 10 and 50 weeks of age, using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Our results revealed significant lipid composition differences between the TAZ-KD and WT groups, indicating genotype-dependent alterations in most analyzed lipid species. Significant changes in the myocardial lipidome were identified in both young animals without cardiomyopathy and older animals with heart failure. Notable alterations were found in phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC) and plasmalogen species. PC species with 2-4 double bonds were significantly increased, while polyunsaturated PC species showed a significant decrease in TAZ-KD mice. Furthermore, Linoleic acid (LA, 18:2) containing PC and PE species, as well as arachidonic acid (AA, 20:4) containing PE 38:4 species are increased in TAZ-KD. We found higher levels of AA containing LPE and PE-based plasmalogens (PE P-). Furthermore, we are the first to show significant changes in sphingomyelin (SM) and ceramide (Cer) lipid species Very long-chained SM species are accumulating in TAZ-KD hearts, whereas long-chained Cer and several hexosyl ceramides (HexCer) species accumulate only in 50-week-old TAZ-KD hearts These findings offer potential avenues for the diagnosis and treatment of BTHS, presenting new possibilities for therapeutic approaches.
Collapse
Affiliation(s)
- Malte Hachmann
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Güntas Gülcan
- Department of Medical Biochemistry, Faculty of Medicine, Atlas University, Istanbul, Turkey
| | - Ranjithkumar Rajendran
- Experimental Neurology, Department of Neurology, Justus Liebig University, Giessen, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Akash Bachhuka
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University, Tarragona, Spain
| | - Michael Kohlhaas
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Medical Clinic 1, University Hospital Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Muylle E, Jiang H, Johnsen C, Byeon SK, Ranatunga W, Garapati K, Zenka RM, Preston G, Pandey A, Kozicz T, Fang F, Morava E. TRIT1 defect leads to a recognizable phenotype of myoclonic epilepsy, speech delay, strabismus, progressive spasticity, and normal lactate levels. J Inherit Metab Dis 2022; 45:1039-1047. [PMID: 36047296 PMCID: PMC9826177 DOI: 10.1002/jimd.12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023]
Abstract
TRIT1 defect is a rare, autosomal-recessive disorder of transcription, initially described as a condition with developmental delay, myoclonic seizures, and abnormal mitochondrial function. Currently, only 13 patients have been reported. We reviewed the genetic, clinical, and metabolic aspects of the disease in all known patients, including two novel, unrelated TRIT1 cases with abnormalities in oxidative phosphorylation complexes I and IV in fibroblasts. Taken together the features of all 15 patients, TRIT1 defect could be identified as a potentially recognizable syndrome including myoclonic epilepsy, speech delay, strabismus, progressive spasticity, and variable microcephaly, with normal lactate levels. Half of the patients had oxidative phosphorylation complex measurements and had multiple complex abnormalities.
Collapse
Affiliation(s)
- Ewout Muylle
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| | - Huafang Jiang
- Department of NeurologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | | | - Seul Kee Byeon
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | | | - Kishore Garapati
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
- Institute of Bioinformatics, International Technology ParkBangaloreKarnatakaIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Roman M. Zenka
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Graeme Preston
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Tamas Kozicz
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Fang Fang
- Department of NeurologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Eva Morava
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
- Department of Medical GeneticsUniversity of Pecs Medical SchoolPecsHungary
- Department of BiophysicsUniversity of Pecs Medical SchoolPecsHungary
| |
Collapse
|