1
|
Liu Y, Zhou Z, Lu G, Zhang X, Shi D, Tong L, Chen D, Tuan RS, Li ZA. Musculoskeletal organoids: An emerging toolkit for establishing personalized models of musculoskeletal disorders and developing regenerative therapies. Acta Biomater 2025:S1742-7061(25)00362-9. [PMID: 40381929 DOI: 10.1016/j.actbio.2025.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Musculoskeletal (MSK) conditions are the primary cause of physical disability globally. These disorders are physically and mentally debilitating and severely impact the patients' quality of life. As the median age of the world's population increases, there has been an intensifying urgency of developing efficacious therapies for various orthopaedic conditions. Furthermore, the highly heterogeneous nature of MSK conditions calls for a personalized approach to studying disease mechanisms and developing regenerative treatments. Organoids have emerged as an advanced approach to generating functional tissue/organ mimics in vitro, which hold promise in MSK regeneration, disease modeling, and therapeutic development. Herein, we review the preparation, characterization, and application of various MSK organoids. We highlight the potential of patient-specific organoids in the development of personalized medicine and discuss the challenges and opportunities in the future development of MSK organoids. STATEMENT OF SIGNIFICANCE: Despite decades of research, translation of MSK research into clinical applications remains limited, partially attributed to our inadequate understanding of disease mechanisms. To advance therapeutic development, there are critical needs for MSK disease models with higher clinical relevance and predictive power. Additionally, engineered constructs that closely mimic the structural and functional features of native MSK tissues are highly desirable. MSK organoids have emerged as a promising approach to meet the above requirements. To unleash the full potential of MSK organoids necessitates a comprehensive understanding of their categories, construction, development, functions, applications, and challenges. This review aims to fulfill this crucial need, aiming to accelerate the clinical translation of MSK organoid platforms to benefit millions of patients afflicted with MSK conditions.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, PR China
| | - Zhilong Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Gang Lu
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong Special Administrative Region of China
| | - Xin Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191 PR China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Department of Pharmacology, Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518000, PR China.
| | - Rocky S Tuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong Special Administrative Region of China.
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong Special Administrative Region of China; Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Karunakar KK, Edwin ER, Gopalakrishnan M, Cheriyan BV, Ramaiyan V, Karthikha VS, Justin JP. Advances in nephroprotection: the therapeutic role of selenium, silver, and gold nanoparticles in renal health. Int Urol Nephrol 2025; 57:479-510. [PMID: 39312019 DOI: 10.1007/s11255-024-04212-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 01/29/2025]
Abstract
Renal toxicity is a disorder that causes considerable issues in healthcare systems world, highlighting the critical importance of creating alternative treatments. Metallic nanoparticles have recently emerged as promising therapeutic agents for nephroprotection because of their remarkable properties. Numerous disciplines, including medicine, biotechnology, and the food industry, are currently investigating and exploring metallic nanoparticles, such as selenium, silver, and gold, with promising outcomes. In this overview, we provide the most current findings on cutting-edge nephroprotection through metallic nanoparticles, especially selenium, silver, and gold nanoparticles. While outlining the benefits, we outline possible methods for developing metallic nanoparticles, characterization techniques, and nephroprotection therapies. Selenium nanoparticles (SeNPs) minimize oxidative stress, a primary cause of nephrotoxicity through cell regeneration which protects kidneys. Silver nanoparticles (AgNPs) have anti-inflammatory capabilities that help alleviate kidney damage and nephrotoxicity. Gold nanoparticles (AuNPs), which are biocompatible and immune-modifying, reduce inflammation and promote renal cell regeneration, indicating nephroprotective advantages. Renal protection via the use of metallic nanoparticles represents a promising new frontier in the fight against kidney disease and other renal disorders. Metallic nanoparticles of selenium, silver, and gold can protect the kidneys by lowering oxidative stress, reducing inflammation, and improving cell repair. Through their mechanisms, these nanoparticles effectively safeguard and repair kidney function, making them suitable for treating renal diseases. The potential applications of selenium, silver, and gold nanoparticles, as well as their complex modes of action and renal penetration, provide fresh hope for improving renal health and quality of life in patients with kidney disease. The current study highlights therapeutic ability, stability, nephroprotection, and toxicity profiles, as well as the importance of continuous research in this dynamic and evolving field.
Collapse
Affiliation(s)
- Karthik K Karunakar
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| | - Elizabeth Rani Edwin
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| | - Meenaloshini Gopalakrishnan
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| | - Binoy Varghese Cheriyan
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India.
| | - Velmurugan Ramaiyan
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| | - V S Karthikha
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| | - Jerry Peliks Justin
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, TN, 602105, India
| |
Collapse
|
3
|
Huang J, Huang S, Li G, Huang G, Huang Z, Su S, Zhong T. Structure and expression of FAPP2 protein in hepatocellular carcinoma: Its effect and molecular mechanism on HepG2 and MHCC97H in clinical treatment. Int J Biol Macromol 2025; 290:139073. [PMID: 39710035 DOI: 10.1016/j.ijbiomac.2024.139073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common and lethal malignancy of the liver. The aim of this study was to reveal the structural characteristics of FAPP2, evaluate its expression in HepG2 and MHCC97H cells, and explore its potential role and molecular mechanism in the clinical treatment of hepatocellular carcinoma. The role of FAPP2 in these two cell lines was evaluated using cell function tests, such as cell proliferation, migration, and invasion tests. The interaction between FAPP2 and other related signaling pathways was further explored by bioinformatics analysis. The structural analysis of FAPP2 shows that it has specific domains and functional sites, which are closely related to its biological function in the cell. FAPP2 expression in HepG2 cells was significantly higher than that in MHCC97H cells. Functional experiments showed that overexpression of FAPP2 promoted the proliferation and migration of HepG2 cells, but no such effect was seen in MHCC97H cells. Bioinformatics analysis revealed a potential association between FAPP2 and the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Junling Huang
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Senping Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Guangzhi Li
- Department of General practice, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Guiliu Huang
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Zansong Huang
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Shixiang Su
- Department of General practice, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Tengmeng Zhong
- Department of Hepatobiliary Surgery, Baise Peoles's Hospital, Baise 533000, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
4
|
Abu-Alghayth MH, Abalkhail A, Hazazi A, Alyahyawi Y, Abdulaziz O, Alsharif A, Nassar SA, Omar BIA, Alqahtani SF, Shmrany HA, Khan FR. MicroRNAs and long non-coding RNAs In T-cell lymphoma: Mechanisms, pathway, therapeutic opportunities. Pathol Res Pract 2025; 266:155769. [PMID: 39740285 DOI: 10.1016/j.prp.2024.155769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
T-cell lymphomas represent non-Hodgkin lymphomas distinguished by the uncontrolled proliferation of malignant T lymphocytes. Classifying these neoplasms and the ongoing investigation of their underlying biological mechanisms remains challenging. Significant subtypes encompass peripheral T-cell lymphomas, anaplastic large-cell lymphomas, cutaneous T-cell lymphomas, and adult T-cell leukemia/lymphoma. A systematic literature survey used electronic databases, including PubMed, Springer Link, Google Scholar, and Web of Science. Search keywords included "T-cell lymphoma," "therapeutic approaches," "RNA therapeutics," "microRNA," and "signaling pathways". T-cell lymphomas are believed to arise from a complex interplay of genetic predispositions and environmental factors. Epstein-Barr virus (EBV) and Human T-cell leukemia virus-1 (HTLV-1), have been implicated as potential etiologic agents. While the exact molecular mechanisms are under investigation, T-cell lymphomas are distinguished by aberrant proliferation of T-cells resulting from dysregulated gene expression. Contemporary research has emphasized the significance of non-coding RNAs, including microRNAs and long non-coding RNAs, in the etiology and advancement of T-cell lymphomas. Certain miRNAs function as tumor suppressors (e.g., miR-451, miR-31, miR-150, miR-29a), while others can act as oncogenes (e.g., miR-223, miR-17-92, miR-155). Additionally, lcRNAs are responsible for modulating gene expression, and their influence on T-cell function suggests their potential outcome as therapeutic targets. Current therapeutic strategies for T-cell lymphomas predominantly rely on chemotherapy, with emerging modalities encompassing immunotherapy and targeted therapies. Despite these advancements, a substantial subset of T-cell lymphomas remains challenging to manage, especially those in advanced stages or refractory to conventional treatments. RNA-based therapeutics represent a promising strategy, offering many advantages such as targeted therapy, potential for personalized medicine, reduced side effects, rapid development, and synergy with other therapies while facing challenges in delivery, immune response, and specificity. Future research should focus on improving delivery systems, modulating immune responses, and optimizing production to unlock its full potential. This review comprehensively explored T-cell lymphomas, delving into their classification, pathogenesis, and existing therapeutic options. Additionally, we explore the evolving function of non-coding RNAs in the pathogenesis of T-cell lymphoma. Furthermore, we discuss the potential of RNA-based therapeutics as a promising treatment strategy.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia.
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia.
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Yara Alyahyawi
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Somia A Nassar
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt.
| | - Bashir Ibrahim A Omar
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Sultan F Alqahtani
- Laboratory Department, Aliman General Hospital, Riyadh 13782, Saudi Arabia.
| | - Humood Al Shmrany
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Farhan R Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Dongare DB, Nishad SS, Mastoli SY, Saraf SA, Srivastava N, Dey A. High-throughput sequencing: a breakthrough in molecular diagnosis for precision medicine. Funct Integr Genomics 2025; 25:22. [PMID: 39838192 DOI: 10.1007/s10142-025-01529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
High-resolution insights into the nucleotide arrangement within an organism's genome are pivotal for deciphering its genetic composition, function, and evolutionary trajectory. Over the years, nucleic acid sequencing has been instrumental in driving significant advancements in genomics and molecular biology. The advent of high-throughput or next-generation sequencing (NGS) technologies has revolutionized whole genome sequencing, revealing novel and intriguing features of genomes, such as single nucleotide polymorphisms and lethal mutations in both coding and non-coding regions. These platforms provide a practical approach to comprehensively identifying and analyzing whole genomes with remarkable throughput, accuracy, and scalability within a short time frame. The resulting data holds immense potential for enhancing healthcare systems, developing novel and personalized therapies, and preparing for future pandemics and outbreaks. Given the wide array of available high-throughput sequencing platforms, selecting the appropriate technology based on specific needs is crucial. However, there is limited information regarding sample preparation, sequencing principles, and output data to facilitate a comparative evaluation of these platforms. This review details various NGS technologies and approaches, examining their advantages, limitations, and future potential. Despite being in their early stages and facing challenges, ongoing advancements in NGS are expected to yield significant future benefits.
Collapse
Affiliation(s)
- Dipali Barku Dongare
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India
| | - Shaik Shireen Nishad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India
| | - Sakshi Y Mastoli
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India
| | - Shubhini A Saraf
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India
| | - Abhishek Dey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, 226002, India.
| |
Collapse
|
6
|
Jairoun AA, Al-Hemyari SS, Shahwan M, Al-Ani M, Yaseen MA, Al-Aawad MH, Alnuaimi GR, Mahalakshmi B. Empowering precision medicine: Insights from a national survey on pharmacogenomics knowledge, attitudes, and perceptions among community pharmacists in the UAE. EXPLORATORY RESEARCH IN CLINICAL AND SOCIAL PHARMACY 2024; 16:100508. [PMID: 39376795 PMCID: PMC11456781 DOI: 10.1016/j.rcsop.2024.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Background Community pharmacists are essential to pharmacogenomics implementation because they can help trainers, clinical advisors, and other medical professionals understand the importance of pharmacogenomics and encourage them to use it in their practice. This study is to evaluate the community pharmacists' understanding, attitudes, and perceptions of pharmacogenomics in the United Arab Emirates (UAE). Methods Professionals employed at community pharmacies in Abu Dhabi, Dubai, and the Northern Emirates participated in a cross-sectional study design. From July 2023 to February 2024, five pharmacy students in their last year conducted the survey. The study team employed a structured questionnaire to collect data in addition to conducting in-person interviews. The study questionnaire comprised three distinct sections namely, demographic information, knowledge of pharmacogenomics concepts, and perceptions regarding pharmacogenomics. Results A total of 586 pharmacists enrolled in the study. The average knowledge score regarding pharmacogenomics was 75.1 % with a 95 % confidence interval (CI) of [72.4 %, 77.7 %]. The average attitude score toward pharmacogenomics was 67.5 % with a 95 % CI of [66.3 %, 68.7 %]. Better pharmacogenomics knowledge among several groups: independent pharmacies (OR 1.7; 95 % CI 1.2-2.4), Pharmacists in Charge (OR 1.4; 95 % CI 1.3-2.02), pharmacists with 11-15 years of experience (OR 2.1; 95 % CI 1.4-4.2), graduates from international universities (OR 4.6; 95 % CI 1.6-12.9), and those who received training on pharmacogenomics (OR 11.9; 95 % CI 3.3-14.5). Similarly, better attitude scores were observed among independent pharmacies (OR 1.5; 95 % CI 1.1-2.1), Pharmacists in Charge (OR 1.5; 95 % CI 1.07-2.1), pharmacists with 16-20 years of experience (OR 2.1; 95 % CI 1.16-3.7), graduates regional universities (OR 1.47; 95 % CI 1.05-2.1), and those who received training on pharmacogenomics (OR 4.8; 95 % CI 3.2-7.3). Conclusion The positive attitudes toward pharmacogenomics that we found in our research indicate that community pharmacists in the United Arab Emirates are beginning to realize the potential advantages of pharmacogenomics in terms of improving patient care. Policies ensuring the privacy and confidentiality of genetic information are also necessary in considering concerns about the availability of genetic test results to insurance companies and potential employers.
Collapse
Affiliation(s)
- Ammar Abdulrahman Jairoun
- Health and Safety Department, Dubai Municipality, Dubai, United Arab Emirates
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), Pulau Pinang 11500, Malaysia
| | - Sabaa Saleh Al-Hemyari
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), Pulau Pinang 11500, Malaysia
- Pharmacy Department, Emirates Health Services, Dubai, United Arab Emirates
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Mena Al-Ani
- Developmental Biology & Cancer Department, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mustafa Aal Yaseen
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mahmood H. Al-Aawad
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ghala Rashid Alnuaimi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - B. Mahalakshmi
- Dept. of Microbiology, S.V. Medical College, Tirupati, Andhra Pradesh, India
| |
Collapse
|
7
|
Jawdekar R, Mishra V, Hatgoankar K, Tiwade YR, Bankar NJ. Precision medicine in cancer treatment: Revolutionizing care through proteomics, genomics, and personalized therapies. J Cancer Res Ther 2024; 20:1687-1693. [DOI: 10.4103/jcrt.jcrt_108_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/20/2024] [Indexed: 01/03/2025]
Abstract
ABSTRACT
Recent developments in biotechnology have allowed us to identify unique and complicated biological traits associated with cancer. Genomic profiling through next-generation sequencing (NGS) has revolutionized cancer therapy by evaluating hundreds of genes and biomarkers in a single assay. Proteomics offers blood-based biomarkers for cancer detection, categorization, and therapy monitoring. Immune oncology and chimeric antigen receptor (CAR-T cell) therapy use the immune system to combat cancer. Personalized cancer treatment is on the rise. Although precision medicine holds great promise, its widespread application faces obstacles such as lack of agreement on nomenclature, the difficulty of classifying patients into distinct groups, the difficulties of multimorbidity, magnitude, and the need for prompt intervention. This review studies advances in the era of precision medicine for cancer treatment; the application of genomic profiling techniques, NGS, proteomics, and targeted therapy; and the challenge in the application of precision medicine and the beneficial future it holds in cancer treatment.
Collapse
Affiliation(s)
- Riddhi Jawdekar
- Department of Pathology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research, Nagpur, Maharashtra, India
| | - Vaishnavi Mishra
- Department of Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Kajal Hatgoankar
- Department of Pathology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research, Nagpur, Maharashtra, India
| | - Yugeshwari R. Tiwade
- Department of Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Nandkishor J. Bankar
- Department of Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| |
Collapse
|
8
|
Gholap AD, Uddin MJ, Faiyazuddin M, Omri A, Gowri S, Khalid M. Advances in artificial intelligence for drug delivery and development: A comprehensive review. Comput Biol Med 2024; 178:108702. [PMID: 38878397 DOI: 10.1016/j.compbiomed.2024.108702] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/12/2024] [Accepted: 06/01/2024] [Indexed: 07/24/2024]
Abstract
Artificial intelligence (AI) has emerged as a powerful tool to revolutionize the healthcare sector, including drug delivery and development. This review explores the current and future applications of AI in the pharmaceutical industry, focusing on drug delivery and development. It covers various aspects such as smart drug delivery networks, sensors, drug repurposing, statistical modeling, and simulation of biotechnological and biological systems. The integration of AI with nanotechnologies and nanomedicines is also examined. AI offers significant advancements in drug discovery by efficiently identifying compounds, validating drug targets, streamlining drug structures, and prioritizing response templates. Techniques like data mining, multitask learning, and high-throughput screening contribute to better drug discovery and development innovations. The review discusses AI applications in drug formulation and delivery, clinical trials, drug safety, and pharmacovigilance. It addresses regulatory considerations and challenges associated with AI in pharmaceuticals, including privacy, data security, and interpretability of AI models. The review concludes with future perspectives, highlighting emerging trends, addressing limitations and biases in AI models, and emphasizing the importance of collaboration and knowledge sharing. It provides a comprehensive overview of AI's potential to transform the pharmaceutical industry and improve patient care while identifying further research and development areas.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401404, India.
| | - Md Jasim Uddin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Md Faiyazuddin
- School of Pharmacy, Al-Karim University, Katihar, Bihar, 854106, India; Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, India.
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, The Novel Drug and Vaccine Delivery Systems Facility, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| | - S Gowri
- PG & Research, Department of Physics, Cauvery College for Women, Tiruchirapalli, Tamil Nadu, 620018, India
| | - Mohammad Khalid
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
9
|
Zahra MA, Al-Taher A, Alquhaidan M, Hussain T, Ismail I, Raya I, Kandeel M. The synergy of artificial intelligence and personalized medicine for the enhanced diagnosis, treatment, and prevention of disease. Drug Metab Pers Ther 2024; 39:47-58. [PMID: 38997240 DOI: 10.1515/dmpt-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024]
Abstract
INTRODUCTION The completion of the Human Genome Project in 2003 marked the beginning of a transformative era in medicine. This milestone laid the foundation for personalized medicine, an innovative approach that customizes healthcare treatments. CONTENT Central to the advancement of personalized medicine is the understanding of genetic variations and their impact on drug responses. The integration of artificial intelligence (AI) into drug response trials has been pivotal in this domain. These technologies excel in handling large-scale genomic datasets and patient histories, significantly improving diagnostic accuracy, disease prediction and drug discovery. They are particularly effective in addressing complex diseases such as cancer and genetic disorders. Furthermore, the advent of wearable technology, when combined with AI, propels personalized medicine forward by offering real-time health monitoring, which is crucial for early disease detection and management. SUMMARY The integration of AI into personalized medicine represents a significant advancement in healthcare, promising more accurate diagnoses, effective treatment plans and innovative drug discoveries. OUTLOOK As technology continues to evolve, the role of AI in enhancing personalized medicine and transforming the healthcare landscape is expected to grow exponentially. This synergy between AI and healthcare holds great promise for the future, potentially revolutionizing the way healthcare is delivered and experienced.
Collapse
Affiliation(s)
- Mohammad Abu Zahra
- Department of Biomolecular Sciences, College of Veterinary Medicine, 114800 King Faisal University , Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Abdulla Al-Taher
- Department of Biomolecular Sciences, College of Veterinary Medicine, 114800 King Faisal University , Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Mohamed Alquhaidan
- Department of Biomolecular Sciences, College of Veterinary Medicine, 114800 King Faisal University , Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Izzeldin Ismail
- Department of Biomolecular Sciences, College of Veterinary Medicine, 114800 King Faisal University , Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Indah Raya
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University, Makassar, Indonesia
| | - Mahmoud Kandeel
- Department of Biomolecular Sciences, College of Veterinary Medicine, 114800 King Faisal University , Al-Hofuf, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| |
Collapse
|
10
|
Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering Innervated Musculoskeletal Tissues for Regenerative Orthopedics and Disease Modeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310614. [PMID: 38200684 DOI: 10.1002/smll.202310614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Musculoskeletal (MSK) disorders significantly burden patients and society, resulting in high healthcare costs and productivity loss. These disorders are the leading cause of physical disability, and their prevalence is expected to increase as sedentary lifestyles become common and the global population of the elderly increases. Proper innervation is critical to maintaining MSK function, and nerve damage or dysfunction underlies various MSK disorders, underscoring the potential of restoring nerve function in MSK disorder treatment. However, most MSK tissue engineering strategies have overlooked the significance of innervation. This review first expounds upon innervation in the MSK system and its importance in maintaining MSK homeostasis and functions. This will be followed by strategies for engineering MSK tissues that induce post-implantation in situ innervation or are pre-innervated. Subsequently, research progress in modeling MSK disorders using innervated MSK organoids and organs-on-chips (OoCs) is analyzed. Finally, the future development of engineering innervated MSK tissues to treat MSK disorders and recapitulate disease mechanisms is discussed. This review provides valuable insights into the underlying principles, engineering methods, and applications of innervated MSK tissues, paving the way for the development of targeted, efficacious therapies for various MSK conditions.
Collapse
Affiliation(s)
- Zhilong Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Jun Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Tiandi Xiong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
| | - Rocky S Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
11
|
Lozada-Martinez ID, Lozada-Martinez LM, Cabarcas-Martinez A, Ruiz-Gutierrez FK, Aristizabal Vanegas JG, Amorocho Lozada KJ, López-Álvarez LM, Fiorillo Moreno O, Navarro Quiroz E. Historical evolution of cancer genomics research in Latin America: a comprehensive visual and bibliometric analysis until 2023. Front Genet 2024; 15:1327243. [PMID: 38304339 PMCID: PMC10830651 DOI: 10.3389/fgene.2024.1327243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Background: Cancer genomics, as an interdisciplinary research area within the Global Cancer Research agenda, genomics and precision medicine, its important in research and clinical practice in Latin America. To date, there has been no study investigating evolution of this area in this region. The aim of this study was to evaluate for first time, the historical evolution of cancer genomics research in Latin America. Methods: Bibliometric cross-sectional study of documents on cancer genomics published by Latin American authors until 2023 in Scopus was performed. Statistical and visual analysis was performed with R programming language. Results: A total of 1534 documents were obtained. The first document of cancer genomics research was published in 1997, marking the inception of a 26-year evaluation period that extended until 2023. Among the documents, 74.3% (n = 1140) constituted original articles, followed by 22.7% (n = 349) classified as reviews. International collaboration was observed in 6.5% (n = 100) of the articles. Within the compilation of the ten most prolific authors in this region, 90% of them are from Brazil. This observed pattern extends to affiliations as well, wherein the Universidade de São Paulo emerges as the most active institution (n = 255 documents). This arrangement firmly establishes Brazil's prominence as the preeminent country in the region concerning cancer genomics research, showcasing robust collaboration networks both regionally and intercontinentally. An important transition in the studied hot topics over the last 20 years was identified, from the exploration of the human genome and the characterization of genomic and proteomic cancer profiles (1997-2010) to an in-depth investigation of cancer stem cells and personalized medicine (2011-2023). Among the array of cancer types under study, predominant attention has been directed towards breast, lung, prostate, and leukemia. Conclusion: Over the course of the past 26 years, a favorable and notable evolution has characterized cancer genomics research within Latin America, with Brazil leading the way, which possess a robust network of regional and intercontinental collaboration. Furthermore, the lines of research and hot topics have change in harmony with the region's objectives, strategies, and requisites.
Collapse
Affiliation(s)
- Ivan David Lozada-Martinez
- Epidemiology Program, Department of Graduate Studies in Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Irmak-Yazicioglu MB, Arslan A. Navigating the Intersection of Technology and Depression Precision Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:401-426. [PMID: 39261440 DOI: 10.1007/978-981-97-4402-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This chapter primarily focuses on the progress in depression precision medicine with specific emphasis on the integrative approaches that include artificial intelligence and other data, tools, and technologies. After the description of the concept of precision medicine and a comparative introduction to depression precision medicine with cancer and epilepsy, new avenues of depression precision medicine derived from integrated artificial intelligence and other sources will be presented. Additionally, less advanced areas, such as comorbidity between depression and cancer, will be examined.
Collapse
Affiliation(s)
| | - Ayla Arslan
- Department of Molecular Biology and Genetics, Üsküdar University, İstanbul, Türkiye.
| |
Collapse
|
13
|
Galiero R, Caturano A, Vetrano E, Monda M, Marfella R, Sardu C, Salvatore T, Rinaldi L, Sasso FC. Precision Medicine in Type 2 Diabetes Mellitus: Utility and Limitations. Diabetes Metab Syndr Obes 2023; 16:3669-3689. [PMID: 38028995 PMCID: PMC10658811 DOI: 10.2147/dmso.s390752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most widespread diseases in Western countries, and its incidence is constantly increasing. Epidemiological studies have shown that in the next 20 years. The number of subjects affected by T2DM will double. In recent years, owing to the development and improvement in methods for studying the genome, several authors have evaluated the association between monogenic or polygenic genetic alterations and the development of metabolic diseases and complications. In addition, sedentary lifestyle and socio-economic and pandemic factors have a great impact on the habits of the population and have significantly contributed to the increase in the incidence of metabolic disorders, obesity, T2DM, metabolic syndrome, and liver steatosis. Moreover, patients with type 2 diabetes appear to respond to antihyperglycemic drugs. Only a minority of patients could be considered true non-responders. Thus, it appears clear that the main aim of precision medicine in T2DM is to identify patients who can benefit most from a specific drug class more than from the others. Precision medicine is a discipline that evaluates the applicability of genetic, lifestyle, and environmental factors to disease development. In particular, it evaluated whether these factors could affect the development of diseases and their complications, response to diet, lifestyle, and use of drugs. Thus, the objective is to find prevention models aimed at reducing the incidence of pathology and mortality and therapeutic personalized approaches, to obtain a greater probability of response and efficacy. This review aims to evaluate the applicability of precision medicine for T2DM, a healthcare burden in many countries.
Collapse
Affiliation(s)
- Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
14
|
Alvarez-Rivera E, Ortiz-Hernández EJ, Lugo E, Lozada-Reyes LM, Boukli NM. Oncogenic Proteomics Approaches for Translational Research and HIV-Associated Malignancy Mechanisms. Proteomes 2023; 11:22. [PMID: 37489388 PMCID: PMC10366845 DOI: 10.3390/proteomes11030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Recent advances in the field of proteomics have allowed extensive insights into the molecular regulations of the cell proteome. Specifically, this allows researchers to dissect a multitude of signaling arrays while targeting for the discovery of novel protein signatures. These approaches based on data mining are becoming increasingly powerful for identifying both potential disease mechanisms as well as indicators for disease progression and overall survival predictive and prognostic molecular markers for cancer. Furthermore, mass spectrometry (MS) integrations satisfy the ongoing demand for in-depth biomarker validation. For the purpose of this review, we will highlight the current developments based on MS sensitivity, to place quantitative proteomics into clinical settings and provide a perspective to integrate proteomics data for future applications in cancer precision medicine. We will also discuss malignancies associated with oncogenic viruses such as Acquire Immunodeficiency Syndrome (AIDS) and suggest novel mechanisms behind this phenomenon. Human Immunodeficiency Virus type-1 (HIV-1) proteins are known to be oncogenic per se, to induce oxidative and endoplasmic reticulum stresses, and to be released from the infected or expressing cells. HIV-1 proteins can act alone or in collaboration with other known oncoproteins, which cause the bulk of malignancies in people living with HIV-1 on ART.
Collapse
Affiliation(s)
- Eduardo Alvarez-Rivera
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | - Emanuel J. Ortiz-Hernández
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | - Elyette Lugo
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | | | - Nawal M. Boukli
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| |
Collapse
|
15
|
Tilak T, Patel A, Kapoor A. Molecular basis and clinical application of targeted therapy in oncology. Med J Armed Forces India 2023; 79:128-135. [PMID: 36969115 PMCID: PMC10037059 DOI: 10.1016/j.mjafi.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Targeted therapy and precision oncology aim to improve efficacy and minimize side effects by targeting specific molecules involved in cancer growth and spread. With the advancements in genomics, proteomics, and transcriptomics with the accessible modalities such as next-generation sequencing, circulating tumor cells, and tumor Deoxyribonucleic Acid (DNA), more number of patients are being offered the targeted therapy in form of monoclonal antibodies and various intracellular targets, specific for their tumor. The harnessing of host immunity against the cancer cells by utilizing immune-oncology agents and chimeric antigen receptor T-cell therapy has further revolutionized the management of various cancers. These agents, however, have the challenge of managing the adverse effects that are peculiar to the class of drugs and very different from the conventional chemotherapy. This review article discusses the molecular basis, diagnostics, and use of targeted therapy in oncology.
Collapse
Affiliation(s)
- T.V.S.V.G.K. Tilak
- Professor & Head, Department of Geriatric Medicine, Armed Forces Medical College, Pune, India
| | - Amol Patel
- Senior Advisor (Medicine) & Medical Oncologist, INHS Asvini, Colaba, Mumbai, India
| | - Amul Kapoor
- Consultant & Head, MDTC, Army Hospital (R&R), Delhi Cantt, India
| |
Collapse
|