1
|
Sargsyan T, Stepanyan L, Panosyan H, Hakobyan H, Israyelyan M, Tsaturyan A, Hovhannisyan N, Vicidomini C, Mkrtchyan A, Saghyan A, Roviello GN. Synthesis and Antifungal Activity of Fmoc-Protected 1,2,4-Triazolyl-α-Amino Acids and Their Dipeptides Against Aspergillus Species. Biomolecules 2025; 15:61. [PMID: 39858455 PMCID: PMC11762334 DOI: 10.3390/biom15010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
In recent years, fungal infections have emerged as a significant health concern across veterinary species, especially in livestock such as cattle, where fungal diseases can result in considerable economic losses, as well as in humans. In particular, Aspergillus species, notably Aspergillus flavus and Aspergillus versicolor, are opportunistic pathogens that pose a threat to both animals and humans. This study focuses on the synthesis and antifungal evaluation of novel 9-fluorenylmethoxycarbonyl (Fmoc)-protected 1,2,4-triazolyl-α-amino acids and their dipeptides, designed to combat fungal pathogens. More in detail, we evaluated their antifungal activity against various species, including Aspergillus versicolor (ATCC 12134) and Aspergillus flavus (ATCC 10567). The results indicated that dipeptide 7a exhibited promising antifungal activity against Aspergillus versicolor with an IC50 value of 169.94 µM, demonstrating greater potency than fluconazole, a standard treatment for fungal infections, which showed an IC50 of 254.01 µM. Notably, dipeptide 7a showed slightly enhanced antifungal efficacy compared to fluconazole also in Aspergillus flavus (IC50 176.69 µM vs. 184.64 µM), suggesting that this dipeptide might be more potent even against this strain. Remarkably, 3a and 7a are also more potent than fluconazole against A. candidus 10711. On the other hand, the protected amino acid 3a demonstrated consistent inhibition across all tested Aspergillus strains, but with an IC50 value of 267.86 µM for Aspergillus flavus, it was less potent than fluconazole (IC50 184.64 µM), still showing some potential as a good antifungal molecule. Overall, our findings indicate that the synthesized 1,2,4-triazolyl derivatives 3a and 7a hold significant promise as potential antifungal agents in treating Aspergillus-induced diseases in cattle, as well as for broader applications in human health. Our mechanistic studies based on molecular docking revealed that compounds 3a and 7a bind to the same region of the sterol 14-α demethylase as fluconazole. Given the rising concerns about antifungal resistance, these amino acid derivatives, with their unique bioactive structures, could serve as a novel class of therapeutic agents. Further research into their in vivo efficacy and safety profiles is warranted to fully realize their potential as antifungal drugs in clinical and agricultural settings.
Collapse
Affiliation(s)
- Tatevik Sargsyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Lala Stepanyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
| | - Henrik Panosyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry, 26, Azatutian Ave., Yerevan 0014, Armenia
| | - Heghine Hakobyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
| | - Monika Israyelyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
| | - Avetis Tsaturyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Nelli Hovhannisyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Mkrtchyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Ashot Saghyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
2
|
Molina-Menor E, Carlotto N, Vidal-Verdú À, Pérez-Ferriols A, Pérez-Pastor G, Porcar M. Ecology and resistance to UV light and antibiotics of microbial communities on UV cabins in the dermatology service of a Spanish hospital. Sci Rep 2023; 13:14547. [PMID: 37666842 PMCID: PMC10477284 DOI: 10.1038/s41598-023-40996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/20/2023] [Indexed: 09/06/2023] Open
Abstract
Microorganisms colonize all possible ecological habitats, including those subjected to harsh stressors such as UV radiation. Hospitals, in particular the UV cabins used in phototherapy units, constitute an environment in which microbes are intermittently subjected to UV irradiation. This selective pressure, in addition to the frequent use of antibiotics by patients, may represent a threat in the context of the increasing problem of antimicrobial resistance. In this work, a collection of microorganisms has been established in order to study the microbiota associated to the inner and outer surfaces of UV cabins and to assess their resistance to UV light and the antibiotics frequently used in the Dermatology Service of a Spanish hospital. Our results show that UV cabins harbor a relatively diverse biocenosis dominated by typically UV-resistant microorganisms commonly found in sun-irradiated environments, such as Kocuria, Micrococcus or Deinococcus spp., but also clinically relevant taxa, such as Staphylococcus or Pseudomonas spp. The UV-radiation assays revealed that, although some isolates displayed some resistance, UV is not a major factor shaping the biocenosis living on the cabins, since a similar pool of resistant microorganisms was identified on the external surface of the cabins. Interestingly, some Staphylococcus spp. displayed resistance to one or more antibiotics, although the hospital reported no cases of antibiotic-resistance infections of the patients using the cabins. Finally, no association between UV and antibiotic resistances was found.
Collapse
Affiliation(s)
- Esther Molina-Menor
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain
| | - Nicolás Carlotto
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain
| | - Àngela Vidal-Verdú
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain
| | | | - Gemma Pérez-Pastor
- Servicio de Dermatología, Consorcio Hospital General de Valencia, Valencia, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain.
- Darwin Bioprospecting Excellence SL (Parc Científic Universitat de València, C/ Catedràtic Agustín Escardino Benlloch 9, Paterna, Spain.
| |
Collapse
|
3
|
Marsaux B, Moens F, Marzorati M, Van de Wiele T. The Intricate Connection between Bacterial α-Diversity and Fungal Engraftment in the Human Gut of Healthy and Impaired Individuals as Studied Using the In Vitro SHIME ® Model. J Fungi (Basel) 2023; 9:877. [PMID: 37754985 PMCID: PMC10532570 DOI: 10.3390/jof9090877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023] Open
Abstract
From the estimated 2.2 to 3.8 million fungal species existing on Earth, only a minor fraction actively colonizes the human gastrointestinal tract. In fact, these fungi only represent 0.1% of the gastrointestinal biosphere. Despite their low abundance, fungi play dual roles in human health-both beneficial and detrimental. Fungal infections are often associated with bacterial dysbiosis following antibiotic use, yet our understanding of gut fungi-bacteria interactions remains limited. Here, we used the SHIME® gut model to explore the colonization of human fecal-derived fungi across gastrointestinal compartments. We accounted for the high inter-individual microbial diversity by using fecal samples from healthy adults, healthy babies, and Crohn's disease patients. Using quantitative Polymerase Chain Reaction and targeted next-generation sequencing, we demonstrated that SHIME®-colonized mycobiomes change upon loss of transient colonizers. In addition, SHIME® reactors from Crohn's disease patients contained comparable bacterial levels as healthy adults but higher fungal concentrations, indicating unpredictable correlations between fungal levels and total bacterial counts. Our findings rather link higher bacterial α-diversity to limited fungal growth, tied to colonization resistance. Hence, while healthy individuals had fewer fungi engrafting the colonic reactors, low α-diversity in impaired (Crohn's disease patients) or immature (babies) microbiota was associated with greater fungal abundance. To validate, antibiotic-treated healthy colonic microbiomes demonstrated increased fungal colonization susceptibility, and bacterial taxa that were negatively correlated with fungal expansion were identified. In summary, fungal colonization varied individually and transiently, and bacterial resistance to fungal overgrowth was more related with specific bacterial genera than total bacterial load. This study sheds light on fungal-bacterial dynamics in the human gut.
Collapse
Affiliation(s)
- Benoît Marsaux
- ProDigest B.V., Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (F.M.); (M.M.); (T.V.d.W.)
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Frédéric Moens
- ProDigest B.V., Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (F.M.); (M.M.); (T.V.d.W.)
| | - Massimo Marzorati
- ProDigest B.V., Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (F.M.); (M.M.); (T.V.d.W.)
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Van de Wiele
- ProDigest B.V., Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (F.M.); (M.M.); (T.V.d.W.)
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Samaddar A, Sharma A. First case of neonatal fungemia caused by Aureobasidium melanogenum. J Mycol Med 2023; 33:101334. [PMID: 36270215 DOI: 10.1016/j.mycmed.2022.101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022]
Abstract
Aureobasidium melanogenum is a saprophytic, dematiaceous, yeast-like fungus rarely implicated in human infections. Here, we report the first case of A. melanogenum fungemia in a 30-week-old preterm, very low birth weight neonate born to a primigravida with history of gestational diabetes, pregnancy induced hypertension and oligohydramnios. The baby developed respiratory distress, hypotension, bradycardia, coagulopathy and septic shock shortly after birth, and eventually succumbed to multiple organ dysfunction syndrome on day 9 of life. Paired blood culture showed growth of a dematiaceous yeast-like fungus which was identified as A. melanogenum by rDNA internal transcribed spacer (ITS) sequencing. Antifungal susceptibility testing of the isolate showed high minimum inhibitory concentration of fluconazole (32 µg/mL), indicating resistance. Diagnosis of A. melanogenum fungemia is difficult as it is easily confused with Candida species in Gram stained smears and similar colony morphology during the initial stages of growth. Also, the conventional diagnostic methods, such as VITEK 2 and MALDI-TOF MS are unreliable for identification of this pathogen. Accurate identification using molecular techniques is crucial for making treatment decisions as A. melanogenum shows substantial antifungal resistance. Clinicians should be aware that yeast-like cells in blood culture are not only indicative of Candida species, but also rare pathogens like A. melanogenum and should exercise caution while starting fluconazole therapy. At present, there are no established susceptibility breakpoints for Aureobasidium spp. Further studies are needed to determine the optimal treatment for such infections.
Collapse
Affiliation(s)
- Arghadip Samaddar
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Anuradha Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|