1
|
Abstract
Fluid secretion by exocrine glandular organs is essential to the survival of mammals. Each glandular unit within the body is uniquely organized to carry out its own specific functions, with failure to establish these specialized structures resulting in impaired organ function. Here, we review glandular organs in terms of shared and divergent architecture. We first describe the structural organization of the diverse glandular secretory units (the end-pieces) and their fluid transporting systems (the ducts) within the mammalian system, focusing on how tissue architecture corresponds to functional output. We then highlight how defects in development of end-piece and ductal architecture impacts secretory function. Finally, we discuss how knowledge of exocrine gland structure-function relationships can be applied to the development of new diagnostics, regenerative approaches and tissue regeneration.
Collapse
Affiliation(s)
- Sameed Khan
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Fitch
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Ripla Arora
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Lorenzo PI, Cobo-Vuilleumier N, Martín-Vázquez E, López-Noriega L, Gauthier BR. Harnessing the Endogenous Plasticity of Pancreatic Islets: A Feasible Regenerative Medicine Therapy for Diabetes? Int J Mol Sci 2021; 22:4239. [PMID: 33921851 PMCID: PMC8073058 DOI: 10.3390/ijms22084239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a chronic metabolic disease caused by an absolute or relative deficiency in functional pancreatic β-cells that leads to defective control of blood glucose. Current treatments for diabetes, despite their great beneficial effects on clinical symptoms, are not curative treatments, leading to a chronic dependence on insulin throughout life that does not prevent the secondary complications associated with diabetes. The overwhelming increase in DM incidence has led to a search for novel antidiabetic therapies aiming at the regeneration of the lost functional β-cells to allow the re-establishment of the endogenous glucose homeostasis. Here we review several aspects that must be considered for the development of novel and successful regenerative therapies for diabetes: first, the need to maintain the heterogeneity of islet β-cells with several subpopulations of β-cells characterized by different transcriptomic profiles correlating with differences in functionality and in resistance/behavior under stress conditions; second, the existence of an intrinsic islet plasticity that allows stimulus-mediated transcriptome alterations that trigger the transdifferentiation of islet non-β-cells into β-cells; and finally, the possibility of using agents that promote a fully functional/mature β-cell phenotype to reduce and reverse the process of dedifferentiation of β-cells during diabetes.
Collapse
Affiliation(s)
- Petra I. Lorenzo
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain; (N.C.-V.); (E.M.-V.); (L.L.-N.)
| | - Nadia Cobo-Vuilleumier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain; (N.C.-V.); (E.M.-V.); (L.L.-N.)
| | - Eugenia Martín-Vázquez
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain; (N.C.-V.); (E.M.-V.); (L.L.-N.)
| | - Livia López-Noriega
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain; (N.C.-V.); (E.M.-V.); (L.L.-N.)
| | - Benoit R. Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, 41092 Seville, Spain; (N.C.-V.); (E.M.-V.); (L.L.-N.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 028029 Madrid, Spain
| |
Collapse
|
3
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
4
|
Pancreatic Progenitors and Organoids as a Prerequisite to Model Pancreatic Diseases and Cancer. Stem Cells Int 2019; 2019:9301382. [PMID: 30930950 PMCID: PMC6410438 DOI: 10.1155/2019/9301382] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/15/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are characterized by their unique capacity to stepwise differentiate towards any particular cell type in an adult organism. Pluripotent stem cells provide a beneficial platform to model hereditary diseases and even cancer development. While the incidence of pancreatic diseases such as diabetes and pancreatitis is increasing, the understanding of the underlying pathogenesis of particular diseases remains limited. Only a few recent publications have contributed to the characterization of human pancreatic development in the fetal stage. Hence, most knowledge of pancreatic specification is based on murine embryology. Optimizing and understanding current in vitro protocols for pancreatic differentiation of ESCs and iPSCs constitutes a prerequisite to generate functional pancreatic cells for better disease modeling and drug discovery. Moreover, human pancreatic organoids derived from pluripotent stem cells, organ-restricted stem cells, and tumor samples provide a powerful technology to model carcinogenesis and hereditary diseases independent of genetically engineered mouse models. Herein, we summarize recent advances in directed differentiation of pancreatic organoids comprising endocrine cell types. Beyond that, we illustrate up-and-coming applications for organoid-based platforms.
Collapse
|
5
|
Scavuzzo MA, Chmielowiec J, Yang D, Wamble K, Chaboub LS, Duraine L, Tepe B, Glasgow SM, Arenkiel BR, Brou C, Deneen B, Borowiak M. Pancreatic Cell Fate Determination Relies on Notch Ligand Trafficking by NFIA. Cell Rep 2018; 25:3811-3827.e7. [PMID: 30590051 DOI: 10.1016/j.celrep.2018.11.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/28/2018] [Accepted: 11/20/2018] [Indexed: 12/24/2022] Open
Abstract
Notch is activated globally in pancreatic progenitors; however, for progenitors to differentiate into endocrine cells, they must escape Notch activation to express Neurogenin-3. Here, we find that the transcription factor nuclear factor I/A (NFIA) promotes endocrine development by regulating Notch ligand Dll1 trafficking. Pancreatic deletion of NFIA leads to cell fate defects, with increased duct and decreased endocrine formation, while ectopic expression promotes endocrine formation in mice and human pancreatic progenitors. NFIA-deficient mice exhibit dysregulation of trafficking-related genes including increased expression of Mib1, which acts to target Dll1 for endocytosis. We find that NFIA binds to the Mib1 promoter, with loss of NFIA leading to an increase in Dll1 internalization and enhanced Notch activation with rescue of the cell fate defects after Mib1 knockdown. This study reveals NFIA as a pro-endocrine factor in the pancreas, acting to repress Mib1, inhibit Dll1 endocytosis and thus promote escape from Notch activation.
Collapse
Affiliation(s)
- Marissa A Scavuzzo
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jolanta Chmielowiec
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diane Yang
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katrina Wamble
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lesley S Chaboub
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lita Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Burak Tepe
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stacey M Glasgow
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christel Brou
- Department of Cell Biology and Infection, Institute Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Benjamin Deneen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Malgorzata Borowiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA; Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Association of PAX4 gene R192H polymorphisms in Chinese Han type 2 diabetes. Int J Diabetes Dev Ctries 2018. [DOI: 10.1007/s13410-018-0612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
7
|
Petersen MB, Gonçalves CA, Kim YH, Grapin-Botton A. Recapitulating and Deciphering Human Pancreas Development From Human Pluripotent Stem Cells in a Dish. Curr Top Dev Biol 2018; 129:143-190. [DOI: 10.1016/bs.ctdb.2018.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Scoville DW, Kang HS, Jetten AM. GLIS1-3: emerging roles in reprogramming, stem and progenitor cell differentiation and maintenance. Stem Cell Investig 2017; 4:80. [PMID: 29057252 DOI: 10.21037/sci.2017.09.01] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/27/2017] [Indexed: 12/12/2022]
Abstract
Recent studies have provided evidence for a regulatory role of GLI-similar (GLIS) transcription factors in reprogramming, maintenance and differentiation of several stem and progenitor cell populations. GLIS1, in conjunction with several other reprogramming factors, was shown to markedly increase the efficiency of generating induced pluripotent stem cells (iPSC) from somatic cells. GLIS2 has been reported to contribute to the maintenance of the pluripotent state in hPSCs. In addition, GLIS2 has a function in regulating self-renewal of hematopoietic progenitors and megakaryocytic differentiation. GLIS3 plays a critical role during the development of several tissues. GLIS3 is able to promote reprogramming of human fibroblasts into retinal pigmented epithelial (RPE) cells. Moreover, GLIS3 is essential for spermatogonial stem cell renewal and spermatogonial progenitor cell differentiation. During pancreas development, GLIS3 protein is first detectable in bipotent pancreatic progenitors and pro-endocrine progenitors and plays a critical role in the generation of pancreatic beta cells. Here, we review the current status of the roles of GLIS proteins in the maintenance and differentiation of these different stem and progenitor cells.
Collapse
Affiliation(s)
- David W Scoville
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
9
|
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12349] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine; University of California; Los Angeles CA 90095 U.S.A
| | - Shahrad Taheri
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Abdul B. Abou-Samra
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| |
Collapse
|
10
|
Lorenzo PI, Juárez-Vicente F, Cobo-Vuilleumier N, García-Domínguez M, Gauthier BR. The Diabetes-Linked Transcription Factor PAX4: From Gene to Functional Consequences. Genes (Basel) 2017; 8:genes8030101. [PMID: 28282933 PMCID: PMC5368705 DOI: 10.3390/genes8030101] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Paired box 4 (PAX4) is a key factor in the generation of insulin producing β-cells during embryonic development. In adult islets, PAX4 expression is sequestered to a subset of β-cells that are prone to proliferation and more resistant to stress-induced apoptosis. The importance of this transcription factor for adequate pancreatic islets functionality has been manifested by the association of mutations in PAX4 with the development of diabetes, independently of its etiology. Overexpression of this factor in adult islets stimulates β-cell proliferation and increases their resistance to apoptosis. Additionally, in an experimental model of autoimmune diabetes, a novel immunomodulatory function for this factor has been suggested. Altogether these data pinpoint at PAX4 as an important target for novel regenerative therapies for diabetes treatment, aiming at the preservation of the remaining β-cells in parallel to the stimulation of their proliferation to replenish the β-cell mass lost during the progression of the disease. However, the adequate development of such therapies requires the knowledge of the molecular mechanisms controlling the expression of PAX4 as well as the downstream effectors that could account for PAX4 action.
Collapse
Affiliation(s)
- Petra I Lorenzo
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Francisco Juárez-Vicente
- Cell differentiation Lab, Department of Cell Signaling and Dynamics, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Nadia Cobo-Vuilleumier
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Mario García-Domínguez
- Cell differentiation Lab, Department of Cell Signaling and Dynamics, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Benoit R Gauthier
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| |
Collapse
|
11
|
Martin-Montalvo A, Lorenzo PI, López-Noriega L, Gauthier BR. Targeting pancreatic expressed PAX genes for the treatment of diabetes mellitus and pancreatic neuroendocrine tumors. Expert Opin Ther Targets 2016; 21:77-89. [PMID: 27841034 DOI: 10.1080/14728222.2017.1257000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Four members of the PAX family, PAX2, PAX4, PAX6 and PAX8 are known to be expressed in the pancreas. Accumulated evidences indicate that several pancreatic expressed PAX genes play a significant role in pancreatic development/functionality and alterations in these genes are involved in the pathogenesis of pancreatic diseases. Areas covered: In this review, we summarize the ongoing research related to pancreatic PAX genes in diabetes mellitus and pancreatic neuroendocrine tumors. We dissect the current knowledge at different levels; from mechanistic studies in cell lines performed to understand the molecular processes controlled by pancreatic PAX genes, to in vivo studies using rodent models that over-express or lack specific PAX genes. Finally, we describe human studies associating variants on pancreatic-expressed PAX genes with pancreatic diseases. Expert opinion: Based on the current literature, we propose that future interventions to treat pancreatic neuroendocrine tumors and diabetes mellitus could be developed via the modulation of PAX4 and/or PAX6 regulated pathways.
Collapse
Affiliation(s)
- Alejandro Martin-Montalvo
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| | - Petra I Lorenzo
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| | - Livia López-Noriega
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| | - Benoit R Gauthier
- a Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Avenida Américo Vespucio , Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology (PIDRU LAB) , Sevilla , Spain
| |
Collapse
|
12
|
Massumi M, Pourasgari F, Nalla A, Batchuluun B, Nagy K, Neely E, Gull R, Nagy A, Wheeler MB. An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells. PLoS One 2016; 11:e0164457. [PMID: 27755557 PMCID: PMC5068782 DOI: 10.1371/journal.pone.0164457] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/26/2016] [Indexed: 12/28/2022] Open
Abstract
The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have developed an abbreviated five-stage protocol (25–30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP, SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL, and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells, 1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glucose in static incubation and perifusion studies, and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion, targeting selected signaling pathways for 25–30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs, small molecules or genes that may have potential to influence beta-cell function.
Collapse
Affiliation(s)
- Mohammad Massumi
- Departments of Medicine and Physiology, Faculty of Medicine, University of Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Farzaneh Pourasgari
- Departments of Medicine and Physiology, Faculty of Medicine, University of Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Amarnadh Nalla
- Departments of Medicine and Physiology, Faculty of Medicine, University of Toronto, ON, Canada.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Battsetseg Batchuluun
- Departments of Medicine and Physiology, Faculty of Medicine, University of Toronto, ON, Canada
| | - Kristina Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Eric Neely
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rida Gull
- Departments of Medicine and Physiology, Faculty of Medicine, University of Toronto, ON, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michael B Wheeler
- Departments of Medicine and Physiology, Faculty of Medicine, University of Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
13
|
Mellado-Gil JM, Jiménez-Moreno CM, Martin-Montalvo A, Alvarez-Mercado AI, Fuente-Martin E, Cobo-Vuilleumier N, Lorenzo PI, Bru-Tari E, Herrera-Gómez IDG, López-Noriega L, Pérez-Florido J, Santoyo-López J, Spyrantis A, Meda P, Boehm BO, Quesada I, Gauthier BR. PAX4 preserves endoplasmic reticulum integrity preventing beta cell degeneration in a mouse model of type 1 diabetes mellitus. Diabetologia 2016; 59:755-65. [PMID: 26813254 PMCID: PMC4779135 DOI: 10.1007/s00125-016-3864-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/17/2015] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS A strategy to enhance pancreatic islet functional beta cell mass (BCM) while restraining inflammation, through the manipulation of molecular and cellular targets, would provide a means to counteract the deteriorating glycaemic control associated with diabetes mellitus. The aims of the current study were to investigate the therapeutic potential of such a target, the islet-enriched and diabetes-linked transcription factor paired box 4 (PAX4), to restrain experimental autoimmune diabetes (EAD) in the RIP-B7.1 mouse model background and to characterise putative cellular mechanisms associated with preserved BCM. METHODS Two groups of RIP-B7.1 mice were genetically engineered to: (1) conditionally express either PAX4 (BPTL) or its diabetes-linked mutant variant R129W (mutBPTL) using doxycycline (DOX); and (2) constitutively express luciferase in beta cells through the use of RIP. Mice were treated or not with DOX, and EAD was induced by immunisation with a murine preproinsulin II cDNA expression plasmid. The development of hyperglycaemia was monitored for up to 4 weeks following immunisation and alterations in the BCM were assessed weekly by non-invasive in vivo bioluminescence intensity (BLI). In parallel, BCM, islet cell proliferation and apoptosis were evaluated by immunocytochemistry. Alterations in PAX4- and PAX4R129W-mediated islet gene expression were investigated by microarray profiling. PAX4 preservation of endoplasmic reticulum (ER) homeostasis was assessed using thapsigargin, electron microscopy and intracellular calcium measurements. RESULTS PAX4 overexpression blunted EAD, whereas the diabetes-linked mutant variant PAX4R129W did not convey protection. PAX4-expressing islets exhibited reduced insulitis and decreased beta cell apoptosis, correlating with diminished DNA damage and increased islet cell proliferation. Microarray profiling revealed that PAX4 but not PAX4R129W targeted expression of genes implicated in cell cycle and ER homeostasis. Consistent with the latter, islets overexpressing PAX4 were protected against thapsigargin-mediated ER-stress-related apoptosis. Luminal swelling associated with ER stress induced by thapsigargin was rescued in PAX4-overexpressing beta cells, correlating with preserved cytosolic calcium oscillations in response to glucose. In contrast, RNA interference mediated repression of PAX4-sensitised MIN6 cells to thapsigargin cell death. CONCLUSIONS/INTERPRETATION The coordinated regulation of distinct cellular pathways particularly related to ER homeostasis by PAX4 not achieved by the mutant variant PAX4R129W alleviates beta cell degeneration and protects against diabetes mellitus. The raw data for the RNA microarray described herein are accessible in the Gene Expression Omnibus database under accession number GSE62846.
Collapse
Affiliation(s)
- José Manuel Mellado-Gil
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Carmen María Jiménez-Moreno
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Alejandro Martin-Montalvo
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Ana Isabel Alvarez-Mercado
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Esther Fuente-Martin
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Petra Isabel Lorenzo
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Eva Bru-Tari
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Instituto de Bioingeniería, Universidad Miguel Hernandez, Elche, Spain
| | - Irene de Gracia Herrera-Gómez
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Livia López-Noriega
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Javier Pérez-Florido
- Medical Genome Project, Genomics & Bioinformatics Platform of Andalusia, Seville, Spain
| | - Javier Santoyo-López
- Medical Genome Project, Genomics & Bioinformatics Platform of Andalusia, Seville, Spain
- Edinburgh Genomics, University of Edinburgh, Edinburgh, UK
| | - Andreas Spyrantis
- Department of Internal Medicine, Ulm University Medical Centre, Ulm, Germany
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Bernhard O Boehm
- Department of Internal Medicine, Ulm University Medical Centre, Ulm, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
- Imperial College, London, UK
| | - Ivan Quesada
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Instituto de Bioingeniería, Universidad Miguel Hernandez, Elche, Spain
| | - Benoit R Gauthier
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain.
| |
Collapse
|
14
|
Tan MT, Hong Y, Han J, Jiang X. Expression of Hes1 during transdifferentiation of hUMSCs into islet progenitor cells. Shijie Huaren Xiaohua Zazhi 2016; 24:1357-1365. [DOI: 10.11569/wcjd.v24.i9.1357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To detect the expression of Hes1 during the transdifferentiation of human umbilical cord mesenchyreal stem cells (hUMSCs) into islet progenitor cells.
METHODS: After hUMSCs were isolated, cultivated and identified, hUMSCs at passage 5 were subjected staged induction to differentiate into islet precursor cells. Cell morphology was observed using an inverted phase contrast microscope. The expressions of insulin, neurogenin 3 (Ngn3) and glucagon after induction were detected by immunocytochemistry. The expression of Hes1 and Ngn3 was evaluated by immunocytochemistry and Western blot on 7 d, 14 d, and 21 d after induction.
RESULTS: After induction, HUMSCs became larger and colony-like, which is the characteristic of pancreatic progenitor cells. The expression of Ngn3, insulin and glucagon was positive. The level of Ngn3 increased gradually in the process of induction, peaked on 14 d (E2) and fell down on 21 d (E3). However, Hes1 remained unchanged from 7 d to 14 d, but was reduced on 21 d (E3).
CONCLUSION: The Notch signaling pathways' node molecule Hes1 may play an important role in the transdifferentiation of hUMSCs into islet progenitor cells.
Collapse
|
15
|
Abstract
Lineage tracing studies have revealed that transcription factors play a cardinal role in pancreatic development, differentiation and function. Three transitions define pancreatic organogenesis, differentiation and maturation. In the primary transition, when pancreatic organogenesis is initiated, there is active proliferation of pancreatic progenitor cells. During the secondary transition, defined by differentiation, there is growth, branching, differentiation and pancreatic cell lineage allocation. The tertiary transition is characterized by differentiated pancreatic cells that undergo further remodeling, including apoptosis, replication and neogenesis thereby establishing a mature organ. Transcription factors function at multiple levels and may regulate one another and auto-regulate. The interaction between extrinsic signals from non-pancreatic tissues and intrinsic transcription factors form a complex gene regulatory network ultimately culminating in the different cell lineages and tissue types in the developing pancreas. Mutations in these transcription factors clinically manifest as subtypes of diabetes mellitus. Current treatment for diabetes is not curative and thus, developmental biologists and stem cell researchers are utilizing knowledge of normal pancreatic development to explore novel therapeutic alternatives. This review summarizes current knowledge of transcription factors involved in pancreatic development and β-cell differentiation in rodents.
Collapse
Affiliation(s)
- Reshmi Dassaye
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Strini Naidoo
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Marlon E Cerf
- b Diabetes Discovery Platform, South African Medical Research Council , Cape Town , South Africa
| |
Collapse
|
16
|
Abdelalim EM, Emara MM. Pluripotent Stem Cell-Derived Pancreatic β Cells: From In Vitro Maturation to Clinical Application. RECENT ADVANCES IN STEM CELLS 2016. [DOI: 10.1007/978-3-319-33270-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Li XY, Zhai WJ, Teng CB. Notch Signaling in Pancreatic Development. Int J Mol Sci 2015; 17:ijms17010048. [PMID: 26729103 PMCID: PMC4730293 DOI: 10.3390/ijms17010048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 12/12/2022] Open
Abstract
The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor differentiation and maintenance. The targeted inactivation of the Notch pathway components promotes premature differentiation of the endocrine pancreas. However, there is still the contrary opinion that Notch signaling specifies the endocrine lineage. Here, we review the current knowledge of the Notch signaling pathway in pancreatic development and its crosstalk with the Wingless and INT-1 (Wnt) and fibroblast growth factor (FGF) pathways.
Collapse
Affiliation(s)
- Xu-Yan Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Wen-Jun Zhai
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
18
|
Lorenzo PI, Fuente-Martín E, Brun T, Cobo-Vuilleumier N, Jimenez-Moreno CM, G Herrera Gomez I, López Noriega L, Mellado-Gil JM, Martin-Montalvo A, Soria B, Gauthier BR. PAX4 Defines an Expandable β-Cell Subpopulation in the Adult Pancreatic Islet. Sci Rep 2015; 5:15672. [PMID: 26503027 PMCID: PMC4622080 DOI: 10.1038/srep15672] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022] Open
Abstract
PAX4 is a key regulator of pancreatic islet development whilst in adult acute overexpression protects β-cells against stress-induced apoptosis and stimulates proliferation. Nonetheless, sustained PAX4 expression promotes β-cell dedifferentiation and hyperglycemia, mimicking β-cell failure in diabetic patients. Herein, we study mechanisms that allow stringent PAX4 regulation endowing favorable β-cell adaptation in response to changing environment without loss of identity. To this end, PAX4 expression was monitored using a mouse bearing the enhanced green fluorescent protein (GFP) and cre recombinase construct under the control of the islet specific pax4 promoter. GFP was detected in 30% of islet cells predominantly composed of PAX4-enriched β-cells that responded to glucose-induced insulin secretion. Lineage tracing demonstrated that all islet cells were derived from PAX4+ progenitor cells but that GFP expression was confined to a subpopulation at birth which declined with age correlating with reduced replication. However, this GFP+ subpopulation expanded during pregnancy, a state of active β-cell replication. Accordingly, enhanced proliferation was exclusively detected in GFP+ cells consistent with cell cycle genes being stimulated in PAX4-overexpressing islets. Under stress conditions, GFP+ cells were more resistant to apoptosis than their GFP- counterparts. Our data suggest PAX4 defines an expandable β-cell sub population within adult islets.
Collapse
Affiliation(s)
- Petra I Lorenzo
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain
| | - Esther Fuente-Martín
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain
| | - Thierry Brun
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nadia Cobo-Vuilleumier
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain
| | - Carmen María Jimenez-Moreno
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain
| | - Irene G Herrera Gomez
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain
| | - Livia López Noriega
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain
| | - José Manuel Mellado-Gil
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain
| | - Alejandro Martin-Montalvo
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain
| | - Bernat Soria
- Cellular Therapy of Diabetes Mellitus and its Complications, Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain.,CIBERDEM, Instituto Carlos III, Madrid, Spain
| | - Benoit R Gauthier
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine, Seville, Spain
| |
Collapse
|
19
|
PAX4 Gene Transfer Induces α-to-β Cell Phenotypic Conversion and Confers Therapeutic Benefits for Diabetes Treatment. Mol Ther 2015; 24:251-260. [PMID: 26435408 DOI: 10.1038/mt.2015.181] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/25/2015] [Indexed: 12/19/2022] Open
Abstract
The transcription factor Pax4 plays a critical role in the determination of α- versus β-cell lineage during endocrine pancreas development. In this study, we explored whether Pax4 gene transfer into α-cells could convert them into functional β-cells and thus provide therapeutic benefits for insulin-deficient diabetes. We found that Pax4 delivered by adenoviral vector, Ad5.Pax4, induced insulin expression and reduced glucagon expression in αTC1.9 cells. More importantly, these cells exhibited glucose-stimulated insulin secretion, a key feature of functional β-cells. When injected into streptozotocin-induced diabetic mice, Pax4-treated αTC1.9 cells significantly reduced blood glucose, and the mice showed better glucose tolerance, supporting that Pax4 gene transfer into αTC1.9 cells resulted in the formation of functional β-cells. Furthermore, treatment of primary human islets with Ad5.Pax4 resulted in significantly improved β-cell function. Detection of glucagon(+)/Pax4(+)/Insulin(+) cells argued for Pax4-induced α-to-β cell transitioning. This was further supported by quantification of glucagon and insulin bi-hormonal cells, which was significantly higher in Pax4-treated islets than in controls. Finally, direct administration of Ad5.Pax4 into the pancreas of insulin-deficient mice ameliorated hyperglycemia. Taken together, our data demonstrate that manipulating Pax4 gene expression represents a viable therapeutic strategy for the treatment of insulin deficient diabetes.
Collapse
|
20
|
Pax4 acts as a key player in pancreas development and plasticity. Semin Cell Dev Biol 2015; 44:107-14. [DOI: 10.1016/j.semcdb.2015.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/05/2015] [Accepted: 08/22/2015] [Indexed: 11/19/2022]
|
21
|
Jamaluddin JL, Huri HZ, Vethakkan SR, Mustafa N. Pancreatic gene variants potentially associated with dipeptidyl peptidase-4 inhibitor treatment response in Type 2 diabetes. Pharmacogenomics 2015; 15:235-49. [PMID: 24444412 DOI: 10.2217/pgs.13.234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the adult pancreas, the expression of the genes PAX4, KCNQ1, TCF7L2, KCNJ11, ABCC8, MTNR1B and WFS1 are mainly restricted to β cells to maintain glucose homeostasis. We have identified these genes as the main regulators of incretin-mediated actions, and therefore they may potentially influence the response of DPP-4 inhibitors. This review represents the first detailed exploration of pancreatic β-cell genes and their variant mechanisms, which could potentially affect the response of DPP-4 inhibitors in Type 2 diabetes. We have focused on the signaling pathways of these genes to understand their roles in gastrointestinal incretin-mediated effects; and finally, we sought to associate gene mechanisms with their Type 2 diabetes risk variants to predict the responses of DPP-4 inhibitors for this disease.
Collapse
Affiliation(s)
- Jazlina Liza Jamaluddin
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
22
|
Pax4 and Arx Represent Crucial Regulators of the Development of the Endocrine Pancreas. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/981569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of the endocrine pancreas is under the control of highly orchestrated, cross-interacting transcription factors. Pancreas genesis is initiated by the emergence of a Pdx1/Ptf1a marked territory at the foregut/midgut junction. A small fraction of pancreatic fated cells activates the expression of the bHLH transcription factor Ngn3 triggering the endocrine cell program, thus giving rise to beta-, alpha-, delta-, PP-, and epsilon-cells, producing insulin, glucagon, somatostatin, pancreatic polypeptide, and ghrelin, respectively. Two transcription factors, Pax4 and Arx, play a crucial role in differential endocrine cell subtype specification. They were shown to be necessary and sufficient to endow endocrine progenitors with either a beta- or alpha-cell destiny. Interestingly, whereas the forced expression of Arx in beta-cells converts these into cells exhibiting alpha- and PP-cell characteristics, the sole expression of Pax4 in alpha-cells promotes alpha-cell-neogenesis and the acquisition of beta-cell features, the resulting beta-like cells being capable of counteracting chemically induced diabetes. Gaining new insights into the molecular mechanisms controlling Pax4 and Arx expression in the endocrine pancreas may therefore pave new avenues for the therapy of diabetes.
Collapse
|
23
|
Abstract
Over the last decade, it has been discovered that the transcription factor Sox9 plays several critical roles in governing the development of the embryonic pancreas and the homeostasis of the mature organ. While analysis of pancreata from patients affected by the Sox9 haploinsufficiency syndrome campomelic dysplasia initially alluded to a functional role of Sox9 in pancreatic morphogenesis, transgenic mouse models have been instrumental in mechanistically dissecting such roles. Although initially defined as a marker and maintenance factor for pancreatic progenitors, Sox9 is now considered to fulfill additional indispensable functions during pancreogenesis and in the postnatal organ through its interactions with other transcription factors and signaling pathways such as Fgf and Notch. In addition to maintaining both multipotent and bipotent pancreatic progenitors, Sox9 is also required for initiating endocrine differentiation and maintaining pancreatic ductal identity, and it has recently been unveiled as a key player in the initiation of pancreatic cancer. These functions of Sox9 are discussed in this article, with special emphasis on the knowledge gained from various loss-of-function and lineage tracing mouse models. Also, current controversies regarding Sox9 function in healthy and injured adult pancreas and unanswered questions and avenues of future study are discussed.
Collapse
Affiliation(s)
- Philip A Seymour
- The Danish Stem Cell Center (DanStem), University of Copenhagen, Panum Institute, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
24
|
Chmielowiec J, Borowiak M. In vitro differentiation and expansion of human pluripotent stem cell-derived pancreatic progenitors. Rev Diabet Stud 2014; 11:19-34. [PMID: 25148365 DOI: 10.1900/rds.2014.11.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recent progress in understanding stem cell biology has been remarkable, especially in deciphering signals that support differentiation towards tissue-specific lineages. This achievement positions us firmly at the beginning of an era of patient-specific regenerative medicine and human disease modeling. It will be necessary to equip the progress in this era with a reliable source of self-renewing progenitor cells that differentiate into functional target cells. The generation of pancreatic progenitors that mature in vivo into functional beta-cells has raised the hope for new therapeutic options in diabetes, but key challenges still remain including the production of sufficient numbers of cells for research and transplantation. Recent approaches to this problem have shown that the presence of organ- and stage-specific mesenchyme improves the generation of progenitors, from endoderm to endocrine cells. Alternatively, utilization of three-dimensional culture may improve the efficiency and yield of directed differentiation. Here, we review the current knowledge of pancreatic directed differentiation and ex vivo expansion of pancreatic progenitors, including recent advances in differentiation strategies for the generation of pancreatic progenitors, and we discuss persistent challenges which will need to be overcome before personalized cell-based therapy becomes a practical strategy.
Collapse
Affiliation(s)
- Jolanta Chmielowiec
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Malgorzata Borowiak
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
25
|
Shih HP, Wang A, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol 2013; 29:81-105. [PMID: 23909279 DOI: 10.1146/annurev-cellbio-101512-122405] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pancreas is an essential organ for proper nutrient metabolism and has both endocrine and exocrine function. In the past two decades, knowledge of how the pancreas develops during embryogenesis has significantly increased, largely from developmental studies in model organisms. Specifically, the molecular basis of pancreatic lineage decisions and cell differentiation is well studied. Still not well understood are the mechanisms governing three-dimensional morphogenesis of the organ. Strategies to derive transplantable β-cells in vitro for diabetes treatment have benefited from the accumulated knowledge of pancreas development. In this review, we provide an overview of the current understanding of pancreatic lineage determination and organogenesis, and we examine future implications of these findings for treatment of diabetes mellitus through cell replacement.
Collapse
Affiliation(s)
- Hung Ping Shih
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093-0695;
| | | | | |
Collapse
|
26
|
O'Dowd JF, Stocker CJ. Endocrine pancreatic development: impact of obesity and diet. Front Physiol 2013; 4:170. [PMID: 23882220 PMCID: PMC3714448 DOI: 10.3389/fphys.2013.00170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/18/2013] [Indexed: 12/16/2022] Open
Abstract
During embryonic development, multipotent endodermal cells differentiate to form the pancreas. Islet cell clusters arising from the pancreatic bud form the acini tissue and exocrine ducts whilst pancreatic islets form around the edges of the clusters. The successive steps of islet differentiation are controlled by a complex network of transcription factors and signals that influence cell differentiation, growth and lineage. A Westernized lifestyle has led to an increased consumption of a high saturated fat diet, and an increase in maternal obesity. The developing fetus is highly sensitive to the intrauterine environment, therefore any alteration in maternal nutrition during gestation and lactation which affects the in-utero environment during the key developmental phases of the pancreas may change the factors controlling β-cell development and β-cell mass. Whilst the molecular mechanisms behind the adaptive programming of β-cells are still poorly understood it is established that changes arising from maternal obesity and/or over-nutrition may affect the ability to maintain fetal β-cell mass resulting in an increased risk of type 2 diabetes in adulthood.
Collapse
Affiliation(s)
- Jacqueline F O'Dowd
- Metabolic Diseases Group, Clore Laboratory, University of Buckingham Buckingham, UK
| | | |
Collapse
|
27
|
Abstract
Cre/LoxP has broad utility for studying the function, development, and oncogenic transformation of pancreatic cells in mice. Here we provide an overview of the Cre driver lines that are available for such studies. We discuss how variegated expression, transgene silencing, and recombination in undesired cell types have conspired to limit the performance of these lines, sometimes leading to serious experimental concerns. We also discuss preferred strategies for achieving high-fidelity driver lines and remind investigators of the continuing need for caution when interpreting results obtained from any Cre/LoxP-based experiment performed in mice.
Collapse
Affiliation(s)
- Mark A Magnuson
- Center for Stem Cell Biology and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
28
|
Mansouri A. Development and regeneration in the endocrine pancreas. ISRN ENDOCRINOLOGY 2012; 2012:640956. [PMID: 23326678 PMCID: PMC3544272 DOI: 10.5402/2012/640956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/10/2012] [Indexed: 12/16/2022]
Abstract
The pancreas is composed of two compartments that deliver digestive enzymes and endocrine hormones to control the blood sugar level. The endocrine pancreas consists of functional units organized into cell clusters called islets of Langerhans where insulin-producing cells are found in the core and surrounded by glucagon-, somatostatin-, pancreatic polypeptide-, and ghrelin-producing cells. Diabetes is a devastating disease provoked by the depletion or malfunction of insulin-producing beta-cells in the endocrine pancreas. The side effects of diabetes are multiple, including cardiovascular, neuropathological, and kidney diseases. The analyses of transgenic and knockout mice gave major insights into the molecular mechanisms controlling endocrine pancreas genesis. Moreover, the study of animal models of pancreas injury revealed that the pancreas has the propensity to undergo regeneration and opened new avenues to develop novel therapeutic approaches for the treatment of diabetes. Thus, beside self-replication of preexisting insulin-producing cells, several potential cell sources in the adult pancreas were suggested to contribute to beta-cell regeneration, including acinar, intraislet, and duct epithelia. However, regeneration in the adult endocrine pancreas is still under controversial debate.
Collapse
Affiliation(s)
- Ahmed Mansouri
- Research Group Molecular Cell Differentiation, Department Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany ; Department of Clinical Neurophysiology, University of Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| |
Collapse
|
29
|
Djiotsa J, Verbruggen V, Giacomotto J, Ishibashi M, Manning E, Rinkwitz S, Manfroid I, Voz ML, Peers B. Pax4 is not essential for beta-cell differentiation in zebrafish embryos but modulates alpha-cell generation by repressing arx gene expression. BMC DEVELOPMENTAL BIOLOGY 2012; 12:37. [PMID: 23244389 PMCID: PMC3563606 DOI: 10.1186/1471-213x-12-37] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 12/14/2012] [Indexed: 01/03/2023]
Abstract
BACKGROUND Genetic studies in mouse have demonstrated the crucial function of PAX4 in pancreatic cell differentiation. This transcription factor specifies β- and δ-cell fate at the expense of α-cell identity by repressing Arx gene expression and ectopic expression of PAX4 in α-cells is sufficient to convert them into β-cells. Surprisingly, no Pax4 orthologous gene can be found in chicken and Xenopus tropicalis raising the question of the function of pax4 gene in lower vertebrates such as in fish. In the present study, we have analyzed the expression and the function of the orthologous pax4 gene in zebrafish. RESULTS pax4 gene is transiently expressed in the pancreas of zebrafish embryos and is mostly restricted to endocrine precursors as well as to some differentiating δ- and ε-cells but was not detected in differentiating β-cells. pax4 knock-down in zebrafish embryos caused a significant increase in α-cells number while having no apparent effect on β- and δ-cell differentiation. This rise of α-cells is due to an up-regulation of the Arx transcription factor. Conversely, knock-down of arx caused to a complete loss of α-cells and a concomitant increase of pax4 expression but had no effect on the number of β- and δ-cells. In addition to the mutual repression between Arx and Pax4, these two transcription factors negatively regulate the transcription of their own gene. Interestingly, disruption of pax4 RNA splicing or of arx RNA splicing by morpholinos targeting exon-intron junction sites caused a blockage of the altered transcripts in cell nuclei allowing an easy characterization of the arx- and pax4-deficient cells. Such analyses demonstrated that arx knock-down in zebrafish does not lead to a switch of cell fate, as reported in mouse, but rather blocks the cells in their differentiation process towards α-cells. CONCLUSIONS In zebrafish, pax4 is not required for the generation of the first β- and δ-cells deriving from the dorsal pancreatic bud, unlike its crucial role in the differentiation of these cell types in mouse. On the other hand, the mutual repression between Arx and Pax4 is observed in both mouse and zebrafish. These data suggests that the main original function of Pax4 during vertebrate evolution was to modulate the number of pancreatic α-cells and its role in β-cells differentiation appeared later in vertebrate evolution.
Collapse
Affiliation(s)
- Joachim Djiotsa
- Molecular Biology and Genetic Engineering, Giga-Research, University of Liège, 1 avenue de l'Hôpital B34, Sart-Tilman B-4000, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Afelik S, Jensen J. Notch signaling in the pancreas: patterning and cell fate specification. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:531-44. [DOI: 10.1002/wdev.99] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Zhao X, Tang YG, Wu SV, Wang C, Perfetti R, Khoury N, Cai D, He F, Su X, Go VLW, Hui H. The global transcriptional response of isolated human islets of langerhans to glucagon-like Peptide-1 receptor agonist liraglutide. ISRN ENDOCRINOLOGY 2012; 2012:608672. [PMID: 23056957 PMCID: PMC3465925 DOI: 10.5402/2012/608672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/20/2012] [Indexed: 12/24/2022]
Abstract
GLP-1 and its analog have been used in diabetes treatment; however, the direct alteration of gene expression profile in human islets induced by GLP-1 has not been reported. In present study, transcriptional gene expression in the liraglutide-treated human islets was analyzed with 12 human U133A chips including 23000 probe sets. The data compared between liraglutide and control groups showed a significant difference on glucose-induced insulin secretion, rather than viability. Microarray analysis identified 7000 genes expressed in human islets. Eighty genes were found to be modulated by liraglutide treatment. Furthermore, the products of these genes are proteins involved in binding capability, enzyme activity, transporter function, signal transduction, cell proliferation, apoptosis, and cell differentiation. Our data provides a set of information in the complex events, following the activation of the GLP-1 receptor in the islets of Langerhans.
Collapse
Affiliation(s)
- Xiaoning Zhao
- Center of Metabolic Diseases, Beijiao Hospital, Southern Medical University, North 1838 Guangzhou Road, Guangzhou 510515, China ; International Center for Metabolic Diseases, Southern Medical University (SMU), 8 Floor, Life Science Build, North 1838 Guangzhou Road, Guangzhou 510515, China ; Department of Medicine, Cedar-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Notch signaling differentially regulates the cell fate of early endocrine precursor cells and their maturing descendants in the mouse pancreas and intestine. Dev Biol 2012; 371:156-69. [PMID: 22964416 DOI: 10.1016/j.ydbio.2012.08.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/27/2012] [Accepted: 08/15/2012] [Indexed: 11/20/2022]
Abstract
Notch signaling inhibits differentiation of endocrine cells in the pancreas and intestine. In a number of cases, the observed inhibition occurred with Notch activation in multipotential cells, prior to the initiation of endocrine differentiation. It has not been established how direct activation of Notch in endocrine precursor cells affects their subsequent cell fate. Using conditional activation of Notch in cells expressing Neurogenin3 or NeuroD1, we examined the effects of Notch in both organs, on cell fate of early endocrine precursors and maturing endocrine-restricted cells, respectively. Notch did not preclude the differentiation of a limited number of endocrine cells in either organ when activated in Ngn3(+) precursor cells. In addition, in the pancreas most Ngn3(+) cells adopted a duct but not acinar cell fate; whereas in intestinal Ngn3(+) cells, Notch favored enterocyte and goblet cell fates, while selecting against endocrine and Paneth cell differentiation. A small fraction of NeuroD1(+) cells in the pancreas retain plasticity to respond to Notch, giving rise to intraislet ductules as well as cells with no detectable pancreatic lineage markers that appear to have limited ultrastructural features of both endocrine and duct cells. These results suggest that Notch directly regulates cell fate decisions in multipotential early endocrine precursor cells. Some maturing endocrine-restricted NeuroD1(+) cells in the pancreas switch to the duct lineage in response to Notch, indicating previously unappreciated plasticity at such a late stage of endocrine differentiation.
Collapse
|
33
|
Islet β-Cell Mass Preservation and Regeneration in Diabetes Mellitus: Four Factors with Potential Therapeutic Interest. J Transplant 2012; 2012:230870. [PMID: 22919462 PMCID: PMC3420151 DOI: 10.1155/2012/230870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 12/20/2022] Open
Abstract
Islet β-cell replacement and regeneration are two promising approaches for the treatment of Type 1 Diabetes Mellitus. Indeed, the success of islet transplantation in normalizing blood glucose in diabetic patients has provided the proof of principle that cell replacement can be employed as a safe and efficacious treatment. Nonetheless, shortage of organ donors has hampered expansion of this approach. Alternative sources of insulin-producing cells are mandatory to fill this gap. Although great advances have been achieved in generating surrogate β-cells from stem cells, current protocols have yet to produce functionally mature insulin-secreting cells. Recently, the concept of islet regeneration in which new β-cells are formed from either residual β-cell proliferation or transdifferentiation of other endocrine islet cells has gained much interest as an attractive therapeutic alternative to restore β-cell mass. Complementary approaches to cell replacement and regeneration could aim at enhancing β-cell survival and function. Herein, we discuss the value of Hepatocyte Growth Factor (HGF), Glucose-Dependent Insulinotropic Peptide (GIP), Paired box gene 4 (Pax4) and Liver Receptor Homolog-1 (LRH-1) as key players for β-cell replacement and regeneration therapies. These factors convey β-cell protection and enhanced function as well as facilitating proliferation and transdifferentiation of other pancreatic cell types to β-cells, under stressful conditions.
Collapse
|
34
|
Signaling pathways regulating murine pancreatic development. Semin Cell Dev Biol 2012; 23:663-72. [DOI: 10.1016/j.semcdb.2012.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/13/2012] [Indexed: 12/24/2022]
|
35
|
Cleveland MH, Sawyer JM, Afelik S, Jensen J, Leach SD. Exocrine ontogenies: on the development of pancreatic acinar, ductal and centroacinar cells. Semin Cell Dev Biol 2012; 23:711-9. [PMID: 22743232 DOI: 10.1016/j.semcdb.2012.06.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023]
Abstract
This review summarizes our current understanding of exocrine pancreas development, including the formation of acinar, ductal and centroacinar cells. We discuss the transcription factors associated with various stages of exocrine differentiation, from multipotent progenitor cells to fully differentiated acinar and ductal cells. Within the branching epithelial tree of the embryonic pancreas, this involves the progressive restriction of multipotent pancreatic progenitor cells to either a central "trunk" domain giving rise to the islet and ductal lineages, or a peripheral "tip" domain giving rise to acinar cells. This review also discusses the soluble morphogens and other signaling pathways that influence these events. Finally, we examine centroacinar cells as an enigmatic pancreatic cell type whose lineage remains uncertain, and whose possible progenitor capacities continue to be explored.
Collapse
Affiliation(s)
- Megan H Cleveland
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| | | | | | | | | |
Collapse
|
36
|
Shih HP, Kopp JL, Sandhu M, Dubois CL, Seymour PA, Grapin-Botton A, Sander M. A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development 2012; 139:2488-99. [PMID: 22675211 DOI: 10.1242/dev.078634] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the pancreas, Notch signaling is thought to prevent cell differentiation, thereby maintaining progenitors in an undifferentiated state. Here, we show that Notch renders progenitors competent to differentiate into ductal and endocrine cells by inducing activators of cell differentiation. Notch signaling promotes the expression of Sox9, which cell-autonomously activates the pro-endocrine gene Ngn3. However, at high Notch activity endocrine differentiation is blocked, as Notch also induces expression of the Ngn3 repressor Hes1. At the transition from high to intermediate Notch activity, only Sox9, but not Hes1, is maintained, thus de-repressing Ngn3 and initiating endocrine differentiation. In the absence of Sox9 activity, endocrine and ductal cells fail to differentiate, resulting in polycystic ducts devoid of primary cilia. Although Sox9 is required for Ngn3 induction, endocrine differentiation necessitates subsequent Sox9 downregulation and evasion from Notch activity via cell-autonomous repression of Sox9 by Ngn3. If high Notch levels are maintained, endocrine progenitors retain Sox9 and undergo ductal fate conversion. Taken together, our findings establish a novel role for Notch in initiating both ductal and endocrine development and reveal that Notch does not function in an on-off mode, but that a gradient of Notch activity produces distinct cellular states during pancreas development.
Collapse
Affiliation(s)
- Hung Ping Shih
- Department of Pediatrics and Cellular & Molecular Medicine, University of California-San Diego, La Jolla, CA 92093-0695, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
CRISCIMANNA ANGELA, SPEICHER JULIEA, HOUSHMAND GOLBAHAR, SHIOTA CHIYO, PRASADAN KRISHNA, Ji BAOAN, LOGSDON CRAIGD, GITTES GEORGEK, ESNI FARZAD. Duct cells contribute to regeneration of endocrine and acinar cells following pancreatic damage in adult mice. Gastroenterology 2011; 141:1451-62, 1462.e1-6. [PMID: 21763240 PMCID: PMC4326039 DOI: 10.1053/j.gastro.2011.07.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 06/15/2011] [Accepted: 07/05/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS There have been conflicting results on a cell of origin in pancreatic regeneration. These discrepancies predominantly stem from lack of specific markers for the pancreatic precursors/stem cells, as well as differences in the targeted cells and severity of tissue injury in the experimental models so far proposed. We attempted to create a model that used diphtheria toxin receptor (DTR) to ablate specific cell populations, control the extent of injury, and avoid induction of the inflammatory response. METHODS To target specific types of pancreatic cells, we crossed R26DTR or R26DTR/lacZ mice with transgenic mice that express the Cre recombinase in the pancreas, under control of the Pdx1 (global pancreatic) or elastase (acinar-specific) promoters. RESULTS Exposure of PdxCre;R26DTR mice to diphtheria toxin resulted in extensive ablation of acinar and endocrine tissues but not ductal cells. Surviving cells within the ductal compartment contributed to regeneration of endocrine and acinar cells via recapitulation of the embryonic pancreatic developmental program. However, following selective ablation of acinar tissue in ElaCreERT2;R26DTR mice, regeneration likely occurred by reprogramming of ductal cells to acinar lineage. CONCLUSIONS In the pancreas of adult mice, epithelial cells within the ductal compartment contribute to regeneration of endocrine and acinar cells. The severity of injury determines the regenerative mechanisms and cell types that contribute to this process.
Collapse
Affiliation(s)
- ANGELA CRISCIMANNA
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Rangos Research Center, Pittsburgh, Pennsylvania
| | - JULIE A. SPEICHER
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Rangos Research Center, Pittsburgh, Pennsylvania
| | - GOLBAHAR HOUSHMAND
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Rangos Research Center, Pittsburgh, Pennsylvania
| | - CHIYO SHIOTA
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Rangos Research Center, Pittsburgh, Pennsylvania
| | - KRISHNA PRASADAN
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Rangos Research Center, Pittsburgh, Pennsylvania
| | - BAOAN Ji
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - CRAIG D. LOGSDON
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - GEORGE K. GITTES
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Rangos Research Center, Pittsburgh, Pennsylvania
| | - FARZAD ESNI
- Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Rangos Research Center, Pittsburgh, Pennsylvania,Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
38
|
Kordowich S, Collombat P, Mansouri A, Serup P. Arx and Nkx2.2 compound deficiency redirects pancreatic alpha- and beta-cell differentiation to a somatostatin/ghrelin co-expressing cell lineage. BMC DEVELOPMENTAL BIOLOGY 2011; 11:52. [PMID: 21880149 PMCID: PMC3179930 DOI: 10.1186/1471-213x-11-52] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/31/2011] [Indexed: 12/20/2022]
Abstract
Background Nkx2.2 and Arx represent key transcription factors implicated in the specification of islet cell subtypes during pancreas development. Mice deficient for Arx do not develop any alpha-cells whereas beta- and delta-cells are found in considerably higher numbers. In Nkx2.2 mutant animals, alpha- and beta-cell development is severely impaired whereas a ghrelin-expressing cell population is found augmented. Notably, Arx transcription is clearly enhanced in Nkx2.2-deficient pancreata. Hence in order to precise the functional link between both factors we performed a comparative analysis of Nkx2.2/Arx single- and double-mutants but also of Pax6-deficient animals. Results We show that most of the ghrelin+ cells emerging in pancreata of Nkx2.2- and Pax6-deficient mice, express the alpha-cell specifier Arx, but also additional beta-cell related genes. In Nkx2.2-deficient mice, Arx directly co-localizes with iAPP, PC1/3 and Pdx1 suggesting an Nkx2.2-dependent control of Arx in committed beta-cells. The combined loss of Nkx2.2 and Arx likewise results in the formation of a hyperplastic ghrelin+ cell population at the expense of mature alpha- and beta-cells. Surprisingly, such Nkx2.2-/-Arx- ghrelin+ cells also express the somatostatin hormone. Conclusions Our data indicate that Nkx2.2 acts by reinforcing the transcriptional networks initiated by Pax4 and Arx in early committed beta- and alpha-cell, respectively. Our analysis also suggests that one of the coupled functions of Nkx2.2 and Pax4 is to counteract Arx gene activity in early committed beta-cells.
Collapse
Affiliation(s)
- Simon Kordowich
- Department of Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg, Göttingen, Germany
| | | | | | | |
Collapse
|
39
|
Magenheim J, Klein AM, Stanger BZ, Ashery-Padan R, Sosa-Pineda B, Gu G, Dor Y. Ngn3(+) endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium. Dev Biol 2011; 359:26-36. [PMID: 21888903 DOI: 10.1016/j.ydbio.2011.08.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 02/06/2023]
Abstract
During pancreas development, endocrine and exocrine cells arise from a common multipotent progenitor pool. How these cell fate decisions are coordinated with tissue morphogenesis is poorly understood. Here we have examined ductal morphology, endocrine progenitor cell fate and Notch signaling in Ngn3(-/-) mice, which do not produce islet cells. Ngn3 deficiency results in reduced branching and enlarged pancreatic duct-like structures, concomitant with Ngn3 promoter activation throughout the ductal epithelium and reduced Notch signaling. Conversely, forced generation of surplus endocrine progenitor cells causes reduced duct caliber and an excessive number of tip cells. Thus, endocrine progenitor cells normally provide a feedback signal to adjacent multipotent ductal progenitor cells that activates Notch signaling, inhibits further endocrine differentiation and promotes proper morphogenesis. These results uncover a novel layer of regulation coordinating pancreas morphogenesis and endocrine/exocrine differentiation, and suggest ways to enhance the yield of beta cells from stem cells.
Collapse
Affiliation(s)
- Judith Magenheim
- Department of Developmental Biology and Cancer Research, The institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ben Z Stanger
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978 Ramat Aviv, Tel Aviv, Israel
| | - Beatriz Sosa-Pineda
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Guoqiang Gu
- Program in Developmental Biology and Department of Cell and Developmental Biology, Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
40
|
Kopinke D, Brailsford M, Shea JE, Leavitt R, Scaife CL, Murtaugh LC. Lineage tracing reveals the dynamic contribution of Hes1+ cells to the developing and adult pancreas. Development 2011; 138:431-41. [PMID: 21205788 DOI: 10.1242/dev.053843] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Notch signaling regulates numerous developmental processes, often acting either to promote one cell fate over another or else to inhibit differentiation altogether. In the embryonic pancreas, Notch and its target gene Hes1 are thought to inhibit endocrine and exocrine specification. Although differentiated cells appear to downregulate Hes1, it is unknown whether Hes1 expression marks multipotent progenitors, or else lineage-restricted precursors. Moreover, although rare cells of the adult pancreas express Hes1, it is unknown whether these represent a specialized progenitor-like population. To address these issues, we developed a mouse Hes1(CreERT2) knock-in allele to inducibly mark Hes1(+) cells and their descendants. We find that Hes1 expression in the early embryonic pancreas identifies multipotent, Notch-responsive progenitors, differentiation of which is blocked by activated Notch. In later embryogenesis, Hes1 marks exocrine-restricted progenitors, in which activated Notch promotes ductal differentiation. In the adult pancreas, Hes1 expression persists in rare differentiated cells, particularly terminal duct or centroacinar cells. Although we find that Hes1(+) cells in the resting or injured pancreas do not behave as adult stem cells for insulin-producing beta (β)-cells, Hes1 expression does identify stem cells throughout the small and large intestine. Together, these studies clarify the roles of Notch and Hes1 in the developing and adult pancreas, and open new avenues to study Notch signaling in this and other tissues.
Collapse
Affiliation(s)
- Daniel Kopinke
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
41
|
Banerjee I, Sharma N, Yarmush M. Impact of co-culture on pancreatic differentiation of embryonic stem cells. J Tissue Eng Regen Med 2010; 5:313-23. [PMID: 20717889 DOI: 10.1002/term.317] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 04/16/2010] [Indexed: 02/06/2023]
Abstract
Promise of cellular therapy for type 1 diabetes has inspired the search for transplantable cell sources, and embryonic stem cells (ESCs) have emerged as strong candidates. We have developed a directed differentiation protocol to obtain insulin-producing cells from ESCs. The ESCs are first induced towards a homogeneous monolayer of definitive endoderm-like cells by co-culture with primary hepatocytes. Pancreatic commitment is induced by plating the ESC-derived endoderms on Matrigel, along with Sonic hedgehog inhibition and retinoid induction. More than 70% of differentiated cells positively upregulated Pdx-1, along with pro-endocrine transcription factors Ngn3, β2/neroD1, Nkx2.2 and Nkx6.1. Final maturation to islet-specific cells is achieved by co-culturing the ESC-derived pancreatic endocrine cells with endothelial cells, which resulted in Insulin 1 upregulation in 60% of the cell population, along with high levels of IAPP and Glut2. The differentiated cell population also secreted high levels of insulin. Our findings illustrate the significant effect of co-culture in different stages of differentiation and maturation of ESCs in vitro. Such a high yield of pancreatic islet cells has not yet been reported. Our findings establish a robust protocol for islet differentiation.
Collapse
Affiliation(s)
- Ipsita Banerjee
- Center for Engineering in Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | |
Collapse
|
42
|
Hanley SC, Austin E, Assouline-Thomas B, Kapeluto J, Blaichman J, Moosavi M, Petropavlovskaia M, Rosenberg L. {beta}-Cell mass dynamics and islet cell plasticity in human type 2 diabetes. Endocrinology 2010; 151:1462-72. [PMID: 20176718 DOI: 10.1210/en.2009-1277] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studies of long-standing type 2 diabetes (T2D) report a deficit in beta-cell mass due to increased apoptosis, whereas neogenesis and replication are unaffected. It is unclear whether these changes are a cause or a consequence of T2D. Moreover, whereas islet morphogenetic plasticity has been demonstrated in vitro, the in situ plasticity of islets, as well as the effect of T2D on endocrine differentiation, is unknown. We compared beta-cell volume, neogenesis, replication, and apoptosis in pancreata from lean and obese (body mass index > or = 27 kg/m(2)) diabetic (5 +/- 2 yr since diagnosis) and nondiabetic cadaveric donors. We also subjected isolated islets from diabetic (3 +/- 1 yr since diagnosis) and nondiabetic donors to an established in vitro model of islet plasticity. Differences in beta-cell volume between diabetic and nondiabetic donors were consistently less pronounced than those reported in long-standing T2D. A compensatory increase in beta-cell neogenesis appeared to mediate this effect. Studies of induced plasticity indicated that islets from diabetic donors were capable of epithelial dedifferentiation but did not demonstrate regenerative potential, as was seen in islets from nondiabetic donors. This deficiency was associated with the overexpression of Notch signaling molecules and a decreased neurogenin-3(+) cell frequency. One interpretation of these results would be that decreased beta-cell volume is a consequence, not a cause, of T2D, mediated by increased apoptosis and attenuated beta-cell (re)generation. However, other explanations are also possible. It remains to be seen whether the morphogenetic plasticity of human islets, deficient in vitro in islets from diabetic donors, is a component of normal beta-cell mass dynamics.
Collapse
Affiliation(s)
- Stephen C Hanley
- M.Eng., Montréal General Hospital C9-128, 1650 Cedar Avenue, Montréal, Québec, Canada H3G 1A4
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Juhl K, Bonner-Weir S, Sharma A. Regenerating pancreatic beta-cells: plasticity of adult pancreatic cells and the feasibility of in-vivo neogenesis. Curr Opin Organ Transplant 2010; 15:79-85. [PMID: 19907327 PMCID: PMC2834213 DOI: 10.1097/mot.0b013e3283344932] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Diabetes results from inadequate functional mass of pancreatic beta-cells and therefore replenishing with new glucose-responsive beta-cells is an important therapeutic option. In addition to replication of pre-existing beta-cells, new beta-cells can be produced from differentiated adult cells using in-vitro or in-vivo approaches. This review will summarize recent advances in in-vivo generation of beta-cells from cells that are not beta-cells (neogenesis) and discuss ways to overcome the limitations of this process. RECENT FINDINGS Multiple groups have shown that adult pancreatic ducts, acinar and even endocrine cells exhibit cellular plasticity and can differentiate into beta-cells in vivo. Several different approaches, including misexpression of transcription factors and tissue injury, have induced neogenesis of insulin-expressing cells in vivo and ameliorated diabetes. SUMMARY Recent breakthroughs demonstrating cellular plasticity of adult pancreatic cells to form new beta-cells are a positive first step towards developing in-vivo regeneration-based therapy for diabetes. Currently, neogenesis processes are inefficient and do not generate sufficient amounts of beta-cells required to normalize hyperglycemia. However, an improved understanding of mechanisms regulating neogenesis of beta-cells from adult pancreatic cells and of their maturation into functional glucose-responsive beta-cells can make therapies based on in-vivo regeneration a reality.
Collapse
Affiliation(s)
- Kirstine Juhl
- Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
44
|
Effects of intrahepatic bone-derived mesenchymal stem cells autotransplantation on the diabetic Beagle dogs. J Surg Res 2009; 168:213-23. [PMID: 20097376 DOI: 10.1016/j.jss.2009.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/18/2009] [Accepted: 10/05/2009] [Indexed: 12/28/2022]
Abstract
BACKGROUND To assess the effects of intrahepatic autotransplantation of bone-derived Beagle canine mesenchymal stem cells (BcMSCs) containing human insulin and EGFP in diabetic Beagle dogs. MATERIALS AND METHODS BcMSCs were isolated from Beagle canine bone marrow, expanded, and transfected with a recombinant retrovirus MSCV carrying human insulin and EGFP. Animals were made diabetic by an intravenous administration of streptozotocin (STZ, 30 mg/kg) and alloxan (50 mg/kg), followed by intrahepatic autotransplantation of transfected BcMSCs. The variations of body weight, blood glucose, serum insulin levels, and plasma C-peptide were determined after autotransplantation. BcMSCs' survival and human insulin expression in liver and serum were examined by fluorescent microscopy, radioimmunoassay (RIA), and immunohistochemistry (IHC). RESULTS The body weight of diabetic Beagle dogs received BcMSCs transplantation increased by 11.09% within 16 wk after treatment, and the average blood glucose levels were 19.80±3.13 mmol/L (d 7) and 9.78±3.11 mmol/L (d 112), while in untreated animals, the average values were 21.20±3.26 mmol/L (d 7) and 22.5±3.22 mmol/L (d 112), showing a significant difference (P<0.05). The detection of C-peptide excluded the possible function of regenerative β cells. However, glucose tolerance test revealed BcMSCs group response was not as efficient as that of normal islets, although they could respond to the glucose challenge. CONCLUSION Experimental diabetes could be relieved effectively for up to 16 wk by intrahepatic autotransplantation of BcMSCs expressing human insulin, which implies a novel approach of gene therapy for type I diabetes.
Collapse
|
45
|
Jeon J, Correa-Medina M, Ricordi C, Edlund H, Diez JA. Endocrine cell clustering during human pancreas development. J Histochem Cytochem 2009; 57:811-24. [PMID: 19365093 DOI: 10.1369/jhc.2009.953307] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of efficient, reproducible protocols for directed in vitro differentiation of human embryonic stem (hES) cells into insulin-producing beta cells will benefit greatly from increased knowledge regarding the spatiotemporal expression profile of key instructive factors involved in human endocrine cell generation. Human fetal pancreases 7 to 21 weeks of gestational age, were collected following consent immediately after pregnancy termination and processed for immunostaining, in situ hybridization, and real-time RT-PCR expression analyses. Islet-like structures appear from approximately week 12 and, unlike the mixed architecture observed in adult islets, fetal islets are initially formed predominantly by aggregated insulin- or glucagon-expressing cells. The period studied (7-22 weeks) coincides with a decrease in the proliferation and an increase in the differentiation of the progenitor cells, the initiation of NGN3 expression, and the appearance of differentiated endocrine cells. The present study provides a detailed characterization of islet formation and expression profiles of key intrinsic and extrinsic factors during human pancreas development. This information is beneficial for the development of efficient protocols that will allow guided in vitro differentiation of hES cells into insulin-producing cells.
Collapse
Affiliation(s)
- Jongmin Jeon
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, 1450 NW 10th Avenue (R-134), Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
46
|
Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol 2008; 326:4-35. [PMID: 19013144 DOI: 10.1016/j.ydbio.2008.10.024] [Citation(s) in RCA: 315] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 02/06/2023]
Abstract
Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.
Collapse
Affiliation(s)
- George K Gittes
- Children's Hospital of Pittsburgh and the University of Pittsburgh School of Medicine, Department of Pediatric Surgery, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
47
|
Bar Y, Russ HA, Knoller S, Ouziel-Yahalom L, Efrat S. HES-1 is involved in adaptation of adult human beta-cells to proliferation in vitro. Diabetes 2008; 57:2413-20. [PMID: 18599525 PMCID: PMC2518492 DOI: 10.2337/db07-1323] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 06/11/2008] [Indexed: 01/09/2023]
Abstract
OBJECTIVE In vitro expansion of beta-cells from adult human islets could solve the tissue shortage for cell replacement therapy of diabetes. Culture of human islet cells typically results in <16 cell doublings and loss of insulin expression. Using cell lineage tracing, we demonstrated that the expanded cell population included cells derived from beta-cells. Understanding the molecular mechanisms involved in beta-cell fate in vitro is crucial for optimizing expansion and redifferentiation of these cells. In the developing pancreas, important cell-fate decisions are regulated by NOTCH receptors, which signal through the hairy and enhancer of split (HES)-1 transcriptional regulator. Here, we investigated the role of the NOTCH signaling pathway in beta-cell dedifferentiation and proliferation in vitro. RESEARCH DESIGN AND METHODS Isolated human islets were dissociated into single cells. beta-Cells were genetically labeled using a Cre-lox system delivered by lentiviruses. Cells were analyzed for changes in expression of components of the NOTCH pathway during the initial weeks in culture. HES-1 expression was inhibited by a small hairpin RNA (shRNA), and the effects on beta-cell phenotype were analyzed. RESULTS Human beta-cell dedifferentiation and entrance into the cell cycle in vitro correlated with activation of the NOTCH pathway and downregulation of the cell cycle inhibitor p57. Inhibition of HES-1 expression using shRNA resulted in significantly reduced beta-cell replication and dedifferentiation. CONCLUSIONS These findings demonstrate that the NOTCH pathway is involved in determining beta-cell fate in vitro and suggest possible molecular targets for induction of beta-cell redifferentiation following in vitro expansion.
Collapse
Affiliation(s)
- Yael Bar
- From the Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Holger A. Russ
- From the Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Sarah Knoller
- From the Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Limor Ouziel-Yahalom
- From the Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Shimon Efrat
- From the Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
48
|
Abstract
The major forms of diabetes are characterized by pancreatic islet beta-cell dysfunction and decreased beta-cell numbers, raising hope for cell replacement therapy. Although human islet transplantation is a cell-based therapy under clinical investigation for the treatment of type 1 diabetes, the limited availability of human cadaveric islets for transplantation will preclude its widespread therapeutic application. The result has been an intense focus on the development of alternate sources of beta cells, such as through the guided differentiation of stem or precursor cell populations or the transdifferentiation of more plentiful mature cell populations. Realizing the potential for cell-based therapies, however, requires a thorough understanding of pancreas development and beta-cell formation. Pancreas development is coordinated by a complex interplay of signaling pathways and transcription factors that determine early pancreatic specification as well as the later differentiation of exocrine and endocrine lineages. This review describes the current knowledge of these factors as they relate specifically to the emergence of endocrine beta cells from pancreatic endoderm. Current therapeutic efforts to generate insulin-producing beta-like cells from embryonic stem cells have already capitalized on recent advances in our understanding of the embryonic signals and transcription factors that dictate lineage specification and will most certainly be further enhanced by a continuing emphasis on the identification of novel factors and regulatory relationships.
Collapse
Affiliation(s)
- Jennifer M. Oliver-Krasinski
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
49
|
Wang Q, Elghazi L, Martin S, Martins I, Srinivasan RS, Geng X, Sleeman M, Collombat P, Houghton J, Sosa-Pineda B. Ghrelin is a novel target of Pax4 in endocrine progenitors of the pancreas and duodenum. Dev Dyn 2008; 237:51-61. [PMID: 18058910 DOI: 10.1002/dvdy.21379] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pax4-deficient mice have a severe gastrointestinal endocrine deficiency: they lack most pancreatic cells that produce insulin or somatostatin and various duodenal endocrine cell types. Remarkably, Pax4-deficient mice also have an overabundance of ghrelin-expressing cells in the pancreas and duodenum. Detailed analysis of the Pax4 nullizygous pancreas determined that the mutant islets are largely composed of a distinctive endocrine cell type that expresses ghrelin, glucagon, islet amyloid polypeptide (IAPP), and low levels of Pdx1. Lineage-tracing analysis revealed that most of these unique endocrine cells directly arose from Pax4-deficient progenitors. Previous in vitro work reported that Pax4 is a transcriptional repressor of islet amyloid polypeptide (IAPP) and glucagon. In this study, we expanded those results by showing that Pax4 is also a repressor of gherlin. Together, our data further support the notion that Pax4 activity is necessary to establish appropriate patterns of gene expression in endocrine progenitors of the digestive tract.
Collapse
Affiliation(s)
- Qian Wang
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
PAX4 enhances beta-cell differentiation of human embryonic stem cells. PLoS One 2008; 3:e1783. [PMID: 18335054 PMCID: PMC2262135 DOI: 10.1371/journal.pone.0001783] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 02/06/2008] [Indexed: 11/19/2022] Open
Abstract
Background Human embryonic stem cells (HESC) readily differentiate into an apparently haphazard array of cell types, corresponding to all three germ layers, when their culture conditions are altered, for example by growth in suspension as aggregates known as embryoid bodies (EBs). However, this diversity of differentiation means that the efficiency of producing any one particular cell type is inevitably low. Although pancreatic differentiation has been reported from HESC, practicable applications for the use of β-cells derived from HESC to treat diabetes will only be possible once techniques are developed to promote efficient differentiation along the pancreatic lineages. Methods and Findings Here, we have tested whether the transcription factor, Pax4 can be used to drive the differentiation of HESC to a β-cell fate in vitro. We constitutively over-expressed Pax4 in HESCs by stable transfection, and used Q-PCR analysis, immunocytochemistry, ELISA, Ca2+ microfluorimetry and cell imaging to assess the role of Pax4 in the differentiation and intracellular Ca2+ homeostasis of β-cells developing in embryoid bodies produced from such HESC. Cells expressing key β-cell markers were isolated by fluorescence-activated cell sorting after staining for high zinc content using the vital dye, Newport Green. Conclusion Constitutive expression of Pax4 in HESC substantially enhances their propensity to form putative β-cells. Our findings provide a novel foundation to study the mechanism of pancreatic β-cells differentiation during early human development and to help evaluate strategies for the generation of purified β-cells for future clinical applications.
Collapse
|