1
|
Rizos I, Romac S, Juery C, Berthelier C, Decelle J, Bernardes J, Corre E, Bittner L, Not F. Transcriptomic analyses reveal sexual cues in reproductive life stages of uncultivated Acantharia (Radiolaria). Protist 2025; 177:126102. [PMID: 40347573 DOI: 10.1016/j.protis.2025.126102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 03/19/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
The ability to reproduce is a key process for the perpetuation of organisms. Along the evolution of protist reproductive strategies, the molecular machinery of sexual recombination is estimated to have been inherited from the last eukaryotic common ancestor (LECA). Unraveling the sexual cycles of free-living protists remains challenging, given the enigmatic roles of many uncultivated life stages. For the planktonic group of Acantharia (Radiolaria), a hypothetical sexual cycle has been proposed since the late 19th century, including a gamete-like stage, referred to as swarmers. In order to investigate the sexual nature of acantharian reproductive stages, we compared transcriptomes of various acantharian life stages. Our results show distinct functional profiles for reproductive and vegetative stages, while revealing the expression of the gamete fusion genes, HAP2/GCS1 and KAR5-GEX1-BMB in swarmers. Annotation of differentially expressed life stage-specific genes, also highlighted putative meiosis-related functions among pre-swarmer and swarmer stages, while suggesting the existence of a putative zygotic stage. This original life stage-specific genetic data is coherent with morphological evidence supporting the acantharian sexual cycle, with swarmers acting as gametes. Moreover, it paves the way for a deeper understanding of radiolarian cell biology and ecology at a single-cell scale.
Collapse
Affiliation(s)
- Iris Rizos
- Sorbonne Université, CNRS, AD2M-UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France; Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.
| | - Sarah Romac
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Caroline Juery
- Cell & Plant Physiology Laboratory, UMR 5168 CEA-CNRS-Univ. Grenoble Alpes - UMR1417 INRAE, Grenoble, France
| | - Charlotte Berthelier
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Johan Decelle
- Cell & Plant Physiology Laboratory, UMR 5168 CEA-CNRS-Univ. Grenoble Alpes - UMR1417 INRAE, Grenoble, France
| | - Juliana Bernardes
- Sorbonne Université, CNRS, AD2M-UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Lucie Bittner
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France; Institut Universitaire de France, Paris, France
| | - Fabrice Not
- Sorbonne Université, CNRS, AD2M-UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
| |
Collapse
|
2
|
Azbazdar Y, De Robertis EM. Double assurance in the induction of axial development by egg dorsal determinants in Xenopus embryos. Proc Natl Acad Sci U S A 2025; 122:e2421772122. [PMID: 39928870 PMCID: PMC11848351 DOI: 10.1073/pnas.2421772122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/04/2025] [Indexed: 02/12/2025] Open
Abstract
We recently reported that microinjection of Xenopus nodal-related (xnr) mRNAs into β-catenin-depleted Xenopus embryos rescued a complete dorsal axis. Xnrs mediate the signal of the Nieuwkoop center that induces the Spemann-Mangold organizer in the overlying mesoderm, a process inhibited by the Nodal antagonist Cerberus-short (CerS). However, β-catenin also induces a second signaling center in the dorsal prospective ectoderm, designated the Blastula Chordin and Noggin Expression (BCNE) center, in which the homeobox gene siamois (sia) plays a major role. In this study, we asked whether the Xnrs and Sia depend on each other or function on parallel pathways. Expression of both genes induced β-catenin-depleted embryos to form complete axes with heads and eyes via the activation of similar sets of downstream organizer-specific genes. Xnrs did not activate siamois, and, conversely, Sia did not activate xnrs, although both were induced by β-catenin stabilization. Depletion with morpholinos revealed a robust role for the downstream target Chordin. Remarkably, Chordin depletion prevented all ectopic effects resulting from microinjection of the mRNA encoding the maternal cytoplasmic determinant Huluwa, including the radial expansion of brain tissue and the ectopic expression of the ventral gene sizzled. The main conclusion was that the BCNE and Nieuwkoop centers provide a double assurance mechanism for axial formation by independently activating similar downstream transcriptional target gene repertoires. We suggest that Siamois likely evolved from an ancestral Mix-type homeodomain protein called Sebox as a Xenopus-specific adaptation for the rapid differentiation of the anterior neural plate in the ectoderm.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095-1662
| | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095-1662
| |
Collapse
|
3
|
Bubna-Litic M, Charras G, Mayor R. Tissue mechanics modulate morphogen signalling to induce the head organiser. Cells Dev 2024:203984. [PMID: 39631565 DOI: 10.1016/j.cdev.2024.203984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Morphogenetic movements and specification of germ layers during gastrulation are key processes that establish the vertebrate body plan. Despite substantial research into the role of tissue mechanics during gastrulation and detailed characterisation of the molecular signalling networks controlling fate determination, the interplay of mechanical cues and biochemical signals during fate specification is poorly understood. Morphogens that activate Activin/Nodal/Smad2 signalling play a key role in mesoderm induction and axial patterning. We investigate the interplay between a single molecular input and a mechanical input using the well-established ex vivo system of Activin-induced explants of the mid-blastula X. laevis animal cap ectoderm. Activin alone induces mesoderm to form a complex elongating tissue with axial patterning, making this system similar to gastruloids generated in other model organisms. We observed an increase in the expression of dorsal mesoderm markers, such as chordin and goosecoid, and loss of elongation, in Activin-induced explants that were mechanically stimulated through uniaxial compression during the induction period. In addition, head mesoderm specific markers, including cerberus 1, were also increased. We show that mechanical stimulation leads to an increase in nuclear β-catenin activity. Activation of β-catenin signalling is sufficient to induce head Organiser gene expression. Furthermore, inhibition of β-catenin is sufficient to rescue the effect of compression on an early Wnt-signalling response gene siamois. Taken together these observations support the role of mechanical stimulation in modulating Activin-dependent mesoderm induction in favour of head Organiser formation. Given the conserved role of β-catenin in the dorsal specification and the dynamic morphogenetic movements of dorsal gastrula regions, mechanics-dependent Organiser induction may be found in other vertebrate species. Finally, the finding that mechanical cues affect β-catenin-dependent axial specification can be applied in the future development of more biologically relevant and robust synthetic organoid systems.
Collapse
Affiliation(s)
- Matyas Bubna-Litic
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Guillaume Charras
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; London Centre for Nanotechnology, University College London, Gordon St, London WC1H 0AH, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
4
|
Asashima M, Satou-Kobayashi Y. Spemann-Mangold organizer and mesoderm induction. Cells Dev 2024; 178:203903. [PMID: 38295873 DOI: 10.1016/j.cdev.2024.203903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The discovery of the Spemann-Mangold organizer strongly influenced subsequent research on embryonic induction, with research aiming to elucidate the molecular characteristics of organizer activity being currently underway. Herein, we review the history of research on embryonic induction, and describe how the mechanisms of induction phenomena and developmental processes have been investigated. Classical experiments investigating the differentiation capacity and inductive activity of various embryonic regions were conducted by many researchers, and important theories of region-specific induction and the concept for chain of induction were proposed. The transition from experimental embryology to developmental biology has enabled us to understand the mechanisms of embryonic induction at the molecular level. Consequently, many inducing substances and molecules such as transcriptional factors and peptide growth factors involved in the organizer formation were identified. One of peptide growth factors, activin, acts as a mesoderm- and endoderm-inducing substance. Activin induces several tissues and organs from the undifferentiated cell mass of amphibian embryos in a concentration-dependent manner. We review the extent to which we can control in vitro organogenesis from undifferentiated cells, and discuss the application to stem cell-based regenerative medicine based on insights gained from animal experiments, such as in amphibians.
Collapse
Affiliation(s)
- Makoto Asashima
- Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-0003, Japan.
| | - Yumeko Satou-Kobayashi
- Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-0003, Japan
| |
Collapse
|
5
|
Castro Colabianchi AM, González Pérez NG, Franchini LF, López SL. A maternal dorsoventral prepattern revealed by an asymmetric distribution of ventralizing molecules before fertilization in Xenopus laevis. Front Cell Dev Biol 2024; 12:1365705. [PMID: 38572484 PMCID: PMC10987785 DOI: 10.3389/fcell.2024.1365705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
The establishment of the embryonic dorsoventral axis in Xenopus occurs when the radial symmetry around the egg's animal-vegetal axis is broken to give rise to the typical symmetry of Bilaterians. We have previously shown that the Notch1 protein is ventrally enriched during early embryogenesis in Xenopus laevis and zebrafish and exerts ventralizing activity through β-Catenin destabilization and the positive regulation of ventral center genes in X. laevis. These findings led us to further investigate when these asymmetries arise. In this work, we show that the asymmetrical distribution of Notch1 protein and mRNA precedes cortical rotation and even fertilization in X. laevis. Moreover, we found that in unfertilized eggs transcripts encoded by the ventralizing gene bmp4 are also asymmetrically distributed in the animal hemisphere and notch1 transcripts accumulate consistently on the same side of the eccentric maturation point. Strikingly, a Notch1 asymmetry orthogonal to the animal-vegetal axis appears during X. laevis oogenesis. Thus, we show for the first time a maternal bias in the distribution of molecules that are later involved in ventral patterning during embryonic axialization, strongly supporting the hypothesis of a dorsoventral prepattern or intrinsic bilaterality of Xenopus eggs before fertilization.
Collapse
Affiliation(s)
- Aitana M. Castro Colabianchi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular “Prof. Dr. Andrés E. Carrasco”, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
| | - Nicolás G. González Pérez
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular “Prof. Dr. Andrés E. Carrasco”, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
| | - Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvia L. López
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular “Prof. Dr. Andrés E. Carrasco”, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
| |
Collapse
|
6
|
Gur M, Bendelac-Kapon L, Shabtai Y, Pillemer G, Fainsod A. Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. Front Cell Dev Biol 2022; 10:844619. [PMID: 35372345 PMCID: PMC8967241 DOI: 10.3389/fcell.2022.844619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/24/2022] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA) is a central signaling molecule regulating multiple developmental decisions during embryogenesis. Excess RA induces head malformations, primarily by expansion of posterior brain structures at the expense of anterior head regions, i.e., hindbrain expansion. Despite this extensively studied RA teratogenic effect, a number of syndromes exhibiting microcephaly, such as DiGeorge, Vitamin A Deficiency, Fetal Alcohol Syndrome, and others, have been attributed to reduced RA signaling. This causative link suggests a requirement for RA signaling during normal head development in all these syndromes. To characterize this novel RA function, we studied the involvement of RA in the early events leading to head formation in Xenopus embryos. This effect was mapped to the earliest RA biosynthesis in the embryo within the gastrula Spemann-Mangold organizer. Head malformations were observed when reduced RA signaling was induced in the endogenous Spemann-Mangold organizer and in the ectopic organizer of twinned embryos. Two embryonic retinaldehyde dehydrogenases, ALDH1A2 (RALDH2) and ALDH1A3 (RALDH3) are initially expressed in the organizer and subsequently mark the trunk and the migrating leading edge mesendoderm, respectively. Gene-specific knockdowns and CRISPR/Cas9 targeting show that RALDH3 is a key enzyme involved in RA production required for head formation. These observations indicate that in addition to the teratogenic effect of excess RA on head development, RA signaling also has a positive and required regulatory role in the early formation of the head during gastrula stages. These results identify a novel RA activity that concurs with its proposed reduction in syndromes exhibiting microcephaly.
Collapse
|
7
|
Castro Colabianchi AM, Tavella MB, Boyadjián López LE, Rubinstein M, Franchini LF, López SL. Segregation of brain and organizer precursors is differentially regulated by Nodal signaling at blastula stage. Biol Open 2021; 10:bio.051797. [PMID: 33563608 PMCID: PMC7928228 DOI: 10.1242/bio.051797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The blastula Chordin- and Noggin-expressing (BCNE) center comprises animal-dorsal and marginal-dorsal cells of the amphibian blastula and contains the precursors of the brain and the gastrula organizer. Previous findings suggested that the BCNE behaves as a homogeneous cell population that only depends on nuclear β-catenin activity but does not require Nodal and later segregates into its descendants during gastrulation. In contrast to previous findings, in this work, we show that the BCNE does not behave as a homogeneous cell population in response to Nodal antagonists. In fact, we found that chordin.1 expression in a marginal subpopulation of notochordal precursors indeed requires Nodal input. We also establish that an animal BCNE subpopulation of cells that express both, chordin.1 and sox2 (a marker of pluripotent neuroectodermal cells), and gives rise to most of the brain, persisted at blastula stage after blocking Nodal. Therefore, Nodal signaling is required to define a population of chordin.1+ cells and to restrict the recruitment of brain precursors within the BCNE as early as at blastula stage. We discuss our findings in Xenopus in comparison to other vertebrate models, uncovering similitudes in early brain induction and delimitation through Nodal signaling. This article has an associated First Person interview with the first author of the paper. Summary: Nodal signaling is involved in the delimitation of the blastula cell populations that give rise to the brain and axial mesoderm in Xenopus.
Collapse
Affiliation(s)
- Aitana M Castro Colabianchi
- Universidad de Buenos Aires. Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires 1121, Argentina.,CONICET - Universidad de Buenos Aires. Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - María B Tavella
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
| | - Laura E Boyadjián López
- Universidad de Buenos Aires. Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires 1121, Argentina.,CONICET - Universidad de Buenos Aires. Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
| | - Silvia L López
- Universidad de Buenos Aires. Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires 1121, Argentina .,CONICET - Universidad de Buenos Aires. Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| |
Collapse
|
8
|
Esmaeili M, Blythe SA, Tobias JW, Zhang K, Yang J, Klein PS. Chromatin accessibility and histone acetylation in the regulation of competence in early development. Dev Biol 2020; 462:20-35. [PMID: 32119833 PMCID: PMC7225061 DOI: 10.1016/j.ydbio.2020.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
As development proceeds, inductive cues are interpreted by competent tissues in a spatially and temporally restricted manner. While key inductive signaling pathways within competent cells are well-described at a molecular level, the mechanisms by which tissues lose responsiveness to inductive signals are not well understood. Localized activation of Wnt signaling before zygotic gene activation in Xenopus laevis leads to dorsal development, but competence to induce dorsal genes in response to Wnts is lost by the late blastula stage. We hypothesize that loss of competence is mediated by changes in histone modifications leading to a loss of chromatin accessibility at the promoters of Wnt target genes. We use ATAC-seq to evaluate genome-wide changes in chromatin accessibility across several developmental stages. Based on overlap with p300 binding, we identify thousands of putative cis-regulatory elements at the gastrula stage, including sites that lose accessibility by the end of gastrulation and are enriched for pluripotency factor binding motifs. Dorsal Wnt target gene promoters are not accessible after the loss of competence in the early gastrula while genes involved in mesoderm and neural crest development maintain accessibility at their promoters. Inhibition of histone deacetylases increases acetylation at the promoters of dorsal Wnt target genes and extends competence for dorsal gene induction by Wnt signaling. Histone deacetylase inhibition, however, is not sufficient to extend competence for mesoderm or neural crest induction. These data suggest that chromatin state regulates the loss of competence to inductive signals in a context-dependent manner.
Collapse
Affiliation(s)
- Melody Esmaeili
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shelby A Blythe
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - John W Tobias
- Penn Genomic Analysis Core and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Peter S Klein
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Departments of Medicine (Hematology-Oncology) and Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Castro Colabianchi AM, Revinski DR, Encinas PI, Baez MV, Monti RJ, Rodríguez Abinal M, Kodjabachian L, Franchini LF, López SL. Notch1 is asymmetrically distributed from the beginning of embryogenesis and controls the ventral center. Development 2018; 145:dev.159368. [PMID: 29866901 DOI: 10.1242/dev.159368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/25/2018] [Indexed: 12/14/2022]
Abstract
Based on functional evidence, we have previously demonstrated that early ventral Notch1 activity restricts dorsoanterior development in Xenopus We found that Notch1 has ventralizing properties and abolishes the dorsalizing activity of β-catenin by reducing its steady state levels, in a process that does not require β-catenin phosphorylation by glycogen synthase kinase 3β. In the present work, we demonstrate that Notch1 mRNA and protein are enriched in the ventral region from the beginning of embryogenesis in Xenopus This is the earliest sign of ventral development, preceding the localized expression of wnt8a, bmp4 and Ventx genes in the ventral center and the dorsal accumulation of nuclear β-catenin. Knockdown experiments indicate that Notch1 is necessary for the normal expression of genes essential for ventral-posterior development. These results indicate that during early embryogenesis ventrally located Notch1 promotes the development of the ventral center. Together with our previous evidence, these results suggest that ventral enrichment of Notch1 underlies the process by which Notch1 participates in restricting nuclear accumulation of β-catenin to the dorsal side.
Collapse
Affiliation(s)
- Aitana M Castro Colabianchi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Diego R Revinski
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina.,Aix Marseille Université, CNRS, IBDM, 13288 Marseille, France
| | - Paula I Encinas
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - María Verónica Baez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Renato J Monti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Mateo Rodríguez Abinal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | | | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| |
Collapse
|
10
|
Identification and comparative analyses of Siamois cluster genes in Xenopus laevis and tropicalis. Dev Biol 2017; 426:374-383. [PMID: 27522305 DOI: 10.1016/j.ydbio.2016.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 11/21/2022]
Abstract
Two siamois-related homeobox genes siamois (sia1) and twin (sia2), have been reported in Xenopus laevis. These genes are expressed in the blastula chordin- and noggin-expressing (BCNE) center and the Nieuwkoop center, and have complete secondary axis-inducing activity when over-expressed on the ventral side of the embryo. Using whole genome sequences of X. tropicalis and X. laevis, we identified two additional siamois-related genes, which are tandemly duplicated near sia1 and sia2 to form the siamois gene cluster. Four siamois genes in X. tropicalis are transcribed at blastula to gastrula stages. In X. laevis, the siamois gene cluster is present on both homeologous chromosomes, XLA3L and XLA3S. Transcripts from seven siamois genes (three on XLA3L and four on XLA3S) in X. laevis were detected at blastula to gastrula stages. A transcribed gene, sia1p. S, encodes an inactive protein without a homeodomain. When over-expressed ventrally, all siamois-related genes tested in this study except for sia1p. S induced a complete secondary axis, indicating that X. tropicalis and X. laevis have four and six active siamois-related genes, respectively. Of note, each gene required different amounts of mRNA for full activity. These results suggest the possibility that siamois cluster genes have functional redundancy to endow robustness and quickness to organizer formation in Xenopus species.
Collapse
|
11
|
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. Proc Natl Acad Sci U S A 2017; 114:E3081-E3090. [PMID: 28348214 DOI: 10.1073/pnas.1700766114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The earliest event in Xenopus development is the dorsal accumulation of nuclear β-catenin under the influence of cytoplasmic determinants displaced by fertilization. In this study, a genome-wide approach was used to examine transcription of the 43,673 genes annotated in the Xenopus laevis genome under a variety of conditions that inhibit or promote formation of the Spemann organizer signaling center. Loss of function of β-catenin with antisense morpholinos reproducibly reduced the expression of 247 mRNAs at gastrula stage. Interestingly, only 123 β-catenin targets were enriched on the dorsal side and defined an early dorsal β-catenin gene signature. These genes included several previously unrecognized Spemann organizer components. Surprisingly, only 3 of these 123 genes overlapped with the late Wnt signature recently defined by two other groups using inhibition by Dkk1 mRNA or Wnt8 morpholinos, which indicates that the effects of β-catenin/Wnt signaling in early development are exquisitely regulated by stage-dependent mechanisms. We analyzed transcriptome responses to a number of treatments in a total of 46 RNA-seq libraries. These treatments included, in addition to β-catenin depletion, regenerating dorsal and ventral half-embryos, lithium chloride treatment, and the overexpression of Wnt8, Siamois, and Cerberus mRNAs. Only some of the early dorsal β-catenin signature genes were activated at blastula whereas others required the induction of endomesoderm, as indicated by their inhibition by Cerberus overexpression. These comprehensive data provide a rich resource for analyzing how the dorsal and ventral regions of the embryo communicate with each other in a self-organizing vertebrate model embryo.
Collapse
|
12
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
13
|
Gaur S, Mandelbaum M, Herold M, Majumdar HD, Neilson KM, Maynard TM, Mood K, Daar IO, Moody SA. Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm. Genesis 2016; 54:334-49. [PMID: 27092474 PMCID: PMC4912902 DOI: 10.1002/dvg.22943] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 01/23/2023]
Abstract
The decision by embryonic ectoderm to give rise to epidermal versus neural derivatives is the result of signaling events during blastula and gastrula stages. However, there also is evidence in Xenopus that cleavage stage blastomeres contain maternally derived molecules that bias them toward a neural fate. We used a blastomere explant culture assay to test whether maternally deposited transcription factors bias 16-cell blastomere precursors of epidermal or neural ectoderm to express early zygotic neural genes in the absence of gastrulation interactions or exogenously supplied signaling factors. We found that Foxd4l1, Zic2, Gmnn, and Sox11 each induced explants made from ventral, epidermis-producing blastomeres to express early neural genes, and that at least some of the Foxd4l1 and Zic2 activities are required at cleavage stages. Similarly, providing extra Foxd4l1 or Zic2 to explants made from dorsal, neural plate-producing blastomeres significantly increased the expression of early neural genes, whereas knocking down either significantly reduced them. These results show that maternally delivered transcription factors bias cleavage stage blastomeres to a neural fate. We demonstrate that mouse and human homologs of Foxd4l1 have similar functional domains compared to the frog protein, as well as conserved transcriptional activities when expressed in Xenopus embryos and blastomere explants. genesis 54:334-349, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shailly Gaur
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
| | - Max Mandelbaum
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
| | - Mona Herold
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
| | - Himani Datta Majumdar
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
| | - Karen M. Neilson
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
| | | | - Kathy Mood
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Ira O. Daar
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
- George Washington University Institute for Neuroscience
| |
Collapse
|
14
|
Transcription factors Mix1 and VegT, relocalization of vegt mRNA, and conserved endoderm and dorsal specification in frogs. Proc Natl Acad Sci U S A 2016; 113:5628-33. [PMID: 27140624 DOI: 10.1073/pnas.1605547113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Protein expression of the transcription factor genes mix1 and vegt characterized the presumptive endoderm in embryos of the frogs Engystomops randi, Epipedobates machalilla, Gastrotheca riobambae, and Eleutherodactylus coqui, as in Xenopus laevis embryos. Protein VegT was detected in the animal hemisphere of the early blastula in all frogs, and only the animal pole was VegT-negative. This finding stimulated a vegt mRNA analysis in X. laevis eggs and embryos. vegt mRNA was detected in the animal region of X. laevis eggs and early embryos, in agreement with the VegT localization observed in the analyzed frogs. Moreover, a dorso-animal relocalization of vegt mRNA occurred in the egg at fertilization. Thus, the comparative analysis indicated that vegt may participate in dorsal development besides its known roles in endoderm development, and germ-layer specification. Zygotic vegt (zvegt) mRNA was detected as a minor isoform besides the major maternal (mvegt) isoform of the X. laevis egg. In addition, α-amanitin-insensitive vegt transcripts were detected around vegetal nuclei of the blastula. Thus, accumulation of vegt mRNA around vegetal nuclei was caused by relocalization rather than new mRNA synthesis. The localization of vegt mRNA around vegetal nuclei may contribute to the identity of vegetal blastomeres. These and previously reportedly localization features of vegt mRNA and protein derive from the master role of vegt in the development of frogs. The comparative analysis indicated that the strategies for endoderm, and dorsal specification, involving vegt and mix1, have been evolutionary conserved in frogs.
Collapse
|
15
|
Kiecker C, Bates T, Bell E. Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci 2016; 73:923-47. [PMID: 26667903 PMCID: PMC4744249 DOI: 10.1007/s00018-015-2092-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/11/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
Abstract
In order to generate the tissues and organs of a multicellular organism, different cell types have to be generated during embryonic development. The first step in this process of cellular diversification is the formation of the three germ layers: ectoderm, endoderm and mesoderm. The ectoderm gives rise to the nervous system, epidermis and various neural crest-derived tissues, the endoderm goes on to form the gastrointestinal, respiratory and urinary systems as well as many endocrine glands, and the mesoderm will form the notochord, axial skeleton, cartilage, connective tissue, trunk muscles, kidneys and blood. Classic experiments in amphibian embryos revealed the tissue interactions involved in germ layer formation and provided the groundwork for the identification of secreted and intracellular factors involved in this process. We will begin this review by summarising the key findings of those studies. We will then evaluate them in the light of more recent genetic studies that helped clarify which of the previously identified factors are required for germ layer formation in vivo, and to what extent the mechanisms identified in amphibians are conserved across other vertebrate species. Collectively, these studies have started to reveal the gene regulatory network (GRN) underlying vertebrate germ layer specification and we will conclude our review by providing examples how our understanding of this GRN can be employed to differentiate stem cells in a targeted fashion for therapeutic purposes.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
| | - Thomas Bates
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Esther Bell
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK.
| |
Collapse
|
16
|
Klein SL, Moody SA. Early neural ectodermal genes are activated by Siamois and Twin during blastula stages. Genesis 2015; 53:308-20. [PMID: 25892704 PMCID: PMC8943805 DOI: 10.1002/dvg.22854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 12/13/2022]
Abstract
BMP signaling distinguishes between neural and non-neural fates by activating epidermis-specific transcription and repressing neural-specific transcription. The neural ectoderm forms after the Organizer secrets antagonists that prevent these BMP-mediated activities. However, it is not known whether neural genes also are transcriptionally activated. Therefore, we tested the ability of nine Organizer transcription factors to ectopically induce the expression of four neural ectodermal genes in epidermal precursors. We found evidence for two pathways: Foxd4 and Sox11 were only induced by Sia and Twn, whereas Gmnn and Zic2 were induced by Sia, Twn, as well as seven other Organizer transcription factors. The induction of Foxd4, Gmnn and Zic2 by Sia/Twn was both non-cell autonomous (requiring an intermediate protein) and cell autonomous (direct), whereas the induction of Sox11 required Foxd4 activity. Because direct induction by Sia/Twn could occur endogenously in the dorsal-equatorial blastula cells that give rise to both the Organizer mesoderm and the neural ectoderm, we knocked down Sia/Twn in those cells. This prevented the blastula expression of Foxd4 and Sox11, demonstrating that Sia/Twn directly activate some neural genes before the separation of the Organizer mesoderm and neural ectoderm lineages.
Collapse
Affiliation(s)
- Steven L. Klein
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, Northwest, Washington, DC
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, Northwest, Washington, DC
| |
Collapse
|
17
|
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. PLoS One 2014; 9:e110559. [PMID: 25343614 PMCID: PMC4208771 DOI: 10.1371/journal.pone.0110559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/24/2014] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, the embryonic dorsal midline is a crucial signalling centre that patterns the surrounding tissues during development. Members of the FoxA subfamily of transcription factors are expressed in the structures that compose this centre. Foxa2 is essential for dorsal midline development in mammals, since knock-out mouse embryos lack a definitive node, notochord and floor plate. The related gene foxA4 is only present in amphibians. Expression begins in the blastula -chordin and -noggin expressing centre (BCNE) and is later restricted to the dorsal midline derivatives of the Spemann's organiser. It was suggested that the early functions of mammalian foxa2 are carried out by foxA4 in frogs, but functional experiments were needed to test this hypothesis. Here, we show that some important dorsal midline functions of mammalian foxa2 are exerted by foxA4 in Xenopus. We provide new evidence that the latter prevents the respecification of dorsal midline precursors towards contiguous fates, inhibiting prechordal and paraxial mesoderm development in favour of the notochord. In addition, we show that foxA4 is required for the correct regionalisation and maintenance of the central nervous system. FoxA4 participates in constraining the prospective rostral forebrain territory during neural specification and is necessary for the correct segregation of the most anterior ectodermal derivatives, such as the cement gland and the pituitary anlagen. Moreover, the early expression of foxA4 in the BCNE (which contains precursors of the whole forebrain and most of the midbrain and hindbrain) is directly required to restrict anterior neural development.
Collapse
|
18
|
Kam RKT, Shi W, Chan SO, Chen Y, Xu G, Lau CBS, Fung KP, Chan WY, Zhao H. Dhrs3 protein attenuates retinoic acid signaling and is required for early embryonic patterning. J Biol Chem 2013; 288:31477-87. [PMID: 24045938 DOI: 10.1074/jbc.m113.514984] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All-trans-retinoic acid (atRA) is an important morphogen involved in many developmental processes, including neural differentiation, body axis formation, and organogenesis. During early embryonic development, atRA is synthesized from all-trans-retinal (atRAL) in an irreversible reaction mainly catalyzed by retinal dehydrogenase 2 (aldh1a2), whereas atRAL is converted from all-trans-retinol via reversible oxidation by retinol dehydrogenases, members of the short-chain dehydrogenase/reductase family. atRA is degraded by cytochrome P450, family 26 (cyp26). We have previously identified a short-chain dehydrogenase/reductase 3 (dhrs3), which showed differential expression patterns in Xenopus embryos. We show here that the expression of dhrs3 was induced by atRA treatment and overexpression of Xenopus nodal related 1 (xnr1) in animal cap assay. Overexpression of dhrs3 enhanced the phenotype of excessive cyp26a1. In embryos overexpressing aldh1a2 or retinol dehydrogenase 10 (rdh10) in the presence of their respective substrates, Dhrs3 counteracted the action of Aldh1a2 or Rdh10, indicating that retinoic acid signaling is attenuated. Knockdown of Dhrs3 by antisense morpholino oligonucleotides resulted in a phenotype of shortened anteroposterior axis, reduced head structure, and perturbed somitogenesis, which were also found in embryos treated with an excess of atRA. Examination of the expression of brachyury, not, goosecoid, and papc indicated that convergent extension movement was defective in Dhrs3 morphants. Taken together, these studies suggest that dhrs3 participates in atRA metabolism by reducing atRAL levels and is required for proper anteroposterior axis formation, neuroectoderm patterning, and somitogenesis.
Collapse
|
19
|
Mori S, Moriyama Y, Yoshikawa K, Furukawa T, Kuroda H. β-Adrenergic signaling promotes posteriorization in Xenopus early development. Dev Growth Differ 2013; 55:350-8. [PMID: 23452088 DOI: 10.1111/dgd.12046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/05/2013] [Accepted: 01/15/2013] [Indexed: 11/29/2022]
Abstract
Adrenaline (also known as Epinephrine) is a hormone, which works as major regulator of various biological events such stages of vertebrate, the role of adrenaline for early embryogenesis has been as heart rate, blood vessel and air passage diameters, and metabolic shifts. Although its specific receptors are expressing at the early developmental stage those functions are poorly understood. Here, we show that loss-of-functional effects of adrenergic receptor β-2 (Adrβ2), which was known as the major receptor for adrenaline and highly expressed in embryonic stages, led posterior defects at the tadpole stage of Xenopus embryos, while embryos injected with Adrβ2 mRNA or treated with adrenaline hormone adversely lost anterior structures. This posteriorization effect by adrenaline hormone was dose-dependently increased but effectively rescued by microinjection of antisense morpholino oligomer for Adrβ2 (Adrβ2-MO). Combination of adrenaline treatments and microinjection of Adrβ2 mRNA maximized efficiency in its posteriorizing activity. Interestingly, both gain- and loss-of-functional treatment for β-adrenergic signaling could not influence anterior neural fate induced by overexpression of Chordin mRNA in presumptive ectodermal region, meaning that it worked via mesoderm. Taken together with these results, we conclude that adrenaline is a novel regulator of anteroposterior axis formation in vertebrates.
Collapse
Affiliation(s)
- Shoko Mori
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan
| | | | | | | | | |
Collapse
|
20
|
Aguirre CE, Murgan S, Carrasco AE, López SL. An intact brachyury function is necessary to prevent spurious axial development in Xenopus laevis. PLoS One 2013; 8:e54777. [PMID: 23359630 PMCID: PMC3554630 DOI: 10.1371/journal.pone.0054777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
We have previously shown that the member of the HES family hairy2 induces the ectopic expression of dorsal markers when it is overexpressed in the ventral side of Xenopus embryos. Intriguingly, hairy2 represses the mesoderm transcription factor brachyury (bra) throughout its domain in the marginal zone. Here we show that in early gastrula, bra and hairy2 are expressed in complementary domains. Overexpression of bra repressed hairy2. Interference of bra function with a dominant-negative construct expanded the hairy2 domain and, like hairy2 overexpression, promoted ectopic expression of dorsal axial markers in the ventral side and induced secondary axes without head and notochord. Hairy2 depletion rescued the ectopic dorsal development induced by interference of bra function. We concluded that an intact bra function is necessary to exclude hairy2 expression from the non-organiser field, to impede the ectopic specification of dorsal axial fates and the appearance of incomplete secondary axes. This evidence supports a previously unrecognised role for bra in maintaining the dorsal fates inhibited in the ventral marginal zone, preventing the appearance of trunk duplications.
Collapse
Affiliation(s)
- Cecilia E. Aguirre
- Laboratorio de Embriología Molecular, Instituto de Biología Celular y Neurociencia ‘‘Prof. E. De Robertis’’ (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sabrina Murgan
- Laboratorio de Embriología Molecular, Instituto de Biología Celular y Neurociencia ‘‘Prof. E. De Robertis’’ (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrés E. Carrasco
- Laboratorio de Embriología Molecular, Instituto de Biología Celular y Neurociencia ‘‘Prof. E. De Robertis’’ (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia L. López
- Laboratorio de Embriología Molecular, Instituto de Biología Celular y Neurociencia ‘‘Prof. E. De Robertis’’ (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
21
|
DUXO, a novel double homeobox transcription factor, is a regulator of the gastrula organizer in human embryonic stem cells. Stem Cell Res 2012; 9:261-9. [PMID: 23010573 DOI: 10.1016/j.scr.2012.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 08/03/2012] [Accepted: 08/09/2012] [Indexed: 01/04/2023] Open
Abstract
Human embryonic stem cells differentiate into gastrula organizer cells that express typical markers and induce secondary axes when injected into frog embryos. Here, we report that these human organizer cells express DUXO (DUX of the Organizer), a novel member of the double-homeobox (DUX) family of transcription factors, a group of genes unique to placental mammals. Both of DUXO's homeodomains share high similarity with those of Siamois and Twin, the initial inducers of the amphibian gastrula organizer. DUXO overexpression in human embryoid bodies induces organizer related genes, whereas its knock down hampers formation of the organizer and its derivatives. Finally, we show that DUXO regulates GOOSECOID, the canonical organizer marker, in a direct manner, suggesting that DUXO is a major regulator of human organizer formation.
Collapse
|
22
|
Sudou N, Yamamoto S, Ogino H, Taira M. Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer. Development 2012; 139:1651-61. [PMID: 22492356 DOI: 10.1242/dev.068395] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
How multiple developmental cues are integrated on cis-regulatory modules (CRMs) for cell fate decisions remains uncertain. The Spemann-Mangold organizer in Xenopus embryos expresses the transcription factors Lim1/Lhx1, Otx2, Mix1, Siamois (Sia) and VegT. Reporter analyses using sperm nuclear transplantation and DNA injection showed that cerberus (cer) and goosecoid (gsc) are activated by the aforementioned transcription factors through CRMs conserved between X. laevis and X. tropicalis. ChIP-qPCR analysis for the five transcription factors revealed that cer and gsc CRMs are initially bound by both Sia and VegT at the late blastula stage, and subsequently bound by all five factors at the gastrula stage. At the neurula stage, only binding of Lim1 and Otx2 to the gsc CRM, among others, persists, which corresponds to their co-expression in the prechordal plate. Based on these data, together with detailed expression pattern analysis, we propose a new model of stepwise formation of the organizer, in which (1) maternal VegT and Wnt-induced Sia first bind to CRMs at the blastula stage; then (2) Nodal-inducible Lim1, Otx2, Mix1 and zygotic VegT are bound to CRMs in the dorsal endodermal and mesodermal regions where all these genes are co-expressed; and (3) these two regions are combined at the gastrula stage to form the organizer. Thus, the in vivo dynamics of multiple transcription factors highlight their roles in the initiation and maintenance of gene expression, and also reveal the stepwise integration of maternal, Nodal and Wnt signaling on CRMs of organizer genes to generate the organizer.
Collapse
Affiliation(s)
- Norihiro Sudou
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
23
|
Reid CD, Zhang Y, Sheets MD, Kessler DS. Transcriptional integration of Wnt and Nodal pathways in establishment of the Spemann organizer. Dev Biol 2012; 368:231-41. [PMID: 22627292 DOI: 10.1016/j.ydbio.2012.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/22/2012] [Accepted: 05/08/2012] [Indexed: 11/25/2022]
Abstract
Signaling inputs from multiple pathways are essential for the establishment of distinct cell and tissue types in the embryo. Therefore, multiple signals must be integrated to activate gene expression and confer cell fate, but little is known about how this occurs at the level of target gene promoters. During early embryogenesis, Wnt and Nodal signals are required for formation of the Spemann organizer, which is essential for germ layer patterning and axis formation. Signaling by both Wnt and Nodal pathways is required for the expression of multiple organizer genes, suggesting that integration of these signals is required for organizer formation. Here, we demonstrate transcriptional cooperation between the Wnt and Nodal pathways in the activation of the organizer genes Goosecoid (Gsc), Cerberus (Cer), and Chordin (Chd). Combined Wnt and Nodal signaling synergistically activates transcription of these organizer genes. Effectors of both pathways occupy the Gsc, Cer and Chd promoters and effector occupancy is enhanced with active Wnt and Nodal signaling. This suggests that, at organizer gene promoters, a stable transcriptional complex containing effectors of both pathways forms in response to combined Wnt and Nodal signaling. Consistent with this idea, the histone acetyltransferase p300 is recruited to organizer promoters in a Wnt and Nodal effector-dependent manner. Taken together, these results offer a mechanism for spatial and temporal restriction of organizer gene transcription by the integration of two major signaling pathways, thus establishing the Spemann organizer domain.
Collapse
Affiliation(s)
- Christine D Reid
- Department of Cell and Developmental Biology, University of Pennsylvania, School of Medicine, Room 1110 Biomedical Research Building 2/3, 421 Curie Boulevard, Philadelphia, PA 19104-6058, USA
| | | | | | | |
Collapse
|
24
|
Archbold HC, Yang YX, Chen L, Cadigan KM. How do they do Wnt they do?: regulation of transcription by the Wnt/β-catenin pathway. Acta Physiol (Oxf) 2012; 204:74-109. [PMID: 21624092 DOI: 10.1111/j.1748-1716.2011.02293.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Wnt/β-catenin signalling is known to play many roles in metazoan development and tissue homeostasis. Misregulation of the pathway has also been linked to many human diseases. In this review, specific aspects of the pathway's involvement in these processes are discussed, with an emphasis on how Wnt/β-catenin signalling regulates gene expression in a cell and temporally specific manner. The T-cell factor (TCF) family of transcription factors, which mediate a large portion of Wnt/β-catenin signalling, will be discussed in detail. Invertebrates contain a single TCF gene that contains two DNA-binding domains, the high mobility group (HMG) domain and the C-clamp, which increases the specificity of DNA binding. In vertebrates, the situation is more complex, with four TCF genes producing many isoforms that contain the HMG domain, but only some of which possess a C-clamp. Vertebrate TCFs have been reported to act in concert with many other transcription factors, which may explain how they obtain sufficient specificity for specific DNA sequences, as well as how they achieve a wide diversity of transcriptional outputs in different cells.
Collapse
Affiliation(s)
- H C Archbold
- Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, 48109-1048, USA
| | | | | | | |
Collapse
|
25
|
Acosta H, López SL, Revinski DR, Carrasco AE. Notch destabilises maternal beta-catenin and restricts dorsal-anterior development in Xenopus. Development 2011; 138:2567-79. [PMID: 21610033 DOI: 10.1242/dev.061143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The blastula chordin- and noggin-expressing centre (BCNE) is the predecessor of the Spemann-Mangold's organiser and also contains the precursors of the brain. This signalling centre comprises animal-dorsal and marginal-dorsal cells and appears as a consequence of the nuclear accumulation of β-catenin on the dorsal side. Here, we propose a role for Notch that was not previously explored during early development in vertebrates. Notch initially destabilises β-catenin in a process that does not depend on its phosphorylation by GSK3. This is important to restrict the BCNE to its normal extent and to control the size of the brain.
Collapse
Affiliation(s)
- Helena Acosta
- Laboratorio de Embriología Molecular, Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 3, 1121 Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
26
|
Siamois and Twin are redundant and essential in formation of the Spemann organizer. Dev Biol 2011; 352:367-81. [PMID: 21295564 DOI: 10.1016/j.ydbio.2011.01.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 01/11/2011] [Accepted: 01/25/2011] [Indexed: 02/03/2023]
Abstract
The Spemann organizer is an essential signaling center in Xenopus germ layer patterning and axis formation. Organizer formation occurs in dorsal blastomeres receiving both maternal Wnt and zygotic Nodal signals. In response to stabilized βcatenin, dorsal blastomeres express the closely related transcriptional activators, Siamois (Sia) and Twin (Twn), members of the paired homeobox family. Sia and Twn induce organizer formation and expression of organizer-specific genes, including Goosecoid (Gsc). In spite of the similarity of Sia and Twn sequence and expression pattern, it is unclear whether these factors function equivalently in promoter binding and subsequent transcriptional activation, or if Sia and Twn are required for all aspects of organizer function. Here we report that Sia and Twn activate Gsc transcription by directly binding to a conserved P3 site within the Wnt-responsive proximal element of the Gsc promoter. Sia and Twn form homodimers and heterodimers by direct homeodomain interaction and dimer forms are indistinguishable in both DNA-binding and activation functions. Sequential chromatin immunoprecipitation reveals that the endogenous Gsc promoter can be occupied by either Sia or Twn homodimers or Sia-Twn heterodimers. Knockdown of Sia and Twn together, but not individually, results in a failure of organizer gene expression and a disruption of axis formation, consistent with a redundant role for Sia and Twn in organizer formation. Furthermore, simultaneous knockdown of Sia and Twn blocks axis induction in response to ectopic Wnt signaling, demonstrating an essential role for Sia and Twn in mediating the transcriptional response to the maternal Wnt pathway. The results demonstrate the functional redundancy of Sia and Twn and their essential role in direct transcriptional responses necessary for Spemann organizer formation.
Collapse
|
27
|
Rankin SA, Kormish J, Kofron M, Jegga A, Zorn AM. A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. Dev Biol 2011; 351:297-310. [PMID: 21215263 DOI: 10.1016/j.ydbio.2010.11.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/15/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
The homeobox gene hhex is one of the earliest markers of the anterior endoderm, which gives rise to foregut organs such as the liver, ventral pancreas, thyroid, and lungs. The regulatory networks controlling hhex transcription are poorly understood. In an extensive cis-regulatory analysis of the Xenopus hhex promoter, we determined how the Nodal, Wnt, and BMP pathways and their downstream transcription factors regulate hhex expression in the gastrula organizer. We show that Nodal signaling, present throughout the endoderm, directly activates hhex transcription via FoxH1/Smad2 binding sites in the proximal -0.44 Kb promoter. This positive action of Nodal is suppressed in the ventral-posterior endoderm by Vent 1 and Vent2, homeodomain repressors that are induced by BMP signaling. Maternal Wnt/β-catenin on the dorsal side of the embryo cooperates with Nodal and indirectly activates hhex expression via the homeodomain activators Siamois and Twin. Siamois/Twin stimulate hhex transcription through two mechanisms: (1) they induce the expression of Otx2 and Lim1 and together Siamois, Twin, Otx2, and Lim1 appear to promote hhex transcription through homeobox sites in a Wnt-responsive element located between -0.65 to -0.55 Kb of the hhex promoter. (2) Siamois/Twin also induce the expression of the BMP-antagonists Chordin and Noggin, which are required to exclude Vents from the organizer allowing hhex transcription. This study reveals a complex network regulating anterior endoderm transcription in the early embryo.
Collapse
Affiliation(s)
- Scott A Rankin
- Division of Developmental Biology, Cincinnati Children's Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
28
|
Blythe SA, Cha SW, Tadjuidje E, Heasman J, Klein PS. beta-Catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. Dev Cell 2010; 19:220-31. [PMID: 20708585 PMCID: PMC2923644 DOI: 10.1016/j.devcel.2010.07.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/28/2010] [Accepted: 05/19/2010] [Indexed: 12/31/2022]
Abstract
An emerging concept in development is that transcriptional poising presets patterns of gene expression in a manner that reflects a cell's developmental potential. However, it is not known how certain loci are specified in the embryo to establish poised chromatin architecture as the developmental program unfolds. We find that, in the context of transcriptional quiescence prior to the midblastula transition in Xenopus, dorsal specification by the Wnt/beta-catenin pathway is temporally uncoupled from the onset of dorsal target gene expression, and that beta-catenin establishes poised chromatin architecture at target promoters. beta-catenin recruits the arginine methyltransferase Prmt2 to target promoters, thereby establishing asymmetrically dimethylated H3 arginine 8 (R8). Recruitment of Prmt2 to beta-catenin target genes is necessary and sufficient to establish the dorsal developmental program, indicating that Prmt2-mediated histone H3(R8) methylation plays a critical role downstream of beta-catenin in establishing poised chromatin architecture and marking key organizer genes for later expression.
Collapse
Affiliation(s)
| | - Sang-Wook Cha
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Emmanuel Tadjuidje
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Janet Heasman
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Peter S. Klein
- Cell and Molecular Biology Graduate Group
- Department of Medicine (Hematology/Oncology), University of Pennsylvania, 364 Clinical Research Building, 415 Curie Blvd, Philadelphia, PA 19104, U.S.A
| |
Collapse
|
29
|
Targets and effects of yessotoxin, okadaic acid and palytoxin: a differential review. Mar Drugs 2010; 8:658-77. [PMID: 20411120 PMCID: PMC2857362 DOI: 10.3390/md8030658] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 01/14/2023] Open
Abstract
In this review, we focus on processes, organs and systems targeted by the marine toxins yessotoxin (YTX), okadaic acid (OA) and palytoxin (PTX). The effects of YTX and their basis are analyzed from data collected in the mollusc Mytilus galloprovincialis, the annelid Enchytraeus crypticus, Swiss CD1 mice and invertebrate and vertebrate cell cultures. OA and PTX, two toxins with a better established mode of action, are analyzed with regard to their effects on development. The amphibian Xenopus laevis is used as a model, and the Frog Embryo Teratogenesis Assay-Xenopus (FETAX) as the experimental protocol.
Collapse
|
30
|
Hulstrand AM, Schneider PN, Houston DW. The use of antisense oligonucleotides in Xenopus oocytes. Methods 2010; 51:75-81. [PMID: 20045732 DOI: 10.1016/j.ymeth.2009.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Accepted: 12/30/2009] [Indexed: 11/18/2022] Open
Abstract
The ability to manipulate gene expression in Xenopus oocytes and then generate fertilized embryos by transfer into host females has made it possible to rapidly characterize maternal signaling pathways in vertebrate development. Maternal mRNAs in particular can be efficiently depleted using antisense deoxyoligonucleotides (oligos), mediated by endogenous RNase-H activity. Since the microinjection of antisense reagents or mRNAs into eggs after fertilization often fails to affect maternal signaling pathways, mRNA depletion in the Xenopus oocyte is uniquely suited to assessing maternal functions. In this review, we highlight the advantages of using antisense in Xenopus oocytes and describe basic methods for designing and choosing effective oligos. We also summarize the procedures for fertilizing cultured oocytes by host-transfer and interpreting the specificity of antisense effects. Although these methods can be technically demanding, the use of antisense in oocytes can be used to address biological questions that are intractable in other experimental settings.
Collapse
Affiliation(s)
- Alissa M Hulstrand
- The University of Iowa, Department of Biology, 257 BB, Iowa City, IA 52242-1324, USA
| | | | | |
Collapse
|
31
|
Franchini A, Casarini L, Malagoli D, Ottaviani E. Expression of the genes siamois, engrailed-2, bmp4 and myf5 during Xenopus development in presence of the marine toxins okadaic acid and palytoxin. CHEMOSPHERE 2009; 77:308-312. [PMID: 19683326 DOI: 10.1016/j.chemosphere.2009.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/25/2009] [Accepted: 07/13/2009] [Indexed: 05/28/2023]
Abstract
The present investigation examines the effects of the marine toxins, okadaic acid (OA) and palytoxin (PTX), on some genes involved in the neural and muscular specification and patterning of Xenopus laevis. The RT-PCR analyses performed at different stages of embryonic and larval development (stages 11-47) demonstrated that both toxins induce an over-expression of the genes siamois and engrailed-2 and a different behaviour in bmp4 and myf5. Indeed, OA provoked a significant increase in bmp4 in the earliest stage (11) examined, a down-regulation from stages 12 to 17, and a renewed increase from the beginning of hatching onwards (stages 35-47). In contrast, myf5 was up-regulated in all stages up to 35. PTX induced an over-expression of both bmp4 and myf5 during the embryonic and early larval development stages. The results show that PTX induces an increase in expression levels in all tested genes, while the response to OA seems to be more stage-dependent, with the embryonic development stage more sensitive to the toxin than the larval stages.
Collapse
Affiliation(s)
- Antonella Franchini
- Department of Animal Biology, University of Modena and Reggio Emilia, via Campi 213/D, 41100 Modena, Italy
| | | | | | | |
Collapse
|
32
|
Louie SH, Yang XY, Conrad WH, Muster J, Angers S, Moon RT, Cheyette BNR. Modulation of the beta-catenin signaling pathway by the dishevelled-associated protein Hipk1. PLoS One 2009; 4:e4310. [PMID: 19183803 PMCID: PMC2629544 DOI: 10.1371/journal.pone.0004310] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 12/09/2008] [Indexed: 12/31/2022] Open
Abstract
Background Wnts are evolutionarily conserved ligands that signal through β-catenin-dependent and β-catenin–independent pathways to regulate cell fate, proliferation, polarity, and movements during vertebrate development. Dishevelled (Dsh/Dvl) is a multi-domain scaffold protein required for virtually all known Wnt signaling activities, raising interest in the identification and functions of Dsh-associated proteins. Methodology We conducted a yeast-2-hybrid screen using an N-terminal fragment of Dsh, resulting in isolation of the Xenopus laevis ortholog of Hipk1. Interaction between the Dsh and Hipk1 proteins was confirmed by co-immunoprecipitation assays and mass spectrometry, and further experiments suggest that Hipk1 also complexes with the transcription factor Tcf3. Supporting a nuclear function during X. laevis development, Myc-tagged Hipk1 localizes primarily to the nucleus in animal cap explants, and the endogenous transcript is strongly expressed during gastrula and neurula stages. Experimental manipulations of Hipk1 levels indicate that Hipk1 can repress Wnt/β-catenin target gene activation, as demonstrated by β-catenin reporter assays in human embryonic kidney cells and by indicators of dorsal specification in X. laevis embryos at the late blastula stage. In addition, a subset of Wnt-responsive genes subsequently requires Hipk1 for activation in the involuting mesoderm during gastrulation. Moreover, either over-expression or knock-down of Hipk1 leads to perturbed convergent extension cell movements involved in both gastrulation and neural tube closure. Conclusions These results suggest that Hipk1 contributes in a complex fashion to Dsh-dependent signaling activities during early vertebrate development. This includes regulating the transcription of Wnt/β-catenin target genes in the nucleus, possibly in both repressive and activating ways under changing developmental contexts. This regulation is required to modulate gene expression and cell movements that are essential for gastrulation.
Collapse
Affiliation(s)
- Sarah H. Louie
- Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Xiao Yong Yang
- Department of Psychiatry, and Graduate Program in Developmental Biology, Program in Biological Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - William H. Conrad
- Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jeanot Muster
- Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Stephane Angers
- Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Randall T. Moon
- Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Benjamin N. R. Cheyette
- Department of Psychiatry, and Graduate Program in Developmental Biology, Program in Biological Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|