1
|
Minakawa T, Yamashita JK. Versatile extracellular vesicle-mediated information transfer: intercellular synchronization of differentiation and of cellular phenotypes, and future perspectives. Inflamm Regen 2024; 44:4. [PMID: 38225584 PMCID: PMC10789073 DOI: 10.1186/s41232-024-00318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
In recent years, extracellular vesicles (EVs) have attracted significant attention as carriers in intercellular communication. The vast array of information contained within EVs is critical for various cellular activities, such as proliferation and differentiation of multiple cell types. Moreover, EVs are being employed in disease diagnostics, implicated in disease etiology, and have shown promise in tissue repair. Recently, a phenomenon has been discovered in which cellular phenotypes, including the progression of differentiation, are synchronized among cells via EVs. This synchronization could be prevalent in widespread different situations in embryogenesis and tissue organization and maintenance. Given the increasing research on multi-cellular tissues and organoids, the role of EV-mediated intercellular communication has become increasingly crucial. This review begins with fundamental knowledge of EVs and then discusses recent findings, various modes of information transfer via EVs, and synchronization of cellular phenotypes.
Collapse
Affiliation(s)
- Tomohiro Minakawa
- Department of Cellular and Tissue Communication, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Jun K Yamashita
- Department of Cellular and Tissue Communication, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| |
Collapse
|
2
|
Kapeni C, Nitsche L, Kilpatrick AM, Wilson NK, Xia K, Mirshekar-Syahkal B, Chandrakanthan V, Malouf C, Pimanda JE, Göttgens B, Kirschner K, Tomlinson SR, Ottersbach K. p57Kip2 regulates embryonic blood stem cells by controlling sympathoadrenal progenitor expansion. Blood 2022; 140:464-477. [PMID: 35653588 PMCID: PMC9353151 DOI: 10.1182/blood.2021014853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are of major clinical importance, and finding methods for their in vitro generation is a prime research focus. We show here that the cell cycle inhibitor p57Kip2/Cdkn1c limits the number of emerging HSCs by restricting the size of the sympathetic nervous system (SNS) and the amount of HSC-supportive catecholamines secreted by these cells. This regulation occurs at the SNS progenitor level and is in contrast to the cell-intrinsic function of p57Kip2 in maintaining adult HSCs, highlighting profound differences in cell cycle requirements of adult HSCs compared with their embryonic counterparts. Furthermore, this effect is specific to the aorta-gonad-mesonephros (AGM) region and shows that the AGM is the main contributor to early fetal liver colonization, as early fetal liver HSC numbers are equally affected. Using a range of antagonists in vivo, we show a requirement for intact β2-adrenergic signaling for SNS-dependent HSC expansion. To gain further molecular insights, we have generated a single-cell RNA-sequencing data set of all Ngfr+ sympathoadrenal cells around the dorsal aorta to dissect their differentiation pathway. Importantly, this not only defined the relevant p57Kip2-expressing SNS progenitor stage but also revealed that some neural crest cells, upon arrival at the aorta, are able to take an alternative differentiation pathway, giving rise to a subset of ventrally restricted mesenchymal cells that express important HSC-supportive factors. Neural crest cells thus appear to contribute to the AGM HSC niche via 2 different mechanisms: SNS-mediated catecholamine secretion and HSC-supportive mesenchymal cell production.
Collapse
Affiliation(s)
- Chrysa Kapeni
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Leslie Nitsche
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicola K Wilson
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kankan Xia
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Bahar Mirshekar-Syahkal
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Vashe Chandrakanthan
- School of Medical Sciences, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Camille Malouf
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - John E Pimanda
- School of Medical Sciences, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
- Department of Haematology, The Prince of Wales Hospital, Sydney, NSW, Australia
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kristina Kirschner
- Institute of Cancer Sciences and
- CRUK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom
| | - Simon R Tomlinson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Katrin Ottersbach
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Ponzoni M, Bachetti T, Corrias MV, Brignole C, Pastorino F, Calarco E, Bensa V, Giusto E, Ceccherini I, Perri P. Recent advances in the developmental origin of neuroblastoma: an overview. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:92. [PMID: 35277192 PMCID: PMC8915499 DOI: 10.1186/s13046-022-02281-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/06/2022] [Indexed: 02/04/2023]
Abstract
Neuroblastoma (NB) is a pediatric tumor that originates from neural crest-derived cells undergoing a defective differentiation due to genomic and epigenetic impairments. Therefore, NB may arise at any final site reached by migrating neural crest cells (NCCs) and their progeny, preferentially in the adrenal medulla or in the para-spinal ganglia. NB shows a remarkable genetic heterogeneity including several chromosome/gene alterations and deregulated expression of key oncogenes that drive tumor initiation and promote disease progression. NB substantially contributes to childhood cancer mortality, with a survival rate of only 40% for high-risk patients suffering chemo-resistant relapse. Hence, NB remains a challenge in pediatric oncology and the need of designing new therapies targeted to specific genetic/epigenetic alterations become imperative to improve the outcome of high-risk NB patients with refractory disease or chemo-resistant relapse. In this review, we give a broad overview of the latest advances that have unraveled the developmental origin of NB and its complex epigenetic landscape. Single-cell RNA sequencing with spatial transcriptomics and lineage tracing have identified the NCC progeny involved in normal development and in NB oncogenesis, revealing that adrenal NB cells transcriptionally resemble immature neuroblasts or their closest progenitors. The comparison of adrenal NB cells from patients classified into risk subgroups with normal sympatho-adrenal cells has highlighted that tumor phenotype severity correlates with neuroblast differentiation grade. Transcriptional profiling of NB tumors has identified two cell identities that represent divergent differentiation states, i.e. undifferentiated mesenchymal (MES) and committed adrenergic (ADRN), able to interconvert by epigenetic reprogramming and to confer intra-tumoral heterogeneity and high plasticity to NB. Chromatin immunoprecipitation sequencing has disclosed the existence of two super-enhancers and their associated transcription factor networks underlying MES and ADRN identities and controlling NB gene expression programs. The discovery of NB-specific regulatory circuitries driving oncogenic transformation and maintaining the malignant state opens new perspectives on the design of innovative therapies targeted to the genetic and epigenetic determinants of NB. Remodeling the disrupted regulatory networks from a dysregulated expression, which blocks differentiation and enhances proliferation, toward a controlled expression that prompts the most differentiated state may represent a promising therapeutic strategy for NB.
Collapse
Affiliation(s)
- Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Tiziana Bachetti
- U.O. Proteomica e Spettrometria di Massa, IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Enzo Calarco
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Veronica Bensa
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Elena Giusto
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy.
| |
Collapse
|
4
|
Kruepunga N, Hikspoors JPJM, Hülsman CJM, Mommen GMC, Köhler SE, Lamers WH. Development of the sympathetic trunks in human embryos. J Anat 2021; 239:32-45. [PMID: 33641166 PMCID: PMC8197954 DOI: 10.1111/joa.13415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
Although the development of the sympathetic trunks was first described >100 years ago, the topographic aspect of their development has received relatively little attention. We visualised the sympathetic trunks in human embryos of 4.5-10 weeks post-fertilisation, using Amira 3D-reconstruction and Cinema 4D-remodelling software. Scattered, intensely staining neural crest-derived ganglionic cells that soon formed longitudinal columns were first seen laterally to the dorsal aorta in the cervical and upper thoracic regions of Carnegie stage (CS)14 embryos. Nerve fibres extending from the communicating branches with the spinal cord reached the trunks at CS15-16 and became incorporated randomly between ganglionic cells. After CS18, ganglionic cells became organised as irregular agglomerates (ganglia) on a craniocaudally continuous cord of nerve fibres, with dorsally more ganglionic cells and ventrally more fibres. Accordingly, the trunks assumed a "pearls-on-a-string" appearance, but size and distribution of the pearls were markedly heterogeneous. The change in position of the sympathetic trunks from lateral (para-aortic) to dorsolateral (prevertebral or paravertebral) is a criterion to distinguish the "primary" and "secondary" sympathetic trunks. We investigated the position of the trunks at vertebral levels T2, T7, L1 and S1. During CS14, the trunks occupied a para-aortic position, which changed into a prevertebral position in the cervical and upper thoracic regions during CS15, and in the lower thoracic and lumbar regions during CS18 and CS20, respectively. The thoracic sympathetic trunks continued to move further dorsally and attained a paravertebral position at CS23. The sacral trunks retained their para-aortic and prevertebral position, and converged into a single column in front of the coccyx. Based on our present and earlier morphometric measurements and literature data, we argue that differential growth accounts for the regional differences in position of the sympathetic trunks.
Collapse
Affiliation(s)
- Nutmethee Kruepunga
- Department of Anatomy & EmbryologyMaastricht UniversityMaastrichtThe Netherlands
- Department of AnatomyFaculty of ScienceMahidol UniversityBangkokThailand
| | | | - Cindy J. M. Hülsman
- Department of Anatomy & EmbryologyMaastricht UniversityMaastrichtThe Netherlands
| | - Greet M. C. Mommen
- Department of Anatomy & EmbryologyMaastricht UniversityMaastrichtThe Netherlands
| | - S. Eleonore Köhler
- Department of Anatomy & EmbryologyMaastricht UniversityMaastrichtThe Netherlands
| | - Wouter H. Lamers
- Department of Anatomy & EmbryologyMaastricht UniversityMaastrichtThe Netherlands
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
5
|
Oikonomakos I, Weerasinghe Arachchige LC, Schedl A. Developmental mechanisms of adrenal cortex formation and their links with adult progenitor populations. Mol Cell Endocrinol 2021; 524:111172. [PMID: 33484742 DOI: 10.1016/j.mce.2021.111172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
The adrenal cortex is the main steroid producing organ of the human body. Studies on adrenal tissue renewal have been neglected for many years, but recent intensified research has seen tremendous progress in our understanding of the formation and homeostasis of this organ. However, cell turnover of the adrenal cortex appears to be complex and several cell populations have been identified that can differentiate into steroidogenic cells and contribute to adrenal cortex renewal. The purpose of this review is to provide an overview of how the adrenal cortex develops and how stem cell populations relate to its developmental progenitors. Finally, we will summarize present and future approaches to harvest the potential of progenitor/stem cells for future cell replacement therapies.
Collapse
Affiliation(s)
- Ioannis Oikonomakos
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108, Nice, France.
| | | | - Andreas Schedl
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108, Nice, France.
| |
Collapse
|
6
|
Kameneva P, Kastriti ME, Adameyko I. Neuronal lineages derived from the nerve-associated Schwann cell precursors. Cell Mol Life Sci 2021; 78:513-529. [PMID: 32748156 PMCID: PMC7873084 DOI: 10.1007/s00018-020-03609-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/18/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
For a long time, neurogenic placodes and migratory neural crest cells were considered the immediate sources building neurons of peripheral nervous system. Recently, a number of discoveries revealed the existence of another progenitor type-a nerve-associated multipotent Schwann cell precursors (SCPs) building enteric and parasympathetic neurons as well as neuroendocrine chromaffin cells. SCPs are neural crest-derived and are similar to the crest cells by their markers and differentiation potential. Such similarities, but also considerable differences, raise many questions pertaining to the medical side, fundamental developmental biology and evolution. Here, we discuss the genesis of Schwann cell precursors, their role in building peripheral neural structures and ponder on their role in the origin in congenial diseases associated with peripheral nervous systems.
Collapse
Affiliation(s)
- Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, 171 77, Sweden
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, 171 77, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, 171 77, Sweden.
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria.
| |
Collapse
|
7
|
Kruepunga N, Hikspoors JPJM, Hülsman CJM, Mommen GMC, Köhler SE, Lamers WH. Extrinsic innervation of the pelvic organs in the lesser pelvis of human embryos. J Anat 2020; 237:672-688. [PMID: 32592418 PMCID: PMC7495285 DOI: 10.1111/joa.13229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Realistic models to understand the developmental appearance of the pelvic nervous system in mammals are scarce. We visualized the development of the inferior hypogastric plexus and its preganglionic connections in human embryos at 4-8 weeks post-fertilization, using Amira 3D reconstruction and Cinema 4D-remodelling software. We defined the embryonic lesser pelvis as the pelvic area caudal to both umbilical arteries and containing the hindgut. Neural crest cells (NCCs) appeared dorsolateral to the median sacral artery near vertebra S1 at ~5 weeks and had extended to vertebra S5 1 day later. Once para-arterial, NCCs either formed sympathetic ganglia or continued to migrate ventrally to the pre-arterial region, where they formed large bilateral inferior hypogastric ganglionic cell clusters (IHGCs). Unlike more cranial pre-aortic plexuses, both IHGCs did not merge because the 'pelvic pouch', a temporary caudal extension of the peritoneal cavity, interposed. Although NCCs in the sacral area started to migrate later, they reached their pre-arterial position simultaneously with the NCCs in the thoracolumbar regions. Accordingly, the superior hypogastric nerve, a caudal extension of the lumbar splanchnic nerves along the superior rectal artery, contacted the IHGCs only 1 day later than the lumbar splanchnic nerves contacted the inferior mesenteric ganglion. The superior hypogastric nerve subsequently splits to become the superior hypogastric plexus. The IHGCs had two additional sources of preganglionic innervation, of which the pelvic splanchnic nerves arrived at ~6.5 weeks and the sacral splanchnic nerves only at ~8 weeks. After all preganglionic connections had formed, separate parts of the inferior hypogastric plexus formed at the bladder neck and distal hindgut.
Collapse
Affiliation(s)
- Nutmethee Kruepunga
- Department of Anatomy and EmbryologyMaastricht UniversityMaastrichtThe Netherlands
- Department of AnatomyFaculty of ScienceMahidol UniversityBangkokThailand
| | | | - Cindy J. M. Hülsman
- Department of Anatomy and EmbryologyMaastricht UniversityMaastrichtThe Netherlands
| | - Greet M. C. Mommen
- Department of Anatomy and EmbryologyMaastricht UniversityMaastrichtThe Netherlands
| | - S. Eleonore Köhler
- Department of Anatomy and EmbryologyMaastricht UniversityMaastrichtThe Netherlands
| | - Wouter H. Lamers
- Department of Anatomy and EmbryologyMaastricht UniversityMaastrichtThe Netherlands
- Tytgat Institute for Liver and Intestinal ResearchAcademic Medical CentreAmsterdamThe Netherlands
| |
Collapse
|
8
|
Kruepunga N, Hikspoors JPJM, Hülsman CJM, Mommen GMC, Köhler SE, Lamers WH. Development of extrinsic innervation in the abdominal intestines of human embryos. J Anat 2020; 237:655-671. [PMID: 32598482 PMCID: PMC7495293 DOI: 10.1111/joa.13230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Compared to the intrinsic enteric nervous system (ENS), development of the extrinsic ENS is poorly documented, even though its presence is easily detectable with histological techniques. We visualised its development in human embryos and foetuses of 4–9.5 weeks post‐fertilisation using Amira 3D‐reconstruction and Cinema 4D‐remodelling software. The extrinsic ENS originated from small, basophilic neural crest cells (NCCs) that migrated to the para‐aortic region and then continued ventrally to the pre‐aortic region, where they formed autonomic pre‐aortic plexuses. From here, nerve fibres extended along the ventral abdominal arteries and finally connected to the intrinsic system. Schwann cell precursors (SCPs), a subgroup of NCCs that migrate on nerve fibres, showed region‐specific differences in differentiation. SCPs developed into scattered chromaffin cells of the adrenal medulla dorsolateral to the coeliac artery (CA) and into more tightly packed chromaffin cells of the para‐aortic bodies ventrolateral to the inferior mesenteric artery (IMA), with reciprocal topographic gradients between both fates. The extrinsic ENS first extended along the CA and then along the superior mesenteric artery (SMA) and IMA 5 days later. Apart from the branch to the caecum, extrinsic nerves did not extend along SMA branches in the herniated parts of the midgut until the gut loops had returned in the abdominal cavity, suggesting a permissive role of the intraperitoneal environment. Accordingly, extrinsic innervation had not yet reached the distal (colonic) loop of the midgut at 9.5 weeks development. Based on intrinsic ENS‐dependent architectural remodelling of the gut layers, extrinsic innervation followed intrinsic innervation 3–4 Carnegie stages later.
Collapse
Affiliation(s)
- Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.,Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Cindy J M Hülsman
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.,Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Wide coverage of the body surface by melanocyte-mediated skin pigmentation. Dev Biol 2019; 449:83-89. [DOI: 10.1016/j.ydbio.2018.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022]
|
10
|
Camargo-Sosa K, Colanesi S, Müller J, Schulte-Merker S, Stemple D, Patton EE, Kelsh RN. Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish. PLoS Genet 2019; 15:e1007941. [PMID: 30811380 PMCID: PMC6392274 DOI: 10.1371/journal.pgen.1007941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/07/2019] [Indexed: 11/18/2022] Open
Abstract
Skin pigment patterns are important, being under strong selection for multiple roles including camouflage and UV protection. Pigment cells underlying these patterns form from adult pigment stem cells (APSCs). In zebrafish, APSCs derive from embryonic neural crest cells, but sit dormant until activated to produce pigment cells during metamorphosis. The APSCs are set-aside in an ErbB signaling dependent manner, but the mechanism maintaining quiescence until metamorphosis remains unknown. Mutants for a pigment pattern gene, parade, exhibit ectopic pigment cells localised to the ventral trunk, but also supernumerary cells restricted to the Ventral Stripe. Contrary to expectations, these melanocytes and iridophores are discrete cells, but closely apposed. We show that parade encodes Endothelin receptor Aa, expressed in the blood vessels, most prominently in the medial blood vessels, consistent with the ventral trunk phenotype. We provide evidence that neuronal fates are not affected in parade mutants, arguing against transdifferentiation of sympathetic neurons to pigment cells. We show that inhibition of BMP signaling prevents specification of sympathetic neurons, indicating conservation of this molecular mechanism with chick and mouse. However, inhibition of sympathetic neuron differentiation does not enhance the parade phenotype. Instead, we pinpoint ventral trunk-restricted proliferation of neural crest cells as an early feature of the parade phenotype. Importantly, using a chemical genetic screen for rescue of the ectopic pigment cell phenotype of parade mutants (whilst leaving the embryonic pattern untouched), we identify ErbB inhibitors as a key hit. The time-window of sensitivity to these inhibitors mirrors precisely the window defined previously as crucial for the setting aside of APSCs in the embryo, strongly implicating adult pigment stem cells as the source of the ectopic pigment cells. We propose that a novel population of APSCs exists in association with medial blood vessels, and that their quiescence is dependent upon Endothelin-dependent factors expressed by the blood vessels.
Collapse
Affiliation(s)
- Karen Camargo-Sosa
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom
| | - Sarah Colanesi
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom
| | - Jeanette Müller
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom
| | | | - Derek Stemple
- Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - E. Elizabeth Patton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom
| |
Collapse
|
11
|
Origin and initiation mechanisms of neuroblastoma. Cell Tissue Res 2018; 372:211-221. [PMID: 29445860 DOI: 10.1007/s00441-018-2796-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Neuroblastoma is an embryonal malignancy that affects normal development of the adrenal medulla and paravertebral sympathetic ganglia in early childhood. Extensive studies have revealed the molecular characteristics of human neuroblastomas, including abnormalities at genome, epigenome and transcriptome levels. However, neuroblastoma initiation mechanisms and even its origin are long-standing mysteries. In this review article, we summarize the current knowledge about normal development of putative neuroblastoma sources, namely sympathoadrenal lineage of neural crest cells and Schwann cell precursors that were recently identified as the source of adrenal chromaffin cells. A plausible origin of enigmatic stage 4S neuroblastoma is also discussed. With regard to the initiation mechanisms, we review genetic abnormalities in neuroblastomas and their possible association to initiation mechanisms. We also summarize evidences of neuroblastoma initiation observed in genetically engineered animal models, in which epigenetic alterations were involved, including transcriptomic upregulation by N-Myc and downregulation by polycomb repressive complex 2. Finally, several in vitro experimental methods are proposed that hopefully will accelerate our comprehension of neuroblastoma initiation. Thus, this review summarizes the state-of-the-art knowledge about the mechanisms of neuroblastoma initiation, which is critical for developing new strategies to cure children with neuroblastoma.
Collapse
|
12
|
Watanabe T, Kiyomoto T, Tadokoro R, Takase Y, Takahashi Y. Newly raised anti-VAChT and anti-ChAT antibodies detect cholinergic cells in chicken embryos. Dev Growth Differ 2017; 59:677-687. [DOI: 10.1111/dgd.12406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Tadayoshi Watanabe
- Department of Zoology; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Takahiro Kiyomoto
- Department of Zoology; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Ryosuke Tadokoro
- Department of Zoology; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Yuta Takase
- Department of Zoology; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
| | - Yoshiko Takahashi
- Department of Zoology; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
- AMED Core Research for Evolutional Science and Technology (AMED-CREST); Japan Agency for Medical Research and Development (AMED); Chiyoda-ku Tokyo 100-0004 Japan
| |
Collapse
|
13
|
Muscarinic receptors in adrenal chromaffin cells: physiological role and regulation of ion channels. Pflugers Arch 2017; 470:29-38. [DOI: 10.1007/s00424-017-2047-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 10/19/2022]
|