1
|
Expression of Cell Cycle Markers and Proliferation Factors during Human Eye Embryogenesis and Tumorigenesis. Int J Mol Sci 2022; 23:ijms23169421. [PMID: 36012688 PMCID: PMC9409163 DOI: 10.3390/ijms23169421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
The expression pattern of the markers p19, Ki-67, MSX1, MSX2, PDL1, pRB, and CYCLINA2 was quantitatively and semiquantitatively analyzed in histologic sections of the developing and postnatal human eye at week 8, in retinoblastoma, and in various uveal melanomas post hoc studies by double immunofluorescence. The p19 immunoreactivity characterized retinal and/or choroidal cells in healthy and tumor tissues: expression was lower in the postnatal retina than in the developing retina and retinoblastoma, whereas it was high in epithelioid melanomas. Ki67 expression was high in the developing eye, retinoblastoma, and choroidal melanomas. MSX1 and MSX2 expression was similar in the developing eye and retinoblastoma, whereas it was absent in the postnatal eye. Their different expression was evident between epithelioid and myxoid melanomas. Similarly, PDL1 was absent in epithelioid melanomas, whereas it was highly expressed in developing and tumor tissues. Expression of pRB and CYCA2 was characteristic of developing and tumorous eye samples but not of the healthy postnatal eye. The observed expression differences of the analyzed markers correlate with the origin and stage of cell differentiation of the tissue samples. The fine balance of expression could play a role in both human eye development and ocular tumorigenesis. Therefore, understanding their relationship and interplay could open new avenues for potential therapeutic interventions and a better understanding of the mechanisms underlying the developmental plasticity of the eye and the development of neoplasms.
Collapse
|
2
|
Kazmierczak de Camargo JP, Prezia GNDB, Shiokawa N, Sato MT, Rosati R, Beate Winter Boldt A. New Insights on the Regulatory Gene Network Disturbed in Central Areolar Choroidal Dystrophy-Beyond Classical Gene Candidates. Front Genet 2022; 13:886461. [PMID: 35656327 PMCID: PMC9152281 DOI: 10.3389/fgene.2022.886461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Central areolar choroidal dystrophy (CACD) is a rare hereditary disease that mainly affects the macula, resulting in progressive and usually profound visual loss. Being part of congenital retinal dystrophies, it may have an autosomal dominant or recessive inheritance and, until now, has no effective treatment. Given the shortage of genotypic information about the disease, this work systematically reviews the literature for CACD-causing genes. Three independent researchers selected 33 articles after carefully searching and filtering the Scielo, Pubmed, Lilacs, Web of Science, Scopus, and Embase databases. Mutations of six genes (PRPH2, GUCA1A, GUCY2D, CDHR1, ABCA4, and TTLL5) are implicated in the monogenic dominant inheritance of CACD. They are functionally related to photoreceptors (either in the phototransduction process, as in the case of GUCY2D, or the recovery of retinal photodegradation in photoreceptors for GUCA1A, or the formation and maintenance of specific structures within photoreceptors for PRPH2). The identified genetic variants do not explain all observed clinical features, calling for further whole-genome and functional studies for this disease. A network analysis with the CACD-related genes identified in the systematic review resulted in the identification of another 20 genes that may influence CACD onset and symptoms. Furthermore, an enrichment analysis allowed the identification of 13 transcription factors and 4 long noncoding RNAs interacting with the products of the previously mentioned genes. If mutated or dysregulated, they may be directly involved in CACD development and related disorders. More than half of the genes identified by bioinformatic tools do not appear in commercial gene panels, calling for more studies about their role in the maintenance of the retina and phototransduction process, as well as for a timely update of these gene panels.
Collapse
Affiliation(s)
| | - Giovanna Nazaré de Barros Prezia
- Post-Graduation Program in Biotechnology Applied to Child and Adolescent Health, Faculdades Pequeno Príncipe and Pelé Pequeno Príncipe Research Institute, Curitiba, Brazil
| | - Naoye Shiokawa
- Retina and Vitreo Consulting Eye Clinic, Curitiba, Brazil
| | - Mario Teruo Sato
- Retina and Vitreo Consulting Eye Clinic, Curitiba, Brazil.,Department of Ophthalmol/Otorhinolaryngology, Federal University of Paraná, Curitiba, Brazil
| | - Roberto Rosati
- Post-Graduation Program in Biotechnology Applied to Child and Adolescent Health, Faculdades Pequeno Príncipe and Pelé Pequeno Príncipe Research Institute, Curitiba, Brazil
| | | |
Collapse
|
3
|
Agnès F, Torres-Paz J, Michel P, Rétaux S. A 3D molecular map of the cavefish neural plate illuminates eye-field organization and its borders in vertebrates. Development 2022; 149:274971. [DOI: 10.1242/dev.199966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/18/2022] [Indexed: 01/21/2023]
Abstract
ABSTRACT
The vertebrate retinas originate from a specific anlage in the anterior neural plate called the eye field. Its identity is conferred by a set of ‘eye transcription factors’, whose combinatorial expression has been overlooked. Here, we use the dimorphic teleost Astyanax mexicanus, which develops proper eyes in the wild type and smaller colobomatous eyes in the blind cavefish embryos, to unravel the molecular anatomy of the eye field and its variations within a species. Using a series of markers (rx3, pax6a, cxcr4b, zic1, lhx2, emx3 and nkx2.1a), we draw a comparative 3D expression map at the end of gastrulation/onset of neurulation, which highlights hyper-regionalization of the eye field into sub-territories of distinct sizes, shapes, cell identities and combinatorial gene expression levels along the three body axes. All these features show significant variations in the cavefish natural mutant. We also discover sub-domains within the prospective telencephalon and characterize cell identities at the frontiers of the eye field. We propose putative fates for some of the characterized eye-field subdivisions, and suggest the existence of a trade-off between some subdivisions in the two Astyanax morphs on a micro-evolutionary scale.
Collapse
Affiliation(s)
- François Agnès
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, 91190 Gif-sur-Yvette, France
| | - Jorge Torres-Paz
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, 91190 Gif-sur-Yvette, France
| | - Pauline Michel
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, 91190 Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, 91190 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Davis ES, Voss G, Miesfeld JB, Zarate-Sanchez J, Voss SR, Glaser T. The rax homeobox gene is mutated in the eyeless axolotl, Ambystoma mexicanum. Dev Dyn 2021; 250:807-821. [PMID: 32864847 PMCID: PMC8907009 DOI: 10.1002/dvdy.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vertebrate eye formation requires coordinated inductive interactions between different embryonic tissue layers, first described in amphibians. A network of transcription factors and signaling molecules controls these steps, with mutations causing severe ocular, neuronal, and craniofacial defects. In eyeless mutant axolotls, eye morphogenesis arrests at the optic vesicle stage, before lens induction, and development of ventral forebrain structures is disrupted. RESULTS We identified a 5-bp deletion in the rax (retina and anterior neural fold homeobox) gene, which was tightly linked to the recessive eyeless (e) axolotl locus in an F2 cross. This frameshift mutation, in exon 2, truncates RAX protein within the homeodomain (P154fs35X). Quantitative RNA analysis shows that mutant and wild-type rax transcripts are equally abundant in E/e embryos. Translation appears to initiate from dual start codons, via leaky ribosome scanning, a conserved feature among gnathostome RAX proteins. Previous data show rax is expressed in the optic vesicle and diencephalon, deeply conserved among metazoans, and required for eye formation in other species. CONCLUSION The eyeless axolotl mutation is a null allele in the rax homeobox gene, with primary defects in neural ectoderm, including the retinal and hypothalamic primordia.
Collapse
Affiliation(s)
- Erik S. Davis
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
| | - Gareth Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
| | - Joel B. Miesfeld
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
| | - Juan Zarate-Sanchez
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
- Davis Senior High School, Davis, California
| | - S. Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
| |
Collapse
|
5
|
Kon T, Furukawa T. Origin and evolution of the Rax homeobox gene by comprehensive evolutionary analysis. FEBS Open Bio 2020; 10:657-673. [PMID: 32144893 PMCID: PMC7137802 DOI: 10.1002/2211-5463.12832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Rax is one of the key transcription factors crucial for vertebrate eye development. In this study, we conducted comprehensive evolutionary analysis of Rax. We found that Bilateria and Cnidaria possess Rax, but Placozoa, Porifera, and Ctenophora do not, implying that the origin of the Rax gene dates back to the common ancestor of Cnidaria and Bilateria. The results of molecular phylogenetic and synteny analyses on Rax loci between jawed and jawless vertebrates indicate that segmental duplication of the Rax locus occurred in an early common ancestor of jawed vertebrates, resulting in two Rax paralogs in jawed vertebrates, Rax and Rax2. By analyzing 86 mammalian genomes from all four major groups of mammals, we found that at least five independent Rax2 gene loss events occurred in mammals. This study may provide novel insights into the evolution of the eye.
Collapse
Affiliation(s)
- Tetsuo Kon
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
6
|
Markitantova Y, Simirskii V. Inherited Eye Diseases with Retinal Manifestations through the Eyes of Homeobox Genes. Int J Mol Sci 2020; 21:E1602. [PMID: 32111086 PMCID: PMC7084737 DOI: 10.3390/ijms21051602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal development is under the coordinated control of overlapping networks of signaling pathways and transcription factors. The paper was conceived as a review of the data and ideas that have been formed to date on homeobox genes mutations that lead to the disruption of eye organogenesis and result in inherited eye/retinal diseases. Many of these diseases are part of the same clinical spectrum and have high genetic heterogeneity with already identified associated genes. We summarize the known key regulators of eye development, with a focus on the homeobox genes associated with monogenic eye diseases showing retinal manifestations. Recent advances in the field of genetics and high-throughput next-generation sequencing technologies, including single-cell transcriptome analysis have allowed for deepening of knowledge of the genetic basis of inherited retinal diseases (IRDs), as well as improve their diagnostics. We highlight some promising avenues of research involving molecular-genetic and cell-technology approaches that can be effective for IRDs therapy. The most promising neuroprotective strategies are aimed at mobilizing the endogenous cellular reserve of the retina.
Collapse
|
7
|
Zhao Q, Zhang R, Xiao Y, Niu Y, Shao F, Li Y, Peng Z. Comparative Transcriptome Profiling of the Loaches Triplophysa bleekeri and Triplophysa rosa Reveals Potential Mechanisms of Eye Degeneration. Front Genet 2020; 10:1334. [PMID: 32010191 PMCID: PMC6977438 DOI: 10.3389/fgene.2019.01334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/06/2019] [Indexed: 12/30/2022] Open
Abstract
Eye degeneration is one of the most obvious characteristics of organisms restricted to subterranean habitats. In cavefish, eye degeneration has evolved independently numerous times and each process is associated with different genetic mechanisms. To gain a better understanding of these mechanisms, we compared the eyes of adult individuals of the cave loach Triplophysa rosa and surface loach Triplophysa bleekeri. Compared with the normal eyes of the surface loach, those of the cave loach were found to possess a small abnormal lens and a defective retina containing photoreceptor cells that lack outer segments. Sequencing of the transcriptomes of both species to identify differentially expressed genes (DEGs) and genes under positive selection revealed 4,802 DEGs and 50 genes under positive selection (dN/dS > 1, FDR < 0.1). For cave loaches, we identified one Gene Ontology category related to vision that was significantly enriched in downregulated genes. Specifically, we found that many of the downregulated genes, including pitx3, lim2, crx, gnat2, rx1, rho, prph2, and β|γ-crystallin are associated with lens/retinal development and maintenance. However, compared with those in the surface loach, the lower dS rates but higher dN rates of the protein-coding sequences in T. rosa indicate that changes in amino acid sequences might be involved in the adaptation and visual degeneration of cave loaches. We also found that genes associated with light perception and light-stimulated vision have evolved at higher rates (some genes dN/dS > 1 but FDR > 0.1). Collectively, the findings of this study indicate that the degradation of cavefish vision is probably associated with both gene expression and amino acid changes and provide new insights into the mechanisms underlying the degeneration of cavefish eyes.
Collapse
Affiliation(s)
- Qingyuan Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| | - Renyi Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yingqi Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| | - Yabing Niu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| | - Yanping Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, China
| |
Collapse
|
8
|
Biallelic sequence and structural variants in RAX2 are a novel cause for autosomal recessive inherited retinal disease. Genet Med 2018; 21:1319-1329. [PMID: 30377383 PMCID: PMC6752271 DOI: 10.1038/s41436-018-0345-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/12/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
Purpose RAX2 encodes a homeobox-containing transcription factor, in which four monoallelic pathogenic variants have been described in autosomal dominant cone-dominated retinal disease. Methods Exome sequencing in a European cohort with inherited retinal disease (IRD) (n = 2086) was combined with protein structure modeling of RAX2 missense variants, bioinformatics analysis of deletion breakpoints, haplotyping of RAX2 variant c.335dup, and clinical assessment of biallelic RAX2-positive cases and carrier family members. Results Biallelic RAX2 sequence and structural variants were found in five unrelated European index cases, displaying nonsyndromic autosomal recessive retinitis pigmentosa (ARRP) with an age of onset ranging from childhood to the mid-40s (average mid-30s). Protein structure modeling points to loss of function of the novel recessive missense variants and to a dominant-negative effect of the reported dominant RAX2 alleles. Structural variants were fine-mapped to disentangle their underlying mechanisms. Haplotyping of c.335dup in two cases suggests a common ancestry. Conclusion This study supports a role for RAX2 as a novel disease gene for recessive IRD, broadening the mutation spectrum from sequence to structural variants and revealing a founder effect. The identification of biallelic RAX2 pathogenic variants in five unrelated families shows that RAX2 loss of function may be a nonnegligible cause of IRD in unsolved ARRP cases.
Collapse
|