1
|
Greene CL, Traeger G, Venkatesh A, Han D, Majesky MW. Origins of Aortic Coarctation: A Vascular Smooth Muscle Compartment Boundary Model. J Dev Biol 2025; 13:13. [PMID: 40265371 PMCID: PMC12015864 DOI: 10.3390/jdb13020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Compartment boundaries divide the embryo into segments with distinct fates and functions. In the vascular system, compartment boundaries organize endothelial cells into arteries, capillaries, and veins that are the fundamental units of a circulatory network. For vascular smooth muscle cells (SMCs), such boundaries produce mosaic patterns of investment based on embryonic origins with important implications for the non-uniform distribution of vascular disease later in life. The morphogenesis of blood vessels requires vascular cell movements within compartments as highly-sensitive responses to changes in fluid flow shear stress and wall strain. These movements underline the remodeling of primitive plexuses, expansion of lumen diameters, regression of unused vessels, and building of multilayered artery walls. Although the loss of endothelial compartment boundaries can produce arterial-venous malformations, little is known about the consequences of mislocalization or the failure to form SMC-origin-specific boundaries during vascular development. We propose that the failure to establish a normal compartment boundary between cardiac neural-crest-derived SMCs of the 6th pharyngeal arch artery (future ductus arteriosus) and paraxial-mesoderm-derived SMCs of the dorsal aorta in mid-gestation embryos leads to aortic coarctation observed at birth. This model raises new questions about the effects of fluid flow dynamics on SMC investment and the formation of SMC compartment borders during pharyngeal arch artery remodeling and vascular development.
Collapse
Affiliation(s)
- Christina L. Greene
- Heart Center, Seattle Children’s Hospital, Seattle, WA 98112, USA;
- Department of Surgery, School of Medicine, University of Washington, Seattle, WA 98105, USA
- Norcliffe Foundation Center for Integrated Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
| | - Geoffrey Traeger
- Norcliffe Foundation Center for Integrated Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
| | - Akshay Venkatesh
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98105, USA;
| | - David Han
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
- Department of Cell Biology & Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Mark W. Majesky
- Heart Center, Seattle Children’s Hospital, Seattle, WA 98112, USA;
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
2
|
Alibrandi S, Rinaldi C, Vinci SL, Conti A, Donato L, Scimone C, Sidoti A, D’Angelo R. Mechanotransduction in Development: A Focus on Angiogenesis. BIOLOGY 2025; 14:346. [PMID: 40282211 PMCID: PMC12024848 DOI: 10.3390/biology14040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Cells respond to external mechanical cues and transduce these forces into biological signals. This process is known as mechanotransduction and requires a group of proteins called mechanosensors. This peculiar class of receptors include extracellular matrix proteins, plasma membrane proteins, the cytoskeleton and the nuclear envelope. These cell components are responsive to a wide spectrum of physical cues including stiffness, tensile force, hydrostatic pressure and shear stress. Among mechanotransducers, the Transient Receptor Potential (TRP) and the PIEZO family members are mechanosensitive ion channels, coupling force transduction with intracellular cation transport. Their activity contributes to embryo development, tissue remodeling and repair, and cell homeostasis. In particular, vessel development is driven by hemodynamic cues such as flow direction and shear stress. Perturbed mechanotransduction is involved in several pathological vascular phenotypes including hereditary hemorrhagic telangiectasia. This review is conceived to summarize the most recent findings of mechanotransduction in development. We first collected main features of mechanosensitive proteins. However, we focused on the role of mechanical cues during development. Mechanosensitive ion channels and their function in vascular development are also discussed, with a focus on brain vessel morphogenesis.
Collapse
Affiliation(s)
- Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Street Michele Miraglia 20, 90139 Palermo, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
| | - Sergio Lucio Vinci
- Neuroradiology Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
| | - Alfredo Conti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Street Altura 3, 40123 Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Street Michele Miraglia 20, 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Street Michele Miraglia 20, 90139 Palermo, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
| |
Collapse
|
3
|
Kowalski WJ, Vatti S, Sakamoto T, Li W, Odutola SR, Liu C, Chen G, Boehm M, Mukouyama YS. In vivo transplantation of mammalian vascular organoids onto the chick chorioallantoic membrane reveals the formation of a hierarchical vascular network. Sci Rep 2025; 15:7150. [PMID: 40021912 PMCID: PMC11871353 DOI: 10.1038/s41598-025-91826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/24/2025] [Indexed: 03/03/2025] Open
Abstract
The dynamic remodeling of the nascent vascular network into a mature hierarchy is essential for embryo survival. Cell behaviors and signaling mechanisms are often investigated with animal models and perfused microchannels, giving insights into this process. To support these studies and enrich our understanding, we demonstrate a complementary approach using vascular organoids. Organoids initially form a primitive endothelial plexus lined with NG2+/PDGFRβ+ mural cell progenitors containing immature pericytes, but there is no formation of large-diameter vessels covered with αSMA+ cells containing immature vascular smooth muscle cells (vSMCs). After transplantation to the chick chorioallantoic membrane, the network reorganizes into a branched architecture with large-diameter vessels covered by αSMA+ cells. We additionally show that blood flow from the host circulation perfuses the organoid. Compared with the developing skin vasculature in mouse embryos, organoids successfully recapitulate vascular morphogenesis, both in vitro and after transplantation. The model described here presents a further approach to enhance the study of vascular remodeling.
Collapse
Affiliation(s)
- William J Kowalski
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shravani Vatti
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Tyler Sakamoto
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Harvard College, Cambridge, MA, USA
| | - Wenling Li
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Rose Odutola
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Harvard College, Cambridge, MA, USA
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guibin Chen
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Yang M, Ong J, Meng F, Zhang F, Shen H, Kitt K, Liu T, Tao W, Du P. Spatiotemporal insight into early pregnancy governed by immune-featured stromal cells. Cell 2023; 186:4271-4288.e24. [PMID: 37699390 DOI: 10.1016/j.cell.2023.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/04/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Endometrial decidualization connecting embryo implantation and placentation is transient but essential for successful pregnancy, which, however, is not systematically investigated. Here, we use a scStereo-seq technology to spatially visualize and define the dynamic functional decidual hubs assembled by distinct immune, endothelial, trophoblast, and decidual stromal cells (DSCs) in early pregnant mice. We unravel the DSC transdifferentiation trajectory and surprisingly discover a dual-featured type of immune-featured DSCs (iDSCs). We find that immature DSCs attract immune cells and induce decidual angiogenesis at the mesenchymal-epithelial transition hub during decidualization initiation. iDSCs enable immune cell recruitment and suppression, govern vascularization, and promote cytolysis at immune cell assembling and vascular hubs, respectively, to establish decidual homeostasis at a later stage. Interestingly, dysfunctional and spatially disordered iDSCs cause abnormal accumulation of immune cells in the vascular hub, which disrupts decidual hub specification and eventually leads to pregnancy complications in DBA/2-mated CBA/J mice.
Collapse
Affiliation(s)
- Min Yang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jennie Ong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fanju Meng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Feixiang Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Kerstin Kitt
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma Co KG, Biberach an der Riss 88400, Germany
| | - Tengfei Liu
- Department of Research Beyond Borders, Boehringer Ingelheim (China) Investment Co., Ltd., Beijing 100027, China
| | - Wei Tao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Eisa-Beygi S, Burrows PE, Link BA. Endothelial cilia dysfunction in pathogenesis of hereditary hemorrhagic telangiectasia. Front Cell Dev Biol 2022; 10:1037453. [PMID: 36438574 PMCID: PMC9686338 DOI: 10.3389/fcell.2022.1037453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/21/2022] [Indexed: 09/09/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is associated with defective capillary network, leading to dilated superficial vessels and arteriovenous malformations (AVMs) in which arteries connect directly to the veins. Loss or haploinsufficiency of components of TGF-β signaling, ALK1, ENG, SMAD4, and BMP9, have been implicated in the pathogenesis AVMs. Emerging evidence suggests that the inability of endothelial cells to detect, transduce and respond to blood flow, during early development, is an underpinning of AVM pathogenesis. Therefore, components of endothelial flow detection may be instrumental in potentiating TGF-β signaling in perfused blood vessels. Here, we argue that endothelial cilium, a microtubule-based and flow-sensitive organelle, serves as a signaling hub by coupling early flow detection with potentiation of the canonical TGF-β signaling in nascent endothelial cells. Emerging evidence from animal models suggest a role for primary cilia in mediating vascular development. We reason, on recent observations, that endothelial cilia are crucial for vascular development and that embryonic loss of endothelial cilia will curtail TGF-β signaling, leading to associated defects in arteriovenous development and impaired vascular stability. Loss or dysfunction of endothelial primary cilia may be implicated in the genesis of AVMs due, in part, to inhibition of ALK1/SMAD4 signaling. We speculate that AVMs constitute part of the increasing spectrum of ciliopathy-associated vascular defects.
Collapse
Affiliation(s)
- Shahram Eisa-Beygi
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Patricia E. Burrows
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian A. Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
6
|
Abstract
Embryoids and organoids hold great promise for human biology and medicine. Herein, we discuss conceptual and technological frameworks useful for developing high-fidelity embryoids and organoids that display tissue- and organ-level phenotypes and functions, which are critically needed for decoding developmental programs and improving translational applications. Through dissecting the layers of inputs controlling mammalian embryogenesis, we review recent progress in reconstructing multiscale structural orders in embryoids and organoids. Bioengineering tools useful for multiscale, multimodal structural engineering of tissue- and organ-level cellular organization and microenvironment are also discussed to present integrative, bioengineering-directed approaches to achieve next-generation, high-fidelity embryoids and organoids.
Collapse
Affiliation(s)
- Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Verma SK, Deshmukh V, Thatcher K, Belanger KK, Rhyner A, Meng S, Holcomb R, Bressan M, Martin J, Cooke J, Wythe J, Widen S, Lincoln J, Kuyumcu-Martinez M. RBFOX2 is required for establishing RNA regulatory networks essential for heart development. Nucleic Acids Res 2022; 50:2270-2286. [PMID: 35137168 PMCID: PMC8881802 DOI: 10.1093/nar/gkac055] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Human genetic studies identified a strong association between loss of function mutations in RBFOX2 and hypoplastic left heart syndrome (HLHS). There are currently no Rbfox2 mouse models that recapitulate HLHS. Therefore, it is still unknown how RBFOX2 as an RNA binding protein contributes to heart development. To address this, we conditionally deleted Rbfox2 in embryonic mouse hearts and found profound defects in cardiac chamber and yolk sac vasculature formation. Importantly, our Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS. To determine the molecular drivers of these cardiac defects, we performed RNA-sequencing in Rbfox2 mutant hearts and identified dysregulated alternative splicing (AS) networks that affect cell adhesion to extracellular matrix (ECM) mediated by Rho GTPases. We identified two Rho GTPase cycling genes as targets of RBFOX2. Modulating AS of these two genes using antisense oligos led to cell cycle and cell-ECM adhesion defects. Consistently, Rbfox2 mutant hearts displayed cell cycle defects and inability to undergo endocardial-mesenchymal transition, processes dependent on cell-ECM adhesion and that are seen in HLHS. Overall, our work not only revealed that loss of Rbfox2 leads to heart development defects resembling HLHS, but also identified RBFOX2-regulated AS networks that influence cell-ECM communication vital for heart development.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vaibhav Deshmukh
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaitlyn Thatcher
- Department of Pediatrics, Medical College of Wisconsin, Division of Pediatric Cardiology, The Herma Heart Institute, Children's WI, Milwaukee, WI 53226, USA
| | - KarryAnne K Belanger
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander M Rhyner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shu Meng
- Houston Methodist Research Institute, Department of Cardiovascular Sciences, Houston, TX 77030, USA
| | - Richard Joshua Holcomb
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Michael Bressan
- Department of Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiomyocyte Renewal Lab;Texas Heart Institute, Houston, TX77030, USA
| | - John P Cooke
- Houston Methodist Research Institute, Department of Cardiovascular Sciences, Houston, TX 77030, USA
| | - Joshua D Wythe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiomyocyte Renewal Lab;Texas Heart Institute, Houston, TX77030, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Division of Pediatric Cardiology, The Herma Heart Institute, Children's WI, Milwaukee, WI 53226, USA
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neuroscience, Cell Biology and Anatomy, Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd. Galveston, TX 77555, USA
| |
Collapse
|
8
|
van Andel MM, Groenink M, van den Berg MP, Timmermans J, Scholte AJHA, Mulder BJM, Zwinderman AH, de Waard V. Genome-wide methylation patterns in Marfan syndrome. Clin Epigenetics 2021; 13:217. [PMID: 34895303 PMCID: PMC8665617 DOI: 10.1186/s13148-021-01204-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/27/2021] [Indexed: 12/29/2022] Open
Abstract
Background Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the Fibrillin-1 gene (FBN1). Here, we undertook the first epigenome-wide association study (EWAS) in patients with MFS aiming at identifying DNA methylation loci associated with MFS phenotypes that may shed light on the disease process. Methods The Illumina 450 k DNA-methylation array was used on stored peripheral whole-blood samples of 190 patients with MFS originally included in the COMPARE trial. An unbiased genome-wide approach was used, and methylation of CpG-sites across the entire genome was evaluated. Additionally, we investigated CpG-sites across the FBN1-locus (15q21.1) more closely, since this is the gene defective in MFS. Differentially Methylated Positions (DMPs) and Differentially Methylated Regions (DMRs) were identified through regression analysis. Associations between methylation levels and aortic diameters and presence or absence of 21 clinical features of MFS at baseline were analyzed. Moreover, associations between aortic diameter change, and the occurrence of clinical events (death any cause, type-A or -B dissection/rupture, or aortic surgery) and methylation levels were analyzed. Results We identified 28 DMPs that are significantly associated with aortic diameters in patients with MFS. Seven of these DMPs (25%) could be allocated to a gene that was previously associated with cardiovascular diseases (HDAC4, IGF2BP3, CASZ1, SDK1, PCDHGA1, DIO3, PTPRN2). Moreover, we identified seven DMPs that were significantly associated with aortic diameter change and five DMP’s that associated with clinical events. No significant associations at p < 10–8 or p < 10–6 were found with any of the non-cardiovascular phenotypic MFS features. Investigating DMRs, clusters were seen mostly on X- and Y, and chromosome 18–22. The remaining DMRs indicated involvement of a large family of protocadherins on chromosome 5, which were not reported in MFS before. Conclusion This EWAS in patients with MFS has identified a number of methylation loci significantly associated with aortic diameters, aortic dilatation rate and aortic events. Our findings add to the slowly growing literature on the regulation of gene expression in MFS patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01204-4.
Collapse
Affiliation(s)
- Mitzi M van Andel
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Maarten Groenink
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Radiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maarten P van den Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janneke Timmermans
- Department of Cardiology, Radboud University Hospital, Nijmegen, The Netherlands
| | - Arthur J H A Scholte
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Barbara J M Mulder
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Zhang Q, Wang L, Chen G, Wang M, Hu T. Cylindrospermopsin impairs vascular smooth muscle cells by P53-mediated apoptosis due to ROS overproduction. Toxicol Lett 2021; 353:83-92. [PMID: 34687773 DOI: 10.1016/j.toxlet.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/05/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Cylindrospermopsin (CYN) is a toxic secondary metabolite from cyanobacteria that can cause cardiovascular disease. However, the study of CYN-induced cardiovascular toxicity in vitro is very limited and the mechanism is remain to be clarified. Vascular smooth muscle cells (VMSCs) have an important function in maintaining the structural and functional integrity of the aortic wall, and are an important in vitro model for cardiovascular research. Thus, the effects of CYN exposure (2, 20, 200, and 2000 nM) on VMSCs were analyzed. In vitro study, results showed that CYN exposure decreased VMSCs viability, inhibited VMSCs migration, induced DNA damage, destroyed cytoskeleton, changed cell morphology, promoted VMSCs apoptosis, and increased intracellular reactive oxygen species (ROS) levels. In addition, CYN could induce the activities of SOD, CAT and GPX, and promote the expressions of SOD1, CAT, GPx1, p53 and Bax genes and inhibit the expression of Bcl-2 gene, leading to a higher ratio of Bax/Bcl-2. Taken together, CYN may induce ROS overproduction, leading to increased p53 expression and ultimately promoting VSMC apoptosis. Therefore, the present study demonstrates that CYN could impair VMSCs, leading to vascular developmental defects and angiocardiopathy.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
10
|
Yang Y, Gao C, Yang T, Sha Y, Cai Y, Wang X, Yang Q, Liu C, Wang B, Zhao S. Vascular characteristics and expression of hypoxia genes in Tibetan pigs' hearts. Vet Med Sci 2021; 8:177-186. [PMID: 34561963 PMCID: PMC8788992 DOI: 10.1002/vms3.639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Tibetan pigs have exhibited unique characteristics from low‐altitudes pigs and adapted well to the Qinghai‐Tibet Plateau. Objectives The current study was undertaken to investigate the hypoxic adaptation of heart in Tibetan pigs. Methods The hearts of Tibetan pigs and Landrace pigs raised at high or low altitudes were compared using 3D casting technology, scanning electron microscopy and real‐time quantitative PCR (qRT‐PCR). Results We found that the ratio of the major axis to the minor axis and the density of the heart were significantly higher in Tibetan pigs than in Landrace pigs (p < 0.05). Tibetan pigs had larger diameters and higher densities of arterioles than Landrace pigs (p < 0.05), and these features have a similar variation with the expression of vascular endothelial growth factor (VEGF). The cardiac expression levels of hypoxia‐inducible factor‐1α (HIF‐1α) and endothelial nitric oxide synthase (eNOS) were significantly higher in pigs reared at high altitudes than in those reared at low altitudes (p < 0.05). In contrast, Egl nine homolog 1 (EGLN1) had the opposite trend with respect to HIF‐1α and eNOS and was related to red blood cell (RBC) counts. Notably, the expressions of erythropoietin (EPO) and endothelial PAS domain‐containing protein 1 (EPAS1) were significantly higher in Landrace pigs kept at high altitudes than in the others (p < 0.05) and were associated with haemoglobin. Conclusions These findings show that the regulation of the heart function of Tibetan pigs in a hypoxic environment is manifested at various levels to ensure the circulation of blood under extreme environmental conditions.
Collapse
Affiliation(s)
- Yanan Yang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Tianliang Yang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| | - Yuzhu Sha
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| | - Yuan Cai
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| | - Xinrong Wang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| | - Qiaoli Yang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| | - Chengze Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| | - Biao Wang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| | - Shengguo Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| |
Collapse
|
11
|
Lv H, Ai D. Hippo/yes-associated protein signaling functions as a mechanotransducer in regulating vascular homeostasis. J Mol Cell Cardiol 2021; 162:158-165. [PMID: 34547259 DOI: 10.1016/j.yjmcc.2021.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/25/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Cells are constantly exposed to various mechanical forces, including hydrostatic pressure, cyclic stretch, fluid shear stress, and extracellular matrix stiffness. Mechanical cues can be translated into the cell-specific transcriptional process by a cellular mechanic-transducer. Evidence suggests that mechanical signals assist activated intracellular signal transduction pathways and the relative phenotypic adaptation to coordinate cell behavior and disease appropriately. The Hippo/yes-associated protein (YAP) signaling pathway is regulated in response to numerous mechanical stimuli. It plays an important role in the mechanotransduction mechanism, which converts mechanical forces to cascades of molecular signaling to modulate gene expression. This review summarizes the recent findings relevant to the Hippo/YAP pathway-based mechanotransduction in cell behavior and maintaining blood vessels, as well as cardiovascular disease.
Collapse
Affiliation(s)
- Huizhen Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Ion and Molecular Function of Cardiovascular Diseases, Tianjin Institute of Cardiology, Tianjin Medical University, Tianjin 300070, China; Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Ion and Molecular Function of Cardiovascular Diseases, Tianjin Institute of Cardiology, Tianjin Medical University, Tianjin 300070, China; Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
12
|
A Potential Role of Semaphorin 3A during Orthodontic Tooth Movement. Int J Mol Sci 2021; 22:ijms22158297. [PMID: 34361063 PMCID: PMC8348452 DOI: 10.3390/ijms22158297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Induced tooth movement during orthodontic therapy requires mechano-induced bone remodeling. Besides various cytokines and growth-factors, neuronal guidance molecules gained attention for their roles in bone homeostasis and thus, potential roles during tooth movement. Several neuronal guidance molecules have been implicated in the regulation of bone remodeling. Amongst them, Semaphorin 3A is particular interesting as it concurrently induces osteoblast differentiation and disturbs osteoclast differentiation. METHODS Mechano-regulation of Sema3A and its receptors PlexinA1 and Neuropilin (RT-qPCR, WB) was evaluated by applying compressive and tension forces to primary human periodontal fibroblasts (hPDLF) and alveolar bone osteoblasts (hOB). The association of the transcription factor Osterix (SP7) and SEMA3A was studied by RT-qPCR. Mechanisms involved in SEMA3A-mediated osteoblast differentiation were assessed by Rac1GTPase pull-downs, β-catenin expression analyses (RT-qPCR) and nuclear translocation assays (IF). Osteogenic markers were analyzed by RT-qPCR. RESULTS SEMA3A, PLXNA1 and NRP1 were differentially regulated by tension or compressive forces in hPDLF. Osterix (SP7) displayed the same pattern of regulation. Recombinant Sema3A induced the activation of Rac1GTPase, the nuclear translocation of β-catenin and the expression of osteogenic marker genes. CONCLUSION Sema3A, its receptors and Osterix are regulated by mechanical forces in hPDLF. SEMA3A upregulation was associated with Osterix (SP7) modulation. Sema3A-enhanced osteogenic marker gene expression in hOB might be dependent on a pathway involving Rac1GTPase and β-catenin. Thus, Semaphorin 3A might contribute to bone remodeling during induced tooth movement.
Collapse
|
13
|
Phillips HM, Stothard CA, Shaikh Qureshi WM, Kousa AI, Briones-Leon JA, Khasawneh RR, O'Loughlin C, Sanders R, Mazzotta S, Dodds R, Seidel K, Bates T, Nakatomi M, Cockell SJ, Schneider JE, Mohun TJ, Maehr R, Kist R, Peters H, Bamforth SD. Pax9 is required for cardiovascular development and interacts with Tbx1 in the pharyngeal endoderm to control 4th pharyngeal arch artery morphogenesis. Development 2019; 146:dev.177618. [PMID: 31444215 PMCID: PMC6765178 DOI: 10.1242/dev.177618] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022]
Abstract
Developmental defects affecting the heart and aortic arch arteries are a significant phenotype observed in individuals with 22q11 deletion syndrome and are caused by a microdeletion on chromosome 22q11. TBX1, one of the deleted genes, is expressed throughout the pharyngeal arches and is considered a key gene, when mutated, for the arch artery defects. Pax9 is expressed in the pharyngeal endoderm and is downregulated in Tbx1 mutant mice. We show here that Pax9-deficient mice are born with complex cardiovascular malformations that affect the outflow tract and aortic arch arteries with failure of the 3rd and 4th pharyngeal arch arteries to form correctly. Transcriptome analysis indicated that Pax9 and Tbx1 may function together, and mice double heterozygous for Tbx1/Pax9 presented with a significantly increased incidence of interrupted aortic arch when compared with Tbx1 heterozygous mice. Using a novel Pax9Cre allele, we demonstrated that the site of this Tbx1-Pax9 genetic interaction is the pharyngeal endoderm, therefore revealing that a Tbx1-Pax9-controlled signalling mechanism emanating from the pharyngeal endoderm is required for crucial tissue interactions during normal morphogenesis of the pharyngeal arch artery system. Summary: A strong genetic interaction between Tbx1 and Pax9 that leads to 4th PAA-derived defects in double heterozygous mice is cell-autonomous within the pharyngeal endoderm.
Collapse
Affiliation(s)
- Helen M Phillips
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Catherine A Stothard
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | | | | | | | - Ramada R Khasawneh
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Chloe O'Loughlin
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Rachel Sanders
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Silvia Mazzotta
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Rebecca Dodds
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Kerstin Seidel
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Timothy Bates
- School of Dental Sciences, Newcastle University, Newcastle-upon-Tyne NE2 4BW, UK
| | - Mitsushiro Nakatomi
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Simon J Cockell
- Bioinformatics Support Unit, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | | | | | - René Maehr
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ralf Kist
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK.,School of Dental Sciences, Newcastle University, Newcastle-upon-Tyne NE2 4BW, UK
| | - Heiko Peters
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| | - Simon D Bamforth
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne NE1 3BZ, UK
| |
Collapse
|