1
|
Sinha M, Jagadeesan R, Kumar N, Saha S, Kothandan G, Kumar D. In-silico studies on Myo inositol-1-phosphate synthase of Leishmania donovani in search of anti-leishmaniasis. J Biomol Struct Dyn 2020; 40:3371-3384. [PMID: 33200690 DOI: 10.1080/07391102.2020.1847194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myo-inositol is one of the vital nutritional requirements for the Leishmania parasites' survival and virulence in the mammalian host. . Myo-inositol-1-phosphate synthase (MIPS) is responsible for the synthesis of myo-inositol in Leishmania, which plays a vital role in Leishmania's virulence to mammalian hosts. Earlier studies suggest MIP synthase as a potential drug target against which valproate was used as a drug. So, MIP synthase can be used as a target for anti-leishmanial drugs, and its inhibition may help in preventing leishmaniasis. The present study aims to identify valproate's potent analogs as drugs against MIP synthase of L. donovani (Ld-MIPS) with minimum side effects and toxicity to host.In this study, the three-dimensional structure of Ld-MIPS was built, followed by active site prediction. Ligand-based virtual screening was done using hybrid similarity recognition methods. The best 123 valproate analogs were filtered based on their quantitative structure activity relationship (QSAR) properties and were docked against Ld-MIPS using FlexX, PyRx and iGEMDOCK software. The topmost five ligands were selected for molecular dynamics simulation and pharmacokinetic analysis based on the docking score. Simulation studies up to 30 ns revealed that all five lead molecules bound with Ld-MIPS throughout MD simulation and there was no variation in their backbone. All the chosen inhibitors exhibited good pharmacokinetics/ADMET predictions with an excellent absorption profile, metabolism, oral bioavailability, solubility, excretion, and minimal toxicity, suggesting that these inhibitors may further be developed as anti-leishmaniasis drugs to prevent the spread of leishmaniasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mousumi Sinha
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Rahul Jagadeesan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, Tamil Nadu, India
| | - Neeraj Kumar
- Functional Genomics & Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Satabdi Saha
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Gugan Kothandan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, Tamil Nadu, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, Assam, India
| |
Collapse
|
2
|
Booth LA, Smith TK. Lipid metabolism in Trypanosoma cruzi: A review. Mol Biochem Parasitol 2020; 240:111324. [PMID: 32961207 DOI: 10.1016/j.molbiopara.2020.111324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023]
Abstract
The cellular membranes of Trypanosoma cruzi, like all eukaryotes, contain varying amounts of phospholipids, sphingolipids, neutral lipids and sterols. A multitude of pathways exist for the de novo synthesis of these lipid families but Trypanosoma cruzi has also become adapted to scavenge some of these lipids from the host. Completion of the TriTryp genomes has led to the identification of many putative genes involved in lipid synthesis, revealing some interesting differences to higher eukaryotes. Although many enzymes involved in lipid synthesis have yet to be characterised, completed experiments have shown the indispensability of some lipid metabolic pathways. Furthermore, the bioactive lipids of Trypanosoma cruzi and their effects on the host are becoming increasingly studied. Further studies on lipid metabolism in Trypanosoma cruzi will no doubt reveal some attractive targets for therapeutic intervention as well as reveal the interplay between parasite lipids, host response and pathogenesis.
Collapse
Affiliation(s)
- Leigh-Ann Booth
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom.
| |
Collapse
|
3
|
Sindhu KJ, Kureel AK, Saini S, Kumari S, Verma P, Rai AK. Characterization of phosphate transporter(s) and understanding their role in Leishmania donovani parasite. Acta Parasitol 2018; 63:75-88. [PMID: 29351081 DOI: 10.1515/ap-2018-0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/12/2017] [Indexed: 11/15/2022]
Abstract
Inorganic phosphate (Pi) is shown to be involved in excretion of methylglyoxal (MG) in the promastigote form of Leishmania donovani parasite. Absence of Pi leads to its accumulation inside the parasite. Accumulation of MG is toxic to the parasite and utilizes glyoxylase as well as excretory pathways for its detoxification. In addition, Pi is also reported to regulate activities of ectoenzymes and energy metabolism (glucose to pyruvate) etc. Thus, it is known to cumulatively affect the growth of Leishmania parasite. Hence the transporters, which allow the movement of Pi across the membrane, can prove to be a crucial drug target. Therefore, we characterized two phosphate transporters in Leishmania (i) H+ dependent myo-inositol transporter (LdPHO84), and (ii) Na+ dependent transporter (LdPHO89), based on similar studies done previously on other lower organisms and trypanosomatids. We tried to understand the secondary structure of these two proteins and confirm modulation in their expression with the change in Pi concentration outside. Moreover, their modes of action were also measured in the presence of specific inhibitors (LiF, CCCP). Further analysis on the physiological role of these transporters in various stages of the parasite life cycle needs to be entrenched.
Collapse
Affiliation(s)
- K J Sindhu
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| | - Amit Kumar Kureel
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| | - Sheetal Saini
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| | - Smita Kumari
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| | - Pankaj Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| |
Collapse
|
4
|
Abstract
Fungi in the genus Pneumocystis live in the lungs of mammals, where they can cause a fatal pneumonia (PCP [Pneumocystis pneumonia]) in hosts with compromised immune systems. The absence of a continuous in vitro culture system for any species of Pneumocystis has led to limited understanding of these fungi, especially for the discovery of new therapies. We recently reported that Pneumocystis carinii, Pneumocystis murina, and most significantly, Pneumocystis jirovecii lack both enzymes necessary for myo-inositol biosynthesis but contain genes with homologies to fungal myo-inositol transporters. Since myo-inositol is essential for eukaryotic viability, the primary transporter, ITR1, was functionally and structurally characterized in P. carinii The predicted structure of P. carinii ITR1 (PcITR1) contained 12 transmembrane alpha-helices with intracellular C and N termini, consistent with other inositol transporters. The apparent Km was 0.94 ± 0.08 (mean ± standard deviation), suggesting that myo-inositol transport in P. carinii is likely through a low-affinity, highly selective transport system, as no other sugars or inositol stereoisomers were significant competitive inhibitors. Glucose transport was shown to use a different transport system. The myo-inositol transport was distinct from mammalian transporters, as it was not sodium dependent and was cytochalasin B resistant. Inositol transport in these fungi offers an attractive new drug target because of the reliance of the fungi on its transport, clear differences between the mammalian and fungal transporters, and the ability of the host to both synthesize and transport this critical nutrient, predicting low toxicity of potential inhibitors to the fungal transporter. IMPORTANCE myo-Inositol is a sugarlike nutrient that is essential for life in most organisms. Humans and microbes alike can obtain it by making it, which involves only 2 enzymes, by taking it from the environment by a transport process, or by recycling it from other cellular constituents. Inspection of the genomes of the pathogenic fungi of the genus Pneumocystis showed that these pneumonia-causing parasites could not make myo-inositol, as they lacked the 2 enzymes. Instead, we found evidence of inositol transporters, which would import the sugar from the lungs where the fungi reside. In the present report, we characterized the transport of myo-inositol in the fungus and found that the transporter was highly selective for myo-inositol and did not transport any other molecules. The transport was distinct from that in mammalian cells, and since mammals can both make and transport myo-inositol, while Pneumocystis fungi must transport it, this process offers a potential new drug target.
Collapse
|
5
|
Trypanosoma brucei Bloodstream Forms Depend upon Uptake of myo-Inositol for Golgi Complex Phosphatidylinositol Synthesis and Normal Cell Growth. EUKARYOTIC CELL 2015; 14:616-24. [PMID: 25888554 DOI: 10.1128/ec.00038-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/13/2015] [Indexed: 01/10/2023]
Abstract
myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na(+)- or H(+)-linked myo-inositol transporters. While Na(+)-coupled myo-inositol transporters are found exclusively in the plasma membrane, H(+)-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H(+)-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol.
Collapse
|
6
|
Schneider S. Inositol transport proteins. FEBS Lett 2015; 589:1049-58. [DOI: 10.1016/j.febslet.2015.03.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/05/2015] [Accepted: 03/18/2015] [Indexed: 12/27/2022]
|
7
|
Finding the sweet spot: how human fungal pathogens acquire and turn the sugar inositol against their hosts. mBio 2015; 6:e00109. [PMID: 25736882 PMCID: PMC4358016 DOI: 10.1128/mbio.00109-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Inositol is an essential nutrient with important structural and signaling functions in eukaryotes. Its role in microbial pathogenesis has been reported in fungi, protozoans, and eubacteria. In a recent article, Porollo et al. [mBio 5(6):e01834-14, 2014, doi:10.1128/mBio.01834-14] demonstrated the importance of inositol metabolism in the development and viability of Pneumocystis species—obligate fungal pathogens that remain unculturable in vitro. To understand their obligate nature, the authors used innovative comparative genomic approaches and discovered that Pneumocystis spp. are inositol auxotrophs due to the lack of inositol biosynthetic enzymes and that inositol insufficiency is a contributing factor preventing fungal growth in vitro. This work is in accord with other studies suggesting that inositol plays a conserved role in microbial pathogenesis. Inositol uptake and metabolism therefore may represent novel antimicrobial drug targets. Using comparative genomics to analyze metabolic pathways offers a powerful tool to gain new insights into nutrient utilization in microbes, especially obligate pathogens.
Collapse
|
8
|
Gonzalez-Salgado A, Steinmann ME, Greganova E, Rauch M, Mäser P, Sigel E, Bütikofer P. myo-Inositol uptake is essential for bulk inositol phospholipid but not glycosylphosphatidylinositol synthesis in Trypanosoma brucei. J Biol Chem 2012; 287:13313-23. [PMID: 22351763 DOI: 10.1074/jbc.m112.344812] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
myo-Inositol is an essential precursor for the production of inositol phosphates and inositol phospholipids in all eukaryotes. Intracellular myo-inositol is generated by de novo synthesis from glucose 6-phosphate or is provided from the environment via myo-inositol symporters. We show that in Trypanosoma brucei, the causative pathogen of human African sleeping sickness and nagana in domestic animals, myo-inositol is taken up via a specific proton-coupled electrogenic symport and that this transport is essential for parasite survival in culture. Down-regulation of the myo-inositol transporter using RNA interference inhibited uptake of myo-inositol and blocked the synthesis of the myo-inositol-containing phospholipids, phosphatidylinositol and inositol phosphorylceramide; in contrast, it had no effect on glycosylphosphatidylinositol production. This together with the unexpected localization of the myo-inositol transporter in both the plasma membrane and the Golgi demonstrate that metabolism of endogenous and exogenous myo-inositol in T. brucei is strictly segregated.
Collapse
Affiliation(s)
- Amaia Gonzalez-Salgado
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
9
|
Vince JE, Tull D, Landfear S, McConville MJ. Lysosomal degradation of Leishmania hexose and inositol transporters is regulated in a stage-, nutrient- and ubiquitin-dependent manner. Int J Parasitol 2011; 41:791-800. [PMID: 21447343 DOI: 10.1016/j.ijpara.2011.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 11/29/2022]
Abstract
Leishmania parasites experience variable nutrient levels as they cycle between the extracellular promastigote stage in the sandfly vector and the obligate intracellular amastigote stage in the mammalian host. Here we show that the surface expression of three Leishmania mexicana hexose and myo-inositol transporters is regulated in both a stage-specific and nutrient-dependent manner. GFP-chimeras of functionally active hexose transporters, LmGT2 and LmGT3, and the myo-inositol transporter, MIT, were primarily expressed in the cell body plasma membrane in rapidly dividing promastigote stages. However MIT-GFP was mostly rerouted to the multivesicular tubule (MVT)-lysosome when promastigotes reached stationary phase growth and all three nutrient transporters were targeted to the amastigote lysosome following transformation to in vitro differentiated or in vivo imaged amastigote stages. This stage-specific decrease in surface expression of GFP-tagged transporters correlated with decreased hexose or myo-inositol uptake in stationary phase promastigotes and amastigotes. The MVT-lysosme targeting of the MIT-GFP protein was reversed when promastigotes were deprived of myo-inositol, indicating that nutrient signals can override stage-specific changes in transporter distribution. The surface expression of the hexose and myo-inositol transporters was not regulated by interactions with the subpellicular cytoskeleton, as both classes of transporters associated with detergent-resistant membranes. LmGT3-GFP and MIT-GFP proteins C-terminally modified with mono-ubiquitin were constitutively transported to the MVT-lysosome, suggesting that ubiquitination may play a key role in regulating the subcellular distribution of these transporters and parasite adaptation to different nutrient conditions.
Collapse
Affiliation(s)
- James E Vince
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Flemington Rd, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
10
|
Two major inositol transporters and their role in cryptococcal virulence. EUKARYOTIC CELL 2011; 10:618-28. [PMID: 21398509 DOI: 10.1128/ec.00327-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cryptococcus neoformans is an AIDS-associated human fungal pathogen and the most common cause of fungal meningitis, with a mortality rate over 40% in AIDS patients. Significant advances have been achieved in understanding its disease mechanisms. Yet the underlying mechanism of a high frequency of cryptococcal meningitis remains unclear. The existence of high inositol concentrations in brain and our earlier discovery of a large inositol transporter (ITR) gene family in C. neoformans led us to investigate the potential role of inositol in Cryptococcus-host interactions. In this study, we focus on functional analyses of two major ITR genes to understand their role in virulence of C. neoformans. Our results show that ITR1A and ITR3C are the only two ITR genes among 10 candidates that can complement the growth defect of a Saccharomyces cerevisiae strain lacking inositol transporters. Both S. cerevisiae strains heterologously expressing ITR1A or ITR3C showed high inositol uptake activity, an indication that they are major inositol transporters. Significantly, itr1a itr3c double mutants showed significant virulence attenuation in murine infection models. Mutating both ITR1A and ITR3C in an ino1 mutant background activates the expression of several remaining ITR candidates and does not show more severe virulence attenuation, suggesting that both inositol uptake and biosynthetic pathways are important for inositol acquisition. Overall, our study provides evidence that host inositol and fungal inositol transporters are important for Cryptococcus pathogenicity.
Collapse
|
11
|
Smith TK, Bütikofer P. Lipid metabolism in Trypanosoma brucei. Mol Biochem Parasitol 2010; 172:66-79. [PMID: 20382188 PMCID: PMC3744938 DOI: 10.1016/j.molbiopara.2010.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 11/28/2022]
Abstract
Trypanosoma brucei membranes consist of all major eukaryotic glycerophospholipid and sphingolipid classes. These are de novo synthesized from precursors obtained either from the host or from catabolised endocytosed lipids. In recent years, substantial progress has been made in the molecular and biochemical characterisation of several of these lipid biosynthetic pathways, using gene knockout or RNA interference strategies or by enzymatic characterization of individual reactions. Together with the completed genome, these studies have highlighted several possible differences between mammalian and trypanosome lipid biosynthesis that could be exploited for the development of drugs against the diseases caused by these parasites.
Collapse
Affiliation(s)
- Terry K Smith
- Centre for Biomolecular Sciences, The North Haugh, The University, St. Andrews, Scotland KY16 9ST, UK. <>
| | | |
Collapse
|
12
|
Zhang K, Beverley SM. Phospholipid and sphingolipid metabolism in Leishmania. Mol Biochem Parasitol 2009; 170:55-64. [PMID: 20026359 DOI: 10.1016/j.molbiopara.2009.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/09/2009] [Accepted: 12/09/2009] [Indexed: 01/15/2023]
Abstract
In many eukaryotes, phospholipids (PLs) and sphingolipids (SLs) are abundant membrane components and reservoirs for important signaling molecules. In Leishmania, the composition, metabolism, and function of PLs and SLs differ significantly from those in mammalian cells. Although only a handful of enzymes have been experimentally characterized, available data suggest many steps of PL/SL metabolism are critical for Leishmania viability and/or virulence, and could be a source for new drug targets. Further studies of genes involved in the synthesis (de novo and salvage) and degradation of PLs and SLs will reveal their diverse effects on Leishmania pathogenesis.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | | |
Collapse
|
13
|
Reynolds TB. Strategies for acquiring the phospholipid metabolite inositol in pathogenic bacteria, fungi and protozoa: making it and taking it. MICROBIOLOGY-SGM 2009; 155:1386-1396. [PMID: 19383710 PMCID: PMC2889408 DOI: 10.1099/mic.0.025718-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
myo-Inositol (inositol) is an essential nutrient that is used for building phosphatidylinositol and its derivatives in eukaryotes and even in some eubacteria such as the mycobacteria. As a consequence, fungal, protozoan and mycobacterial pathogens must be able to acquire inositol in order to proliferate and cause infection in their hosts. There are two primary mechanisms for acquiring inositol. One is to synthesize inositol from glucose 6-phosphate using two sequentially acting enzymes: inositol-3-phosphate synthase (Ino1p) converts glucose 6-phosphate to inositol 3-phosphate, and then inositol monophosphatase (IMPase) dephosphorylates inositol 3-phosphate to generate inositol. The other mechanism is to import inositol from the environment via inositol transporters. Inositol is readily abundant in the bloodstream of mammalian hosts, providing a source from which many pathogens could potentially import inositol. However, despite this abundance of inositol in the host, some pathogens such as the bacterium Mycobacterium tuberculosis and the protist parasite Trypanosoma brucei must be able to make inositol de novo in order to cause disease (M. tuberculosis) or even grow (T. brucei). Other pathogens such as the fungus Candida albicans are equally adept at causing disease by importing inositol or by making it de novo. The role of inositol acquisition in the biology and pathogenesis of the parasite Leishmania and the fungus Cryptococcus are being explored as well. The specific strategies used by these pathogens to acquire inositol while in the host are discussed in relation to each pathogen's unique metabolic requirements.
Collapse
Affiliation(s)
- Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
14
|
Baars SM, Hoberg JO. Improved synthesis of dicyclohexylidene protected quebrachitol and its use in the synthesis of l-chiro-inositol derivatives. Carbohydr Res 2006; 341:1680-4. [PMID: 16697982 DOI: 10.1016/j.carres.2006.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 04/12/2006] [Accepted: 04/14/2006] [Indexed: 10/24/2022]
Abstract
A modified synthesis of 1L-1,2:3,4-di-O-cyclohexylidene-5-O-methyl-chiro-inositol has been accomplished that improves the overall procedure, yield, and environmental aspects of its formation. Several inositol analogues have been prepared from this intermediate for testing as biosynthetic inhibitors of glycosyl-phosphatidylinositol (GPI) anchor formation.
Collapse
Affiliation(s)
- Sylvia M Baars
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|