1
|
Bajic M, Ravishankar S, Sheth M, Rowe LA, Pacheco MA, Patel DS, Batra D, Loparev V, Olsen C, Escalante AA, Vannberg F, Udhayakumar V, Barnwell JW, Talundzic E. The first complete genome of the simian malaria parasite Plasmodium brasilianum. Sci Rep 2022; 12:19802. [PMID: 36396703 PMCID: PMC9671904 DOI: 10.1038/s41598-022-20706-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Naturally occurring human infections by zoonotic Plasmodium species have been documented for P. knowlesi, P. cynomolgi, P. simium, P. simiovale, P. inui, P. inui-like, P. coatneyi, and P. brasilianum. Accurate detection of each species is complicated by their morphological similarities with other Plasmodium species. PCR-based assays offer a solution but require prior knowledge of adequate genomic targets that can distinguish the species. While whole genomes have been published for P. knowlesi, P. cynomolgi, P. simium, and P. inui, no complete genome for P. brasilianum has been available. Previously, we reported a draft genome for P. brasilianum, and here we report the completed genome for P. brasilianum. The genome is 31.4 Mb in size and comprises 14 chromosomes, the mitochondrial genome, the apicoplast genome, and 29 unplaced contigs. The chromosomes consist of 98.4% nucleotide sites that are identical to the P. malariae genome, the closest evolutionarily related species hypothesized to be the same species as P. brasilianum, with 41,125 non-synonymous SNPs (0.0722% of genome) identified between the two genomes. Furthermore, P. brasilianum had 4864 (82.1%) genes that share 80% or higher sequence similarity with 4970 (75.5%) P. malariae genes. This was demonstrated by the nearly identical genomic organization and multiple sequence alignments for the merozoite surface proteins msp3 and msp7. We observed a distinction in the repeat lengths of the circumsporozoite protein (CSP) gene sequences between P. brasilianum and P. malariae. Our results demonstrate a 97.3% pairwise identity between the P. brasilianum and the P. malariae genomes. These findings highlight the phylogenetic proximity of these two species, suggesting that P. malariae and P. brasilianum are strains of the same species, but this could not be fully evaluated with only a single genomic sequence for each species.
Collapse
Affiliation(s)
- Marko Bajic
- grid.422961.a0000 0001 0029 6188Association of Public Health Laboratories, Silver Spring, MD USA ,grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | | | - Mili Sheth
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Lori A. Rowe
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA ,grid.265219.b0000 0001 2217 8588Virus Characterization Isolation Production and Sequencing Core, Tulane National Primate Research Center, Covington, LA USA
| | - M. Andreina Pacheco
- grid.264727.20000 0001 2248 3398Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA USA
| | - Dhruviben S. Patel
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Dhwani Batra
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Vladimir Loparev
- grid.416738.f0000 0001 2163 0069Biotechnology Core Facility Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Christian Olsen
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Ananias A. Escalante
- grid.264727.20000 0001 2248 3398Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA USA
| | - Fredrik Vannberg
- grid.213917.f0000 0001 2097 4943Center for Integrative Genomics at Georgia Tech, Georgia Institute of Technology, Atlanta, GA USA
| | - Venkatachalam Udhayakumar
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - John W. Barnwell
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Eldin Talundzic
- grid.416738.f0000 0001 2163 0069Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| |
Collapse
|
2
|
De Niz M, Stanway RR, Wacker R, Keller D, Heussler VT. An ultrasensitive NanoLuc-based luminescence system for monitoring Plasmodium berghei throughout its life cycle. Malar J 2016; 15:232. [PMID: 27102897 PMCID: PMC4840902 DOI: 10.1186/s12936-016-1291-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/13/2016] [Indexed: 01/08/2023] Open
Abstract
Background Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. Results NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. Conclusions PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.
| | - Rebecca R Stanway
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Rahel Wacker
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Derya Keller
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
3
|
CD8+ T cells eliminate liver-stage Plasmodium berghei parasites without detectable bystander effect. Infect Immun 2014; 82:1460-4. [PMID: 24421043 DOI: 10.1128/iai.01500-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Immunization with attenuated Plasmodium sporozoites or viral vectored vaccines can induce protective CD8(+) T cells that can find and eliminate liver-stage malaria parasites. A key question is whether CD8(+) T cells must recognize and eliminate each parasite in the liver or whether bystander killing can occur. To test this, we transferred antigen-specific effector CD8(+) T cells to mice that were then coinfected with two Plasmodium berghei strains, only one of which could be recognized directly by the transferred T cells. We found that the noncognate parasites developed normally in these mice, demonstrating that bystander killing of parasites does not occur during the CD8(+) T cell response to malaria parasites. Rather, elimination of infected parasites is likely mediated by direct recognition of infected hepatocytes by antigen-specific CD8(+) T cells.
Collapse
|
4
|
Yamamoto DS, Yokomine T, Sumitani M, Yagi K, Matsuoka H, Yoshida S. Visualization and live imaging analysis of a mosquito saliva protein in host animal skin using a transgenic mosquito with a secreted luciferase reporter system. INSECT MOLECULAR BIOLOGY 2013; 22:685-693. [PMID: 24118655 DOI: 10.1111/imb.12055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mosquitoes inject saliva into a vertebrate host during blood feeding. The analysis of mosquito saliva in host skin is important for the elucidation of the inflammatory responses to mosquito bites, the development of antithrombotic drugs, and the transmission-blocking of vector-borne diseases. We produced transgenic Anopheles stephensi mosquitoes expressing the secretory luciferase protein (MetLuc) fused to a saliva protein (AAPP) in the salivary glands. The transgene product (AAPP-MetLuc) of transgenic mosquitoes exhibited both luciferase activity as a MetLuc and binding activity to collagen as an AAPP. The detection of luminescence in the skin of mice bitten by transgenic mosquitoes showed that AAPP-MetLuc was injected into the skin as a component of saliva via blood feeding. AAPP-MetLuc remained at the mosquito bite site in host skin with luciferase activity for at least 4 h after blood feeding. AAPP was also suspected of remaining at the site of injury caused by the mosquito bite and blocking platelet aggregation by binding to collagen. These results demonstrated the establishment of visualization and time-lapse analysis of mosquito saliva in living vertebrate host skin. This technique may facilitate the analysis of mosquito saliva after its injection into host skin, and the development of new drugs and disease control strategies.
Collapse
Affiliation(s)
- D S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Vanderberg JP. Imaging mosquito transmission of Plasmodium sporozoites into the mammalian host: immunological implications. Parasitol Int 2013; 63:150-64. [PMID: 24060541 DOI: 10.1016/j.parint.2013.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
Abstract
The malaria infection is initiated in mammals by injection of the sporozoite stage of the parasite through the bite of Plasmodium-infected, female Anopheles mosquitoes. Sporozoites are injected into extravascular portions of the skin while the mosquito is probing for a blood source. Sporozoite gliding motility allows them to locate and penetrate blood vessels of the dermis or subcutaneous tissues; once in the blood, they reach the liver, within which they continue their development. Some of the injected parasites invade dermal lymph vessels and travel to the proximal draining lymphatic node, where they interact with host immunocytes. The host responds to viable or attenuated sporozoites with antibodies directed against the immunodominant circumsporozoite protein (CSP), as well as against other sporozoite proteins. These CSP antibodies can inhibit the numbers of sporozoites injected by mosquitoes and the motility of those injected into the skin. This first phase of the immune response is followed by cell-mediated immunity involving CD8 T-cells directed against the developing liver stage of the parasite. This review discusses the early history of imaging studies, and focuses on the role that imaging has played in enabling a better understanding of both the induction and effector functions of the immune responses against sporozoites.
Collapse
Affiliation(s)
- Jerome P Vanderberg
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, 341 E 25th Street, New York, NY 10010, USA.
| |
Collapse
|
6
|
Limenitakis J, Soldati-Favre D. Functional genetics in Apicomplexa: potentials and limits. FEBS Lett 2011; 585:1579-88. [PMID: 21557944 DOI: 10.1016/j.febslet.2011.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 01/15/2023]
Abstract
The Apicomplexans are obligate intracellular protozoan parasites and the causative agents of severe diseases in humans and animals. Although complete genome sequences are available since many years and for several parasites, they are replete with putative genes of unassigned function. Forward and reverse genetic approaches are limited only to a few Apicomplexans that can either be propagated in vitro or in a convenient animal model. This review will compare and contrast the most recent strategies developed for the genetic manipulation of Plasmodium falciparum, Plasmodium berghei and Toxoplasma gondii that have taken advantage of the intrinsic features of their respective genomes. Efforts towards the improvement of the transfection efficiencies in malaria parasites, the development of approaches to study essential genes and the elaboration of high-throughput methods for the identification of gene function will be discussed.
Collapse
Affiliation(s)
- Julien Limenitakis
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
7
|
Conteh S, Chattopadhyay R, Anderson C, Hoffman SL. Plasmodium yoelii-infected A. stephensi inefficiently transmit malaria compared to intravenous route. PLoS One 2010; 5:e8947. [PMID: 20126610 PMCID: PMC2812485 DOI: 10.1371/journal.pone.0008947] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 01/11/2010] [Indexed: 11/19/2022] Open
Abstract
It was recently reported that when mosquitoes infected with P. berghei sporozoites feed on mice, they deposit approximately 100–300 sporozoites in the dermis. When we inoculate P. yoelii (Py) sporozoites intravenously (IV) into BALB/c mice, the 50% infectious dose (ID50) is often less than 3 sporozoites, indicating that essentially all Py sporozoites in salivary glands are infectious. Thus, it should only take the bite of one infected mosquito to infect 100% of mice. In human subjects, it takes the bite of at least 5 P. falciparum-infected mosquitoes to achieve 100% blood stage infection. Exposure to 1–2 infected mosquitoes only leads to blood stage infection in approximately 50% of subjects. If mosquitoes carrying Py sporozoites inoculate 100–300 sporozoites per bite, and 1 to 2 mosquito bites achieve 50% blood stage infection rates, then this would suggest that the majority of sporozoites inoculated by mosquitoes into the dermis are not responsible for a productive infection, or that a significant number of sporozoite-infected mosquitoes do not inoculate any sporozoites. The objective of this study was to determine if this is the case. We therefore studied the infectivity to mice of the bites of 1, 2, 4, or 5–8 Py-infected mosquitoes. The bite of one Py sporozoite-infected mosquito caused blood stage infection in 41.4% (12/29) of mice, two bites infected 66.7% (22/33), four bites infected 75% (18/24), and five to eight bites infected 100% (21/21). These findings demonstrate that inoculation of sporozoites by mosquito bite is much less efficient than IV inoculation of Py sporozoites by needle and syringe. Such data may have implications for determining the best route and dose of administration to humans of our attenuated P. falciparum sporozoite vaccine, the scientific basis of which is immunity by bites from irradiated infected mosquitoes, and suggest that the challenge is to develop a method of administration that approximates IV inoculation, not one that mimics mosquito bite.
Collapse
Affiliation(s)
- Solomon Conteh
- Sanaria Inc., Rockville, Maryland, United States of America
| | | | | | | |
Collapse
|
8
|
Dube A, Gupta R, Singh N. Reporter genes facilitating discovery of drugs targeting protozoan parasites. Trends Parasitol 2009; 25:432-9. [PMID: 19720564 DOI: 10.1016/j.pt.2009.06.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/24/2009] [Accepted: 06/22/2009] [Indexed: 02/03/2023]
Abstract
Transfection of protozoan parasites, such as Plasmodium, Leishmania, Trypanosoma and Toxoplasma, with various reporter gene constructs, has revolutionized studies to understand the biology of the host-parasite interactions at the cellular level. It has provided impetus to the development of rapid and reliable drug screens both for established drugs and for new molecules against different parasites and other pathogens. Furthermore, reporter genes have proved to be an excellent and promising tool for studying disease progression. Here, we review the recent advances made by using reporter genes for in vitro and in vivo drug screening, high-throughput screening, whole-animal non-invasive imaging for parasites and for the study of several aspects of host-parasite interactions.
Collapse
Affiliation(s)
- Anuradha Dube
- Division of Parasitology, Central Drug Research Institute, Lucknow 226 001, India.
| | | | | |
Collapse
|
9
|
Chen Q, Wang H. Implications of imaging malaria sporozoites. Trends Parasitol 2008; 24:106-9. [PMID: 18280209 DOI: 10.1016/j.pt.2007.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 12/11/2007] [Accepted: 11/15/2007] [Indexed: 11/26/2022]
Abstract
The sporozoites of Plasmodium parasites undergo several transmigrations before their establishment in the hepatocytes of a vertebrate host. Techniques that illustrate parasite intra-vital migration and their interaction with host cells will advance the understanding of parasite biology. In a recent publication, Amino et al. provided a detailed protocol for in vivo imaging of Plasmodium berghei sporozoites in the dermis. The report has important implications in the dissection of malaria parasite biology.
Collapse
Affiliation(s)
- Qijun Chen
- Key Laboratory of Zoonosis, Ministry of Education, Changchun 130062, China. [corrected]
| | | |
Collapse
|
10
|
Jin Y, Kebaier C, Vanderberg J. Direct microscopic quantification of dynamics of Plasmodium berghei sporozoite transmission from mosquitoes to mice. Infect Immun 2007; 75:5532-9. [PMID: 17785479 PMCID: PMC2168273 DOI: 10.1128/iai.00600-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 06/04/2007] [Accepted: 08/21/2007] [Indexed: 11/20/2022] Open
Abstract
The number of malaria sporozoites delivered to a host by mosquitoes is thought to have a significant influence on the subsequent course of the infection in the mammalian host. We did studies with Anopheles stephensi mosquitoes with salivary gland infections of Plasmodium berghei sporozoites expressing a red fluorescent protein. After individual mosquitoes fed on an ear pinna or the ventral abdomen of a mouse, fluorescence microscopy was used to count numbers of sporozoites. Mosquitoes allowed to feed on the ear for periods of 3 versus 15 min deposited means of 281 versus 452 sporozoites, respectively, into the skin; this may have epidemiological implications because mosquitoes can feed for longer periods of time on sleeping hosts. Mosquitoes feeding on the ventral abdomen injected sporozoites not only into the skin but also into the underlying peritoneal musculature. Although mosquitoes injected fewer sporozoites into the abdominal tissues, more of these were reingested into the mosquito midgut, probably a consequence of easier access to blood intake from the abdominal area. The most consistent parameter of sporozoite transmission dynamics under all conditions of mosquito probing and feeding was the relatively slow release rate of sporozoites (approximately 1 to 2.5 per second) from the mosquito proboscis. The numbers of sporozoites introduced into the host by mosquitoes and the transmission efficiencies of sporozoite delivery are multifactorial phenomena that vary with length of probing time, skin site being fed upon, and numbers of sporozoites within the salivary glands.
Collapse
Affiliation(s)
- Yamei Jin
- Department of Medical Parasitology, New York University School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | | | | |
Collapse
|
11
|
Matuschewski K. Getting infectious: formation and maturation of Plasmodium sporozoites in the Anopheles vector. Cell Microbiol 2006; 8:1547-56. [PMID: 16984410 DOI: 10.1111/j.1462-5822.2006.00778.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Research on Plasmodium sporozoite biology aims at understanding the developmental program steering the formation of mature infectious sporozoites - the transmission stage of the malaria parasite. The recent identification of genes that are vital for sporozoite egress from oocysts and subsequent targeting and transmigration of the mosquito salivary glands allows the identification of mosquito factors required for life cycle completion. Mature sporozoites appear to be equipped with the entire molecular repertoire for successful transmission and subsequent initiation of liver stage development. Innovative malaria intervention strategies that target the early, non-pathogenic phases of the life cycle will crucially depend on our insights into sporozoite biology and the underlying molecular mechanisms that lead the parasite from the mosquito midgut to the liver.
Collapse
Affiliation(s)
- Kai Matuschewski
- Department of Parasitology, Heidelberg University School of Medicine, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|