1
|
Müller J, Zumkehr B, Heller M, Uldry AC, Braga-Lagache S, Lundström-Stadelmann B. Host Proteins in Echinococcus multilocularis Metacestodes. Int J Mol Sci 2025; 26:3266. [PMID: 40244114 PMCID: PMC11989879 DOI: 10.3390/ijms26073266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Metacestodes of Echinococcus multilocularis are the causative agents of alveolar echinococcosis, a neglected, life-threatening, zoonotic disease. To study these metacestodes in vitro, a model system using a culture medium conditioned by rat hepatoma cells is available. A key question is how the parasite interacts with the host and, in particular, which host-derived compounds are taken up. In this study, we focus on the uptake of host-derived proteins. Studies with artificially labeled proteins suggest that this uptake may occur independently of protein size or charge. Closer investigation using proteomics draws, however, a different picture. Of 1170 host (i.e., rat or bovine) proteins as identified by LC-MS/MS-based proteomics present in the culture medium, only 225 are found in metacestode vesicle tissue or fluid. Moreover, their relative abundances differ. Serum albumin, the most abundant culture medium host protein, is only the third most abundant protein in vesicle fluid, where Alpha-2-HS-glycoprotein becomes the most abundant protein. In vesicle fluid obtained ex vivo from experimentally infected mice, the situation is again different, with histone isoforms as the most abundant proteins. This suggests that while maintaining their internal milieu constant, metacestodes may adjust the spectrum of host proteins taken up. Potential uptake mechanisms and functions are discussed.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (J.M.)
| | - Beatrice Zumkehr
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (J.M.)
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility (PMSCF), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.H.); (A.-C.U.); (S.B.-L.)
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility (PMSCF), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.H.); (A.-C.U.); (S.B.-L.)
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility (PMSCF), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.H.); (A.-C.U.); (S.B.-L.)
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (J.M.)
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Naidich A, Gutierrez AM, Camicia F. Molecular characterization of EcCLP1, a new putative cathepsin L protease from Echinococcus canadensis. Parasite 2024; 31:39. [PMID: 38995112 PMCID: PMC11242924 DOI: 10.1051/parasite/2024036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Echinococcus granulosus sensu lato is a platyhelminth parasite and the etiological cause of cystic echinococcosis (CE), a zoonotic and neglected disease that infects animals and humans worldwide. As a part of the biological arsenal of the parasite, cathepsin L proteases are a group of proteins that are believed to be essential for parasite penetration, immune evasion, and establishment in the tissues of the host. In this work, we have cloned and sequenced a new putative cathepsin L protease from Echinococcus canadensis (EcCLP1). The bioinformatic analysis suggests that EcCLP1 could be synthesized as a zymogen and activated after proteolytic cleavage. The multiple sequence alignment with other cathepsin proteases reveals important functional conserved features like a conserved active site, an N-linked glycosylation residue, a catalytic triad, an oxyanion hole, and three putative disulfide bonds. The phylogenetic analysis suggests that EcCLP1 could indeed be a cathepsin L cysteine protease from clade 1 as it grouped with cathepsins from other species in this clade. Modeling studies suggest that EcCLP1 has two domains forming a cleft where the active site is located and an occluding role for the propeptide. The transcriptomic analysis reveals different levels of cathepsin transcript expression along the different stages of the parasite life cycle. The whole-mount immunohistochemistry shows an interesting superficial punctate pattern of staining which suggests a secretory pattern of expression. The putative cathepsin L protease characterized here may represent an interesting tool for diagnostic purposes, vaccine design, or a new pharmacological target for antiparasitic intervention.
Collapse
Affiliation(s)
- Ariel Naidich
- Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr Carlos G. Malbrán", Av. Vélez Sársfield 563, 1282 Buenos Aires, Argentina
| | - Ariana M Gutierrez
- Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr Carlos G. Malbrán", Av. Vélez Sársfield 563, 1282 Buenos Aires, Argentina
| | - Federico Camicia
- Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas, INEI-ANLIS "Dr Carlos G. Malbrán", Av. Vélez Sársfield 563, 1282 Buenos Aires, Argentina - Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires (UBA), José E. Uriburu 950, 5to piso, 1114 Buenos Aires, Argentina
| |
Collapse
|
3
|
Liu RD, Meng XY, Li CL, Long SR, Cui J, Wang ZQ. Molecular characterization and determination of the biochemical properties of cathepsin L of Trichinella spiralis. Vet Res 2022; 53:48. [PMID: 35739604 PMCID: PMC9229914 DOI: 10.1186/s13567-022-01065-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022] Open
Abstract
Cathepsin L is an important cysteine protease, but its function in T. spiralis remains unclear. The aim of this research was to explore the biological characteristics of T. spiralis cathepsin L (TsCatL) and its role in T. spiralis-host interactions. Bioinformatic analysis revealed the presence of the cysteine protease active site residues Gln, Cys, His and Asn in mature TsCatL, as well as specific motifs of cathepsin L similar to ERFNIN and GYLND in the prepeptide of TsCatL. Molecular docking of mature TsCatL and E64 revealed hydrophobic effects and hydrogen bonding interactions. Two domains of TsCatL (TsCatL2) were cloned and expressed, and recombinant TsCatL2 (rTsCatL2) was autocatalytically cleaved under acidic conditions to form mature TsCatL. TsCatL was transcribed and expressed in larvae and adults and located in the stichosome, gut and embryo. Enzyme kinetic tests showed that rTsCatL2 degraded the substrate Z-Phe-Arg-AMC under acidic conditions, which was inhibited by E64 and PMSF and enhanced by EDTA, L-cysteine and DTT. The kinetic parameters of rTsCatL2 were a Km value of 48.82 μM and Vmax of 374.4 nM/min at pH 4.5, 37 °C and 5 mM DTT. In addition, it was shown that rTsCatL2 degraded haemoglobin, serum albumin, immunoglobulins (mouse IgG, human IgG and IgM) and extracellular matrix components (fibronectin, collagen I and laminin). The proteolytic activity of rTsCatL2 was host specific and significantly inhibited by E64. rTsCatL2 possesses the natural activity of a sulfhydryl-containing cysteine protease, and TsCatL is an important digestive enzyme that seems to be important for the nutrient acquisition, immune evasion and invasion of Trichinella in the host.
Collapse
Affiliation(s)
- Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiang Yu Meng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Le Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Bai Y, Ma KN, Sun XY, Dan Liu R, Long SR, Jiang P, Wang ZQ, Cui J. Molecular characterization of a novel cathepsin L from Trichinella spiralis and its participation in invasion, development and reproduction. Acta Trop 2021; 224:106112. [PMID: 34453915 DOI: 10.1016/j.actatropica.2021.106112] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Cathepsin L is one member of cysteine protease superfamily and widely distributed in parasitic organisms, it plays the important roles in worm invasion, migration, nutrient intake, molting and immune evasion. The objective of this study was to investigate the biological characteristics of a novel cathepsin L from Trichinella spiralis (TsCL) and its role in larval invasion, development and reproduction. TsCL has a functional domain of C1 peptidase, which belongs to cathepsin L family. The complete TsCL sequence was cloned and expressed in Escherichia coli BL21. The rTsCL has good immunogenicity. RT-PCR and Western blotting analysis showed that TsCL was transcribed and expressed at different T. spiralis phases (e.g., muscle larvae, intestinal infectious larvae, adult worms and newborn larvae). Immunofluorescence test revealed that TsCL was principally localized in the cuticle, stichosome, midgut and female intrauterine embryos of the nematode. rTsCL has the capacity to specially bind with intestinal epithelial cells (IECs) and the binding sites was located in the cytoplasm. rTsCL promoted larval penetration into IEC, while anti-rTsCL antibodies inhibited the invasion. The silencing of TsCL gene by specific dsRNA significantly reduced the TsCL expression and enzyme activity, and also reduced larval invasive ability, development and female reproduction. The results showed that TsCL is an obligatory protease in T. spiralis lifecycle. TsCL participates in worm invasion, development and reproduction, and may be regarded as a potential candidate vaccine/drug target against T. spiralis infection.
Collapse
|
5
|
Liu GH, Korhonen PK, Young ND, Lu J, Wang T, Fu YT, Koehler AV, Hofmann A, Chang BCH, Wang S, Li N, Lin CY, Zhang H, Xiangli L, Lin L, Liu WM, Li N, Li HW, Gasser RB, Zhu XQ. Dipylidium caninum draft genome - a new resource for comparative genomic and genetic explorations of flatworms. Genomics 2021; 113:1272-1280. [PMID: 33677058 DOI: 10.1016/j.ygeno.2021.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 12/30/2022]
Abstract
Here, we present a draft genome of the tapeworm Dipylidium caninum (family Dipylidiidae) and compare it with other cestode genomes. This draft genome of D. caninum is 110 Mb in size, has a repeat content of ~13.4% and is predicted to encode ~10,000 protein-coding genes. We inferred excretory/secretory molecules (representing the secretome), other key groups of proteins (including peptidases, kinases, phosphatases, GTPases, receptors, transporters and ion-channels) and predicted potential intervention targets for future evaluation. Using 144 shared single-copy orthologous sequences, we investigated the genetic relationships of cestodes for which nuclear genomes are available. This study provides first insights into the molecular biology of D. caninum and a new resource for comparative genomic and genetic explorations of this and other flatworms.
Collapse
Affiliation(s)
- Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia
| | - Jiang Lu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen 518124, China
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia
| | - Yi-Tian Fu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia; Griffith Institute for Drug Discovery, Griffith University, Dathan 4111, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia
| | - Shuai Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Nan Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen 518124, China
| | - Chu-Yu Lin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen 518124, China
| | - Hui Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen 518124, China
| | - Lingzi Xiangli
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen 518124, China
| | - Lin Lin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen 518124, China
| | - Wei-Min Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen 518124, China
| | - Nan Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen 518124, China
| | - Hua-Wei Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen 518124, China
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
6
|
Bai H, Cao Y, Chen Y, Zhang L, Wu C, Zhan X, Cheng M. Molecular cloning and characterization of a cathepsin L-like cysteine protease of Angiostrongylus cantonensis. Int J Biol Macromol 2020; 153:1136-1146. [DOI: 10.1016/j.ijbiomac.2019.10.243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023]
|
7
|
Zhang S. Screening and verification for proteins that interact with leucine aminopeptidase of Taenia pisiformis using a yeast two-hybrid system. Parasitol Res 2019; 118:3387-3398. [PMID: 31728719 DOI: 10.1007/s00436-019-06510-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022]
Abstract
Leucine aminopeptidase of Taenia pisiformis (TpLAP) belonging to the M17 peptidase family has been implicated as a stage-differentially expressed protein in the adult stage of T. pisiformis. In order to further dissect the biological functions of TpLAP in the growth and development of adult worms, TpLAP-interacting partners were investigated. In this study, a yeast two-hybrid (Y2H) cDNA library from adult T. pisiformis was constructed. Using pGBKT7-TpLAP as bait, proteins interacting with TpLAP were screened by Y2H system and positive preys were sequenced and analyzed using the Basic Local Alignment Search Tool (BLAST). Our results showed that six genuine TpLAP-interacting proteins, including LAP, dynein light chain (DLC), SUMO-conjugating enzyme (UBC9), histone-lysine n-methyltransferase, trans-acting transcriptional, and one unknown protein, were identified via Y2H assay. Furthermore, the interaction between TpLAP and UBC9 of T. pisiformis (TpUBC9), an important protein involved in SUMOylation pathway, was further validated by one-to-one Y2H assay, co-immunoprecipitation, and confocal analysis. These findings provide a deeper understanding of the biological functions of TpLAP and offer the first clue that TpLAP may act as a novel SUMOylated substrate, suggesting that the SUMO modification pathway plays an important role in regulation of adult worm growth and development.
Collapse
Affiliation(s)
- Shaohua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Yanchangbu, Lanzhou, Gansu Province, 730046, People's Republic of China.
| |
Collapse
|
8
|
Comparative Transcriptomic Analysis of the Larval and Adult Stages of Taenia pisiformis. Genes (Basel) 2019; 10:genes10070507. [PMID: 31277509 PMCID: PMC6678355 DOI: 10.3390/genes10070507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 01/09/2023] Open
Abstract
Taenia pisiformis is a tapeworm causing economic losses in the rabbit breeding industry worldwide. Due to the absence of genomic data, our knowledge on the developmental process of T. pisiformis is still inadequate. In this study, to better characterize differential and specific genes and pathways associated with the parasite developments, a comparative transcriptomic analysis of the larval stage (TpM) and the adult stage (TpA) of T. pisiformis was performed by Illumina RNA sequencing (RNA-seq) technology and de novo analysis. In total, 68,588 unigenes were assembled with an average length of 789 nucleotides (nt) and N50 of 1485 nt. Further, we identified 4093 differentially expressed genes (DEGs) in TpA versus TpM, of which 3186 DEGs were upregulated and 907 were downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analyses revealed that most DEGs involved in metabolic processes and Wnt signaling pathway were much more active in the TpA stage. Quantitative real-time PCR (qPCR) validated that the expression levels of the selected 10 DEGs were consistent with those in RNA-seq, indicating that the transcriptomic data are reliable. The present study provides comparative transcriptomic data concerning two developmental stages of T. pisiformis, which will be of great value for future functional studies on the regulatory mechanisms behind adult worm pathogenesis and for developing drugs and vaccines against this important parasite.
Collapse
|
9
|
Caffrey CR, Goupil L, Rebello KM, Dalton JP, Smith D. Cysteine proteases as digestive enzymes in parasitic helminths. PLoS Negl Trop Dis 2018; 12:e0005840. [PMID: 30138310 PMCID: PMC6107103 DOI: 10.1371/journal.pntd.0005840] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We briefly review cysteine proteases (orthologs of mammalian cathepsins B, L, F, and C) that are expressed in flatworm and nematode parasites. Emphasis is placed on enzyme activities that have been functionally characterized, are associated with the parasite gut, and putatively contribute to degrading host proteins to absorbable nutrients [1–4]. Often, gut proteases are expressed as multigene families, as is the case with Fasciola [5] and Haemonchus [6], presumably expanding the range of substrates that can be degraded, not least during parasite migration through host tissues [5]. The application of the free-living planarian and Caenorhabditis elegans as investigative models for parasite cysteine proteases is discussed. Finally, because of their central nutritive contribution, targeting the component gut proteases with small-molecule chemical inhibitors and understanding their utility as vaccine candidates are active areas of research [7].
Collapse
Affiliation(s)
- Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Louise Goupil
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Biology, University of San Francisco, San Francisco, California, United States of America
| | - Karina M. Rebello
- Laboratório de Toxinologia and Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - John P. Dalton
- School of Biological Sciences, Medical Biology Centre, Queen´s University Belfast, Belfast, United Kingdom
| | - David Smith
- School of Biological Sciences, Medical Biology Centre, Queen´s University Belfast, Belfast, United Kingdom
| |
Collapse
|
10
|
Brehm K, Koziol U. Echinococcus-Host Interactions at Cellular and Molecular Levels. ADVANCES IN PARASITOLOGY 2017; 95:147-212. [PMID: 28131363 DOI: 10.1016/bs.apar.2016.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The potentially lethal zoonotic diseases alveolar and cystic echinococcosis are caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively. In both cases, metacestode growth and proliferation occurs within the inner organs of mammalian hosts, which is associated with complex molecular host-parasite interactions that regulate nutrient uptake by the parasite as well as metacestode persistence and development. Using in vitro cultivation systems for parasite larvae, and informed by recently released, comprehensive genome and transcriptome data for both parasites, these molecular host-parasite interactions have been subject to significant research during recent years. In this review, we discuss progress in this field, with emphasis on parasite development and proliferation. We review host-parasite interaction mechanisms that occur early during an infection, when the invading oncosphere stage undergoes a metamorphosis towards the metacestode, and outline the decisive role of parasite stem cells during this process. We also discuss special features of metacestode morphology, and how this parasite stage takes up nutrients from the host, utilizing newly evolved or expanded gene families. We comprehensively review mechanisms of host-parasite cross-communication via evolutionarily conserved signalling systems and how the parasite signalling systems might be exploited for the development of novel chemotherapeutics. Finally, we point to an urgent need for the development of functional genomic techniques in this parasite, which will be imperative for hypothesis-driven analyses into Echinococcus stem cell biology, developmental mechanisms and immunomodulatory activities, which are all highly relevant for the development of anti-infective measures.
Collapse
Affiliation(s)
- K Brehm
- University of Würzburg, Würzburg, Germany
| | - U Koziol
- University of Würzburg, Würzburg, Germany; Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Abstract
Cystic and alveolar echinococcosis are severe chronic helminthic diseases caused by the cystic growth or the intrahepatic tumour-like growth of the metacestode of Echinococcus granulosus or Echinococcus multilocularis, respectively. Both parasites have evolved sophisticated strategies to escape host immune responses, mainly by manipulating and directing this immune response towards anergy and/or tolerance. Recent research studies have revealed a number of respective immunoregulatory mechanisms related to macrophages and dendritic cell as well as T cell activities (regulatory T cells, Tregs). A better understanding of this complex parasite-host relationship, and the elucidation of specific crucial events that lead to disease, represents targets towards the development of novel treatment strategies and options.
Collapse
|
12
|
Liu S, Cai P, Piao X, Hou N, Zhou X, Wu C, Wang H, Chen Q. Expression profile of the Schistosoma japonicum degradome reveals differential protease expression patterns and potential anti-schistosomal intervention targets. PLoS Comput Biol 2014; 10:e1003856. [PMID: 25275570 PMCID: PMC4183426 DOI: 10.1371/journal.pcbi.1003856] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/12/2014] [Indexed: 12/05/2022] Open
Abstract
Blood fluke proteases play pivotal roles in the processes of invasion, nutrition acquisition, immune evasion, and other host-parasite interactions. Hundreds of genes encoding putative proteases have been identified in the recently published schistosome genomes. However, the expression profiles of these proteases in Schistosoma species have not yet been systematically analyzed. We retrieved and culled the redundant protease sequences of Schistosoma japonicum, Schistosoma mansoni, Echinococcus multilocularis, and Clonorchis sinensis from public databases utilizing bioinformatic approaches. The degradomes of the four parasitic organisms and Homo sapiens were then comparatively analyzed. A total of 262 S. japonicum protease sequences were obtained and the expression profiles generated using whole-genome microarray. Four main clusters of protease genes with different expression patterns were identified: proteases up-regulated in hepatic schistosomula and adult worms, egg-specific or predominantly expressed proteases, cercaria-specific or predominantly expressed proteases, and constantly expressed proteases. A subset of protease genes with different expression patterns were further validated using real-time quantitative PCR. The present study represents the most comprehensive analysis of a degradome in Schistosoma species to date. These results provide a firm foundation for future research on the specific function(s) of individual proteases and may help to refine anti-proteolytic strategies in blood flukes. Parasite proteases play critical roles in host-parasite interactions and thus are considered to be potential anti-schistosomal targets. Although numerous schistosome proteases have been predicted based on recently published genomes, no systematic analysis of their expression in Schistosoma species has been performed. Thus, we comparatively analyzed the degradomes of four parasitic organisms and human host, and performed whole-genome microarray analysis to analyze the expression profile of the Schistosoma japonicum degradome at four developmental stages. The expression profile generated for the S. japonicum degradome was divided into four main clusters with different expression patterns, and a subset of selected proteases were further validated using real-time quantitative PCR. Our work is the most comprehensive analysis of a degradome in Schistosoma species to date. Many protease genes were first characterized in blood flukes, and some could be treated as potential anti-schistosomal targets for intensive research in the future. The results provide a firm foundation for deep study on the specific function(s) of individual proteases or protease families in schistosomes.
Collapse
Affiliation(s)
- Shuai Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Cai
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianyu Piao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Hou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaosu Zhou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuang Wu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heng Wang
- Department of Microbiology and Parasitology, Institute of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qijun Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Zoonosis, Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
13
|
Zheng Y. Strategies of Echinococcus species responses to immune attacks: implications for therapeutic tool development. Int Immunopharmacol 2013; 17:495-501. [PMID: 23973651 DOI: 10.1016/j.intimp.2013.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 01/27/2023]
Abstract
Echinococcus species have been studied as a model to investigate parasite-host interactions. Echinococcus spp. can actively communicate dynamically with a host to facilitate infection, growth and proliferation partially via secretion of molecules, especially in terms of harmonization of host immune attacks. This review systematically outlines our current knowledge of how the Echinococcus species have evolved to adapt to their host's microenvironment. This understanding of parasite-host interplay has implications in profound appreciation of parasite plasticity and is informative in designing novel and effective tools including vaccines and drugs for the treatment of echinococcosis and other diseases.
Collapse
Affiliation(s)
- Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, China; Key Lab of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry, Pharmaceutical Sciences, CAAS, Lanzhou, Gansu, China; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry, Pharmaceutical Sciences, CAAS, Lanzhou, Gansu, China.
| |
Collapse
|
14
|
Wang Q, Zhang S, Luo X, Hou J, Zhu X, Cai X. Cloning and characterization of a cathepsin L-like cysteine protease from Taenia pisiformis. Vet Parasitol 2013; 194:26-34. [PMID: 23411373 DOI: 10.1016/j.vetpar.2012.12.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 12/19/2012] [Accepted: 12/24/2012] [Indexed: 11/26/2022]
Abstract
Rabbit cysticercosis, caused by the larval stage of Taenia pisiformis, is a serious parasitic disease of rabbits. It was reported that some cysteine peptidases have potential roles in the pathogenesis of various parasitic infections. To investigate the biochemical characteristics and roles in the pathogenesis/host-invasion of cysteine peptidases, a cDNA sequence encoding for a cathepsin L-like cysteine protease (TpCP) was cloned and identified from the T. pisiformis metacestodes. This sequence was 1220 bp in its length, which included a 1017 bp open reading frame encoding a 339 amino acid peptide. Multiple sequence alignments revealed a 28.9-88.5% similarity with cathepsin L-like cysteine proteases from other helminth parasites and mammals. The recombinant TpCP expressed in Escherichia coli did not show the proteolytic activity by zymography gel assay. However, the TpCP expressed in Pichia pastoris had typical biochemical activities that could hydrolyze rabbit immunoglobulin G, bovine serum albumin and fibronectin. Substrate studies indicated pronounced cleavage of Z-Phe-Arg-AMC. This activity was sensitive to cysteine protease inhibitor E-64 and immunohistochemistry results also indicated that TpCP was distributed as an intense positive reaction in the bladder wall. Our results gave us insights into future studies of TpCP's roles in the infection.
Collapse
Affiliation(s)
- Qiuxia Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730046 Lanzhou, China
| | | | | | | | | | | |
Collapse
|
15
|
Annotation of the transcriptome from Taenia pisiformis and its comparative analysis with three Taeniidae species. PLoS One 2012; 7:e32283. [PMID: 22514598 PMCID: PMC3326008 DOI: 10.1371/journal.pone.0032283] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/24/2012] [Indexed: 11/19/2022] Open
Abstract
Background Taenia pisiformis is one of the most common intestinal tapeworms and can cause infections in canines. Adult T. pisiformis (canines as definitive hosts) and Cysticercus pisiformis (rabbits as intermediate hosts) cause significant health problems to the host and considerable socio-economic losses as a consequence. No complete genomic data regarding T. pisiformis are currently available in public databases. RNA-seq provides an effective approach to analyze the eukaryotic transcriptome to generate large functional gene datasets that can be used for further studies. Methodology/Principal Findings In this study, 2.67 million sequencing clean reads and 72,957 unigenes were generated using the RNA-seq technique. Based on a sequence similarity search with known proteins, a total of 26,012 unigenes (no redundancy) were identified after quality control procedures via the alignment of four databases. Overall, 15,920 unigenes were mapped to 203 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Through analyzing the glycolysis/gluconeogenesis and axonal guidance pathways, we achieved an in-depth understanding of the biochemistry of T. pisiformis. Here, we selected four unigenes at random and obtained their full-length cDNA clones using RACE PCR. Functional distribution characteristics were gained through comparing four cestode species (72,957 unigenes of T. pisiformis, 30,700 ESTs of T. solium, 1,058 ESTs of Eg+Em [conserved ESTs between Echinococcus granulosus and Echinococcus multilocularis]), with the cluster of orthologous groups (COG) and gene ontology (GO) functional classification systems. Furthermore, the conserved common genes in these four cestode species were obtained and aligned by the KEGG database. Conclusion This study provides an extensive transcriptome dataset obtained from the deep sequencing of T. pisiformis in a non-model whole genome. The identification of conserved genes may provide novel approaches for potential drug targets and vaccinations against cestode infections. Research can now accelerate into the functional genomics, immunity and gene expression profiles of cestode species.
Collapse
|
16
|
Echinococcus multilocularis: Identification and functional characterization of cathepsin B-like peptidases from metacestode. Exp Parasitol 2011; 127:693-701. [DOI: 10.1016/j.exppara.2010.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/12/2010] [Accepted: 11/16/2010] [Indexed: 11/23/2022]
|
17
|
Triggering and modulation of the host-parasite interplay byEchinococcus multilocularis: a review. Parasitology 2009; 137:557-68. [DOI: 10.1017/s0031182009991533] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYAs more facts emerge regarding the ways in whichE. multilocularis-derived molecules trigger the host immune response and modulate the host-parasite interplay, it becomes possible to envisage how the parasite can survive and proliferate in its intermediate host, while in other hosts it dies out. Through effects on cells of both the innate and adaptive arms of the immune response,E. multiloculariscan orchestrate a range of outcomes that are beneficial not only to the parasite, in terms of facilitating its intrahepatic proliferation and maturation, and thus life cycle over all, but also to its intermediate host, in limiting pathology. The present review deals with the role of metacestode surface molecules as well as excretory/secretory (E/S) metabolic products of the parasite in the modulation of the host responses such as to optimize its own survival.
Collapse
|
18
|
Cho MK, Lee KH, Lee SJ, Kang SW, Ock MS, Hong YC, Lee YS, Yu HS. Identification of host immune regulation candidate genes of Toxascaris leonina by expression sequenced tags (ESTs) analysis. Vet Parasitol 2009; 164:242-7. [DOI: 10.1016/j.vetpar.2009.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/12/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
|
19
|
Loop-mediated isothermal amplification method for differentiation and rapid detection of Taenia species. J Clin Microbiol 2008; 47:168-74. [PMID: 19005142 DOI: 10.1128/jcm.01573-08] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid detection and differentiation of Taenia species are required for the control and prevention of taeniasis and cysticercosis in areas where these diseases are endemic. Because of the lower sensitivity and specificity of the conventional diagnosis based on microscopical examination, molecular tools are more reliable for differential diagnosis of these diseases. In this study, we developed and evaluated a loop-mediated isothermal amplification (LAMP) assay for differential diagnosis of infections with Taenia species with cathepsin L-like cysteine peptidase (clp) and cytochrome c oxidase subunit 1 (cox1) genes. LAMP with primer sets to the cox1 gene could differentiate between three species, and LAMP with primer sets to the clp gene could differentiate Taenia solium from Taenia saginata/Taenia asiatica. Restriction enzyme digestion of the LAMP products from primer set Tsag-clp allowed the differentiation of Taenia saginata from Taenia asiatica. We demonstrated the high specificity of LAMP by testing known parasite DNA samples extracted from proglottids (n = 100) and cysticerci (n = 68). LAMP could detect one copy of the target gene or five eggs of T. asiatica and T. saginata per gram of feces, showing sensitivity similar to that of PCR methods. Furthermore, LAMP could detect parasite DNA in all taeniid egg-positive fecal samples (n = 6). Due to the rapid, simple, specific, and sensitive detection of Taenia species, the LAMP assays are valuable tools which might be easily applicable for the control and prevention of taeniasis and cysticercosis in countries where these diseases are endemic.
Collapse
|
20
|
Ito A, Nakao M, Sako Y. Echinococcosis: serological detection of patients and molecular identification of parasites. Future Microbiol 2007; 2:439-49. [PMID: 17683279 DOI: 10.2217/17460913.2.4.439] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alveolar (AE) and cystic echinococcosis (CE) are two of the most dangerous helminthic zoonoses worldwide, representing chronic hepatic diseases, often with lethal outcome. Since early diagnosis of echinococcosis is essential for effective treatment, an overview of serological methods for the detection of echinococcosis and differentiation between AE and CE is given. Recombinant antigens Em18 and Antigen B8/1 are highly recommended for patient screening and identification of AE and CE, respectively, in combination with imaging techniques. Novel aspects of molecular phylogenetic studies on the genus Echinococcus will also be addressed, including the description of Echinococcus shiquicus as a new sister-species of Echinococcus multilocularis. Both the serological detection of the disease and molecular phylogeny will be discussed in perspective.
Collapse
Affiliation(s)
- Akira Ito
- Asahikawa Medical College, Department of Parasitology, Midorigaoka, Higashi, Asahikawa, Hokkaido, Japan.
| | | | | |
Collapse
|