1
|
Trenaman A, Tinti M, Wall RJ, Horn D. Post-transcriptional reprogramming by thousands of mRNA untranslated regions in trypanosomes. Nat Commun 2024; 15:8113. [PMID: 39285175 PMCID: PMC11405848 DOI: 10.1038/s41467-024-52432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Although genome-wide polycistronic transcription places major emphasis on post-transcriptional controls in trypanosomatids, messenger RNA cis-regulatory untranslated regions (UTRs) have remained largely uncharacterised. Here, we describe a genome-scale massive parallel reporter assay coupled with 3'-UTR-seq profiling in the African trypanosome and identify thousands of regulatory UTRs. Increased translation efficiency was associated with dosage of adenine-rich poly-purine tracts (pPuTs). An independent assessment of native UTRs using machine learning based predictions confirmed the robust correspondence between pPuTs and positive control, as did an assessment of synthetic UTRs. Those 3'-UTRs associated with upregulated expression in bloodstream-stage cells were also enriched in uracil-rich poly-pyrimidine tracts, suggesting a mechanism for developmental activation through pPuT 'unmasking'. Thus, we describe a cis-regulatory UTR sequence 'code' that underpins gene expression control in the context of a constitutively transcribed genome. We conclude that thousands of UTRs post-transcriptionally reprogram gene expression profiles in trypanosomes.
Collapse
Affiliation(s)
- Anna Trenaman
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Michele Tinti
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Richard J Wall
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - David Horn
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
2
|
Abstract
In trypanosomes, RNA polymerase II transcription is polycistronic and individual mRNAs are excised by trans-splicing and polyadenylation. The lack of individual gene transcription control is compensated by control of mRNA processing, translation and degradation. Although the basic mechanisms of mRNA decay and translation are evolutionarily conserved, there are also unique aspects, such as the existence of six cap-binding translation initiation factor homologues, a novel decapping enzyme and an mRNA stabilizing complex that is recruited by RNA-binding proteins. High-throughput analyses have identified nearly a hundred regulatory mRNA-binding proteins, making trypanosomes valuable as a model system to investigate post-transcriptional regulation.
Collapse
Affiliation(s)
- Christine Clayton
- University of Heidelberg Center for Molecular Biology (ZMBH), Im Neuenheimer Feld 282, D69120 Heidelberg, Germany
| |
Collapse
|
3
|
Gupta SK, Chikne V, Eliaz D, Tkacz ID, Naboishchikov I, Carmi S, Waldman Ben-Asher H, Michaeli S. Two splicing factors carrying serine-arginine motifs, TSR1 and TSR1IP, regulate splicing, mRNA stability, and rRNA processing in Trypanosoma brucei. RNA Biol 2014; 11:715-31. [PMID: 24922194 DOI: 10.4161/rna.29143] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In trypanosomes, mRNAs are processed by trans-splicing; in this process, a common exon, the spliced leader, is added to all mRNAs from a small RNA donor, the spliced leader RNA (SL RNA). However, little is known regarding how this process is regulated. In this study we investigated the function of two serine-arginine-rich proteins, TSR1 and TSR1IP, implicated in trans-splicing in Trypanosoma brucei. Depletion of these factors by RNAi suggested their role in both cis- and trans-splicing. Microarray was used to examine the transcriptome of the silenced cells. The level of hundreds of mRNAs was changed, suggesting that these proteins have a role in regulating only a subset of T. brucei mRNAs. Mass-spectrometry analyses of complexes associated with these proteins suggest that these factors function in mRNA stability, translation, and rRNA processing. We further demonstrate changes in the stability of mRNA as a result of depletion of the two TSR proteins. In addition, rRNA defects were observed under the depletion of U2AF35, TSR1, and TSR1IP, but not SF1, suggesting involvement of SR proteins in rRNA processing.
Collapse
Affiliation(s)
- Sachin Kumar Gupta
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Vaibhav Chikne
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Dror Eliaz
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Itai Dov Tkacz
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Ilana Naboishchikov
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Shai Carmi
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| |
Collapse
|
4
|
Depletion of the Trypanosome Pumilio domain protein PUF2 or of some other essential proteins causes transcriptome changes related to coding region length. EUKARYOTIC CELL 2014; 13:664-74. [PMID: 24681684 DOI: 10.1128/ec.00018-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pumilio domain RNA-binding proteins are known mainly as posttranscriptional repressors of gene expression that reduce mRNA translation and stability. Trypanosoma brucei has 11 PUF proteins. We show here that PUF2 is in the cytosol, with roughly the same number of molecules per cell as there are mRNAs. Although PUF2 exhibits a low level of in vivo RNA binding, it is not associated with polysomes. PUF2 also decreased reporter mRNA levels in a tethering assay, consistent with a repressive role. Depletion of PUF2 inhibited growth of bloodstream-form trypanosomes, causing selective loss of mRNAs with long open reading frames and increases in mRNAs with shorter open reading frames. Reexamination of published RNASeq data revealed the same trend in cells depleted of some other proteins. We speculate that these length effects could be caused by inhibition of the elongation phase of transcription or by an influence of translation status or polysomal conformation on mRNA decay.
Collapse
|
5
|
Abstract
PUF proteins are a conserved family of RNA binding proteins found in all eukaryotes examined so far. This study focussed on PUF5, one of 11 PUF family members encoded in the Trypanosoma brucei genome. Native PUF5 is present at less than 50000 molecules per cell in both bloodstream and procyclic form trypanosomes. C-terminally myc-tagged PUF5 was mainly found in the cytoplasm and could be cross-linked to RNA. PUF5 knockdown by RNA interference had no effect on the growth of bloodstream forms. Procyclic forms lacking PUF5 grew normally, but expression of PUF5 bearing a 21 kDa tandem affinity purification tag inhibited growth. Knockdown of PUF5 did not have any effect on the ability of trypanosomes to differentiate from the mammalian to the insect form of the parasite.
Collapse
|
6
|
Gupta SK, Carmi S, Waldman Ben-Asher H, Tkacz ID, Naboishchikov I, Michaeli S. Basal splicing factors regulate the stability of mature mRNAs in trypanosomes. J Biol Chem 2013; 288:4991-5006. [PMID: 23283975 DOI: 10.1074/jbc.m112.416578] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene expression in trypanosomes is mainly regulated post-transcriptionally. Genes are transcribed as polycistronic mRNAs that are dissected by the concerted action of trans-splicing and polyadenylation. In trans-splicing, a common exon, the spliced leader, is added to all mRNAs from a small RNA. In this study, we examined by microarray analysis the transcriptome following RNAi silencing of the basal splicing factors U2AF65, SF1, and U2AF35. The transcriptome data revealed correlations between the affected genes and their splicing and polyadenylation signaling properties, suggesting that differential binding of these factors to pre-mRNA regulates trans-splicing and hence expression of specific genes. Surprisingly, all these factors were shown to affect not only splicing but also mRNA stability. Affinity purification of SF1 and U2AF35 complexes supported their role in mRNA stability. U2AF35 but not SF1 was shown to bind to ribosomes. To examine the role of splicing factors in mRNA stability, mutations were introduced into the polypyrimidine tract located in the 3' UTR of a mini-gene, and the results demonstrate that U2AF65 binds to such a site and controls the mRNA stability. We propose that transcripts carrying splicing signals in their 3' UTR bind the splicing factors and control their stability.
Collapse
Affiliation(s)
- Sachin Kumar Gupta
- Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Abstract
Trypanosomes are a group of protozoan eukaryotes, many of which are major parasites of humans and livestock. The genomes of trypanosomes and their modes of gene expression differ in several important aspects from those of other eukaryotic model organisms. Protein-coding genes are organized in large directional gene clusters on a genome-wide scale, and their polycistronic transcription is not generally regulated at initiation. Transcripts from these polycistrons are processed by global trans-splicing of pre-mRNA. Furthermore, in African trypanosomes, some protein-coding genes are transcribed by a multifunctional RNA polymerase I from a specialized extranucleolar compartment. The primary DNA sequence of the trypanosome genomes and their cellular organization have usually been treated as separate entities. However, it is becoming increasingly clear that in order to understand how a genome functions in a living cell, we will need to unravel how the one-dimensional genomic sequence and its trans-acting factors are arranged in the three-dimensional space of the eukaryotic nucleus. Understanding this cell biology of the genome will be crucial if we are to elucidate the genetic control mechanisms of parasitism. Here, we integrate the concepts of nuclear architecture, deduced largely from studies of yeast and mammalian nuclei, with recent developments in our knowledge of the trypanosome genome, gene expression, and nuclear organization. We also compare this nuclear organization to those in other systems in order to shed light on the evolution of nuclear architecture in eukaryotes.
Collapse
|
9
|
Kramer S, Carrington M. Trans-acting proteins regulating mRNA maturation, stability and translation in trypanosomatids. Trends Parasitol 2010; 27:23-30. [PMID: 20609625 PMCID: PMC3070815 DOI: 10.1016/j.pt.2010.06.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/05/2010] [Accepted: 06/07/2010] [Indexed: 12/30/2022]
Abstract
In trypanosomatids, alterations in gene expression in response to intrinsic or extrinsic signals are achieved through post-transcriptional mechanisms. In the last 20 years, research has concentrated on defining the responsible cis-elements in the untranslated regions of several regulated mRNAs. More recently, the focus has shifted towards the identification of RNA-binding proteins that act as trans-acting factors. Trypanosomatids have a large number of predicted RNA-binding proteins of which the vast majority have no orthologues in other eukaryotes. Several RNA-binding proteins have been shown to bind and/or regulate the expression of a group of mRNAs that code for functionally related proteins, indicating the possible presence of co-regulated mRNA cohorts.
Collapse
Affiliation(s)
- Susanne Kramer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK, CB2 1QW
| | | |
Collapse
|
10
|
Noé G, De Gaudenzi JG, Frasch AC. Functionally related transcripts have common RNA motifs for specific RNA-binding proteins in trypanosomes. BMC Mol Biol 2008; 9:107. [PMID: 19063746 PMCID: PMC2637893 DOI: 10.1186/1471-2199-9-107] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 12/08/2008] [Indexed: 02/08/2023] Open
Abstract
Background Trypanosomes mostly control gene expression by post-transcriptional events such as modulation of mRNA stability and translational efficiency. These mechanisms involve RNA-binding proteins (RBPs), which associate with transcripts to form messenger ribonucleoprotein (mRNP) complexes. Results In this study, we report the identification of mRNA targets for Trypanosoma cruzi U-rich RBP 1 (TcUBP1) and T. cruzi RBP 3 (TcRBP3), two phylogenetically conserved proteins among Kinetoplastids. Co-immunoprecipitated RBP-associated RNAs were extracted from mRNP complexes and binding of RBPs to several targets was confirmed by independent experimental assays. Analysis of target transcript sequences allowed the identification of different signature RNA motifs for each protein. Cis-elements for RBP binding have a stem-loop structure of 30–35 bases and are more frequently represented in the 3'-untranslated region (UTR) of mRNAs. Insertion of the correctly folded RNA elements to a non-specific mRNA rendered it into a target transcript, whereas substitution of the RNA elements abolished RBP interaction. In addition, RBPs competed for RNA-binding sites in accordance with the distribution of different and overlapping motifs in the 3'-UTRs of common mRNAs. Conclusion Functionally related transcripts were preferentially associated with a given RBP; TcUBP1 targets were enriched in genes encoding proteins involved in metabolism, whereas ribosomal protein-encoding transcripts were the largest group within TcRBP3 targets. Together, these results suggest coordinated control of different mRNA subsets at the post-transcriptional level by specific RBPs.
Collapse
Affiliation(s)
- Griselda Noé
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, UNSAM-CONICET, Av, Gral, Paz 5445, INTI, Edificio 24, 1650 San Martín, Provincia de Buenos Aires, Argentina.
| | | | | |
Collapse
|
11
|
Hartmann C, Benz C, Brems S, Ellis L, Luu VD, Stewart M, D'Orso I, Busold C, Fellenberg K, Frasch ACC, Carrington M, Hoheisel J, Clayton CE. Small trypanosome RNA-binding proteins TbUBP1 and TbUBP2 influence expression of F-box protein mRNAs in bloodstream trypanosomes. EUKARYOTIC CELL 2007; 6:1964-78. [PMID: 17873084 PMCID: PMC2168414 DOI: 10.1128/ec.00279-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the African trypanosome Trypanosoma brucei nearly all control of gene expression is posttranscriptional; sequences in the 3'-untranslated regions of mRNAs determine the steady-state mRNA levels by regulation of RNA turnover. Here we investigate the roles of two related proteins, TbUBP1 and TbUBP2, containing a single RNA recognition motif, in trypanosome gene expression. TbUBP1 and TbUBP2 are in the cytoplasm and nucleus, comprise ca. 0.1% of the total protein, and are not associated with polysomes or RNA degradation enzymes. Overexpression of TbUBP2 upregulated the levels of several mRNAs potentially involved in cell division, including the CFB1 mRNA, which encodes a protein with a cyclin F-box domain. CFB1 regulation was mediated by the 3'-untranslated region and involved stabilization of the mRNA. Depletion of TbUBP2 and TbUBP1 inhibited growth and downregulated expression of the cyclin F box protein gene CFB2; trans splicing was unaffected. The results of pull-down assays indicated that all tested mRNAs were bound to TbUBP2 or TbUBP1, with some preference for CFB1. We suggest that TbUBP1 and TbUBP2 may be relatively nonspecific RNA-binding proteins and that specific effects of overexpression or depletion could depend on competition between various different proteins for RNA binding.
Collapse
Affiliation(s)
- Claudia Hartmann
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|