1
|
Guerra-Slompo E, Cesaro G, Guimarães B, Zanchin N. Dissecting Trypanosoma brucei RRP44 function in the maturation of segmented ribosomal RNA using a regulated genetic complementation system. Nucleic Acids Res 2023; 51:396-419. [PMID: 36610751 PMCID: PMC9841430 DOI: 10.1093/nar/gkac1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Trypanosoma brucei belongs to a group of protozoans presenting fragmented large subunit rRNA. Its LSU rRNA equivalent to the 25S/28S rRNA of other eukaryotes is split into six fragments, requiring additional processing for removal of the extra spacer sequences. We have used a genetic complementation strategy to further investigate the T. brucei RRP44 nuclease in pre-rRNA maturation. TbRRP44 contains both a PIN and a RNB domain whose homologues are found in association with the exosome complex. We found that the exonucleolytic activity of the RNB domain as well as the physical presence of the PIN domain are essential for TbRRP44 function, while a catalytic site mutation in the PIN domain has no detectable effect on cell growth. A new endonucleolytic cleavage site in ITS1 was identified. In addition to the 5.8S rRNA 3'-end maturation, TbRRP44 is required for degradation of the excised 5'-ETS and for removal of part of ITS1 during maturation of the 18S rRNA 3'-end. TbRRP44 deficiency leads to accumulation of many LSU intermediate precursors, most of them not detected in control cells. TbRRP44 is also required for U3 snoRNA and spliced leader processing, indicating that TbRRP44 may have a wide role in RNA processing in T. brucei.
Collapse
Affiliation(s)
- Eloise Pavão Guerra-Slompo
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil
| | - Giovanna Cesaro
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil,Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba-PR, Brazil
| | - Beatriz Gomes Guimarães
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, R. Prof. Algacyr Munhoz Mader 3775, 81350-010, Curitiba-PR, Brazil,Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba-PR, Brazil
| | | |
Collapse
|
2
|
Cesaro G, da Soler HT, Guerra-Slompo E, Haouz A, Legrand P, Zanchin N, Guimaraes B. Trypanosoma brucei RRP44: a versatile enzyme for processing structured and non-structured RNA substrates. Nucleic Acids Res 2022; 51:380-395. [PMID: 36583334 PMCID: PMC9841401 DOI: 10.1093/nar/gkac1199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/25/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Rrp44/Dis3 is a conserved eukaryotic ribonuclease that acts on processing and degradation of nearly all types of RNA. It contains an endo- (PIN) and an exonucleolytic (RNB) domain and, its depletion in model organisms supports its essential function for cell viability. In Trypanosoma brucei, depletion of Rrp44 (TbRRP44) blocks maturation of ribosomal RNA, leading to disruption of ribosome synthesis and inhibition of cell proliferation. We have determined the crystal structure of the exoribonucleolytic module of TbRRP44 in an active conformation, revealing novel details of the catalytic mechanism of the RNB domain. For the first time, the position of the second magnesium involved in the two-metal-ion mechanism was determined for a member of the RNase II family. In vitro, TbRRP44 acts preferentially on non-structured uridine-rich RNA substrates. However, we demonstrated for the first time that both TbRRP44 and its homologue from Saccharomyces cerevisiae can also degrade structured substrates without 3'-end overhang, suggesting that Rrp44/Dis3 ribonucleases may be involved in degradation of a wider panel of RNA than has been assumed. Interestingly, deletion of TbRRP44 PIN domain impairs RNA binding to different extents, depending on the type of substrate.
Collapse
Affiliation(s)
- Giovanna Cesaro
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, Curitiba-PR, Brazil,Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba-PR, Brazil
| | | | | | - Ahmed Haouz
- Institut Pasteur, Plate-forme de cristallographie-C2RT, UMR-3528 CNRS, Paris, France
| | | | | | | |
Collapse
|
3
|
Moraleva AA, Deryabin AS, Rubtsov YP, Rubtsova MP, Dontsova OA. Eukaryotic Ribosome Biogenesis: The 40S Subunit. Acta Naturae 2022; 14:14-30. [PMID: 35441050 PMCID: PMC9013438 DOI: 10.32607/actanaturae.11540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
The formation of eukaryotic ribosomes is a sequential process of ribosomal precursors maturation in the nucleolus, nucleoplasm, and cytoplasm. Hundreds of ribosomal biogenesis factors ensure the accurate processing and formation of the ribosomal RNAs' tertiary structure, and they interact with ribosomal proteins. Most of what we know about the ribosome assembly has been derived from yeast cell studies, and the mechanisms of ribosome biogenesis in eukaryotes are considered quite conservative. Although the main stages of ribosome biogenesis are similar across different groups of eukaryotes, this process in humans is much more complicated owing to the larger size of the ribosomes and pre-ribosomes and the emergence of regulatory pathways that affect their assembly and function. Many of the factors involved in the biogenesis of human ribosomes have been identified using genome-wide screening based on RNA interference. This review addresses the key aspects of yeast and human ribosome biogenesis, using the 40S subunit as an example. The mechanisms underlying these differences are still not well understood, because, unlike yeast, there are no effective methods for characterizing pre-ribosomal complexes in humans. Understanding the mechanisms of human ribosome assembly would have an incidence on a growing number of genetic diseases (ribosomopathies) caused by mutations in the genes encoding ribosomal proteins and ribosome biogenesis factors. In addition, there is evidence that ribosome assembly is regulated by oncogenic signaling pathways, and that defects in the ribosome biogenesis are linked to the activation of tumor suppressors.
Collapse
Affiliation(s)
- A. A. Moraleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. S. Deryabin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - Yu. P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - M. P. Rubtsova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991 Russia
| | - O. A. Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991 Russia
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| |
Collapse
|
4
|
Sun X, Kawata K, Miki A, Wada Y, Nagahama M, Takaya A, Akimitsu N. Exploration of Salmonella effector mutant strains on MTR4 and RRP6 degradation. Biosci Trends 2020; 14:255-262. [PMID: 32350160 DOI: 10.5582/bst.2020.03085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Salmonella enterica serovar Typhimurium (Salmonella), a pathogenic bacterium, is a major cause of foodborne diseases worldwide. Salmonella injects multiple virulence factors, called effectors, into cells and causes multiple rearrangements of cellular biological reactions that are important for Salmonella proliferation and virulence. Previously, we reported that Salmonella infection causes loss of MTR4 and RRP6, which are nuclear RNA degradation factors, resulting in the stabilization and accumulation of unstable nuclear RNAs. This accumulation is important for the cellular defense for Salmonella infection. In this study, we examined a series of Salmonella mutant strains, most of which are strains with genes related to effectors translocated by T3SSs encoded on Salmonella pathogenic islands, SPI-1 and SPI-2, that have been depleted. Among 42 Salmonella mutants, 6 mutants' infections canceled loss of MTR4 and RRP6. Proliferation assay of Salmonella in the cell revealed that six mutants showed poor proliferation in the host cell, demonstrating that poor proliferation contributed to cancellation of MTR4 and RRP6 loss. This result indicates that certain events associated with Salmonella proliferation in host cells cause loss of MTR4 and RRP6.
Collapse
Affiliation(s)
- Xiaoning Sun
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.,Advanced Interdisciplinary Studies, Engineering Department, The University of Tokyo, Tokyo, Japan
| | - Kentaro Kawata
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Atsuko Miki
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.,Advanced Interdisciplinary Studies, Engineering Department, The University of Tokyo, Tokyo, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Akiko Takaya
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | |
Collapse
|
5
|
Bajak K, Clayton C. Polysome Profiling and Metabolic Labeling Methods to Measure Translation in Trypanosoma brucei. Methods Mol Biol 2020; 2116:99-108. [PMID: 32221916 DOI: 10.1007/978-1-0716-0294-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The amount of a protein that is made in a cell is determined not only by the corresponding mRNA level but also by the efficiency with which the mRNA is translated. Very powerful transcriptome-wide methods are available to analyze both the density of ribosomes on each mRNA and the rate at which polypeptides are elongated. However, for many research questions, simpler, less expensive methods are more suitable. Here we describe two methods to assess the general translation status of cells: polysome profiling by sucrose density gradient centrifugation and metabolic labeling using radioactive amino acids. Both methods can also be used to examine translation of individual mRNAs.
Collapse
Affiliation(s)
- Kathrin Bajak
- Deutsche Krebsforschungszentrum (DKF), Heidelberg, Germany
| | | |
Collapse
|
6
|
Abstract
The RNA exosome is a ribonucleolytic multiprotein complex that is conserved and essential in all eukaryotes. Although we tend to speak of "the" exosome complex, it should be more correctly viewed as several different subtypes that share a common core. Subtypes of the exosome complex are present in the cytoplasm, the nucleus and the nucleolus of all eukaryotic cells, and carry out the 3'-5' processing and/or degradation of a wide range of RNA substrates.Because the substrate specificity of the exosome complex is determined by cofactors, the system is highly adaptable, and different organisms have adjusted the machinery to their specific needs. Here, we present an overview of exosome complexes and their cofactors that have been described in different eukaryotes.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institut für Biochemie, Justus-Liebig-Universität Gießen, Gießen, Germany.
| |
Collapse
|
7
|
Pillon MC, Lo YH, Stanley RE. IT'S 2 for the price of 1: Multifaceted ITS2 processing machines in RNA and DNA maintenance. DNA Repair (Amst) 2019; 81:102653. [PMID: 31324529 PMCID: PMC6764878 DOI: 10.1016/j.dnarep.2019.102653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cells utilize sophisticated RNA processing machines to ensure the quality of RNA. Many RNA processing machines have been further implicated in regulating the DNA damage response signifying a strong link between RNA processing and genome maintenance. One of the most intricate and highly regulated RNA processing pathways is the processing of the precursor ribosomal RNA (pre-rRNA), which is paramount for the production of ribosomes. Removal of the Internal Transcribed Spacer 2 (ITS2), located between the 5.8S and 25S rRNA, is one of the most complex steps of ribosome assembly. Processing of the ITS2 is initiated by the newly discovered endoribonuclease Las1, which cleaves at the C2 site within the ITS2, generating products that are further processed by the polynucleotide kinase Grc3, the 5'→3' exonuclease Rat1, and the 3'→5' RNA exosome complex. In addition to their defined roles in ITS2 processing, these critical cellular machines participate in other stages of ribosome assembly, turnover of numerous cellular RNAs, and genome maintenance. Here we summarize recent work defining the molecular mechanisms of ITS2 processing by these essential RNA processing machines and highlight their emerging roles in transcription termination, heterochromatin function, telomere maintenance, and DNA repair.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Yu-Hua Lo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
8
|
Cesaro G, Carneiro FRG, Ávila AR, Zanchin NIT, Guimarães BG. Trypanosoma brucei RRP44 is involved in an early stage of large ribosomal subunit RNA maturation. RNA Biol 2018; 16:133-143. [PMID: 30593255 DOI: 10.1080/15476286.2018.1564463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ribosomal RNA precursors undergo a series of structural and chemical modifications to generate matured RNA molecules that will comprise ribosomes. This maturation process involves a large set of accessory proteins as well as ribonucleases, responsible for removal of the external and internal transcribed spacers from the pre-rRNA. Early-diverging eukaryotes belonging to the Kinetoplastida class display several unique characteristics, in particular in terms of RNA synthesis and maturation. These peculiarities include the rRNA biogenesis and the extensive fragmentation of the large ribosomal subunit (LSU) rRNA. The role of specific endo- and exonucleases in the maturation of the unusual rRNA precursor of trypanosomatids remains largely unknown. One of the nucleases involved in rRNA processing is Rrp44, an exosome associated ribonuclease in yeast, which is involved in several metabolic RNA pathways. Here, we investigated the function of Trypanosoma brucei RRP44 orthologue (TbRRP44) in rRNA processing. Our results revealed that TbRRP44 depletion causes unusual polysome profile and accumulation of the complete LSU rRNA precursor, in addition to 5.8S maturation impairment. We also determined the crystal structure of TbRRP44 endonucleolytic domain. Structural comparison with Saccharomyces cerevisiae Rrp44 revealed differences in the catalytic site and substitutions of surface residues, which could provide molecular bases for the lack of interaction of RRP44 with the exosome complex in T. brucei.
Collapse
Affiliation(s)
- Giovanna Cesaro
- a Carlos Chagas Institute , Oswaldo Cruz Foundation, FIOCRUZ-PR , Curitiba , Brazil.,b Biochemsitry Postgraduate Program , Federal University of Parana , Curitiba , Brazil
| | - Flávia Raquel Gonçalves Carneiro
- a Carlos Chagas Institute , Oswaldo Cruz Foundation, FIOCRUZ-PR , Curitiba , Brazil.,c Center for Technology Development in Healthcare , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | | | | | | |
Collapse
|
9
|
Singh P, Saha U, Paira S, Das B. Nuclear mRNA Surveillance Mechanisms: Function and Links to Human Disease. J Mol Biol 2018; 430:1993-2013. [PMID: 29758258 DOI: 10.1016/j.jmb.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023]
Abstract
Production of export-competent mRNAs involves transcription and a series of dynamic processing and modification events of pre-messenger RNAs in the nucleus. Mutations in the genes encoding the transcription and mRNP processing machinery and the complexities involved in the biogenesis events lead to the formation of aberrant messages. These faulty transcripts are promptly eliminated by the nuclear RNA exosome and its cofactors to safeguard the cells and organisms from genetic catastrophe. Mutations in the components of the core nuclear exosome and its cofactors lead to the tissue-specific dysfunction of exosomal activities, which are linked to diverse human diseases and disorders. In this article, we examine the structure and function of both the yeast and human RNA exosome complex and its cofactors, discuss the nature of the various altered amino acid residues implicated in these diseases with the speculative mechanisms of the mutation-induced disorders and project the frontier and prospective avenues of the future research in this field.
Collapse
Affiliation(s)
- Pragyan Singh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Upasana Saha
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Sunirmal Paira
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India.
| |
Collapse
|
10
|
Kipandula W, Smith TK, MacNeill SA. Tandem affinity purification of exosome and replication factor C complexes from the non-human infectious kinetoplastid parasite Crithidia fasciculata. Mol Biochem Parasitol 2017; 217:19-22. [PMID: 28844893 DOI: 10.1016/j.molbiopara.2017.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 11/17/2022]
Abstract
Kinetoplastid parasites are responsible for a range of diseases with significant global impact. Trypanosoma brucei and Trypanosoma cruzi cause human African trypanosomiasis and Chagas disease, respectively, while various Leishmania species are responsible for cutaneous, mucocutaneous and visceral leishmaniasis. Understanding the biology of these organisms is key for effective diagnosis, prophylaxis and treatment. The insect parasite Crithidia fasciculata offers a safe and low-cost alternative for studies of kinetoplastid biology. C. fasciculata does not infect humans, can be cultured to high yields in inexpensive serum-free medium in a standard laboratory, and has a completely sequenced publically available genome. Taking advantage of these features, however, requires the adaptation of existing methods of analysis to C. fasciculata. Tandem affinity purification is a widely used method that allows for the rapid purification of intact protein complexes under native conditions. Here we report the application of tandem affinity purification to C. fasciculata for the first time, demonstrating the effectiveness of the technique by purifying both the intact exosome and replication factor C complexes. Adding tandem affinity purification to the C. fasciculata toolbox significantly enhances the utility of this excellent model system.
Collapse
Affiliation(s)
- Wakisa Kipandula
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK; Department of Biomedical Sciences, College of Medicine, University of Malawi, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Stuart A MacNeill
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK.
| |
Collapse
|
11
|
Domanski M, Upla P, Rice WJ, Molloy KR, Ketaren NE, Stokes DL, Jensen TH, Rout MP, LaCava J. Purification and analysis of endogenous human RNA exosome complexes. RNA (NEW YORK, N.Y.) 2016; 22:1467-1475. [PMID: 27402899 PMCID: PMC4986900 DOI: 10.1261/rna.057760.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
As a result of its importance in key RNA metabolic processes, the ribonucleolytic RNA exosome complex has been the focus of intense study for almost two decades. Research on exosome subunit assembly, cofactor and substrate interaction, enzymatic catalysis and structure have largely been conducted using complexes produced in the yeast Saccharomyces cerevisiae or in bacteria. Here, we examine different populations of endogenous exosomes from human embryonic kidney (HEK) 293 cells and test their enzymatic activity and structural integrity. We describe methods to prepare EXOSC10-containing, enzymatically active endogenous human exosomes at suitable yield and purity for in vitro biochemistry and negative stain transmission electron microscopy. This opens the door for assays designed to test the in vitro effects of putative cofactors on human exosome activity and will enable structural studies of preparations from endogenous sources.
Collapse
Affiliation(s)
- Michal Domanski
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Paula Upla
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - William J Rice
- Simons Electron Microscopy Center at New York Structural Biology Center, New York, New York 10027, USA
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - David L Stokes
- Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
12
|
Abstract
The immunoglobulin diversification processes of somatic hypermutation and class switch recombination critically rely on transcription-coupled targeting of activation-induced cytidine deaminase (AID) to Ig loci in activated B lymphocytes. AID catalyzes deamination of cytidine deoxynucleotides on exposed single-stranded DNA. In addition to driving immunoglobulin diversity, promiscuous targeting of AID mutagenic activity poses a deleterious threat to genomic stability. Recent genome-wide studies have uncovered pervasive AID activity throughout the B cell genome. It is increasingly apparent that AID activity is frequently targeted to genomic loci undergoing early transcription termination where RNA exosome promotes the resolution of stalled transcription complexes via cotranscriptional RNA degradation mechanisms. Here, we review aspects and consequences of eukaryotic transcription that lead to early termination, RNA exosome recruitment, and ultimately targeting of AID mutagenic activity.
Collapse
Affiliation(s)
- Evangelos Pefanis
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| | - Uttiya Basu
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| |
Collapse
|
13
|
Abstract
The exosome ribonuclease complex functions in both the limited trimming of the 3'-ends of nuclear substrates during RNA processing events and the complete destruction of nuclear and cytoplasmic RNAs. The two RNases of the eukaryotic exosome, Rrp44 (rRNA-processing protein 44) and Rrp6, are bound at either end of a catalytically inert cylindrical core. RNA substrates are threaded through the internal channel of the core to Rrp44 by RNA helicase components of the nuclear TRAMP complex (Trf4-Air2-Mtr4 polyadenylation complex) or the cytoplasmic Ski (superkiller) complex. Recent studies reveal that Rrp44 can also associate directly with substrates via channel-independent routes. Although the substrates of the exosome are known, it is not clear whether specific substrates are restricted to one or other pathway. Data currently available support the model that processed substrates are targeted directly to the catalytic subunits, whereas at least some substrates that are directed towards discard pathways must be threaded through the exosome core.
Collapse
|
14
|
Schuch B, Feigenbutz M, Makino DL, Falk S, Basquin C, Mitchell P, Conti E. The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase. EMBO J 2014; 33:2829-46. [PMID: 25319414 DOI: 10.15252/embj.201488757] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The exosome is a conserved multi-subunit ribonuclease complex that functions in 3' end processing, turnover and surveillance of nuclear and cytoplasmic RNAs. In the yeast nucleus, the 10-subunit core complex of the exosome (Exo-10) physically and functionally interacts with the Rrp6 exoribonuclease and its associated cofactor Rrp47, the helicase Mtr4 and Mpp6. Here, we show that binding of Mtr4 to Exo-10 in vitro is dependent upon both Rrp6 and Rrp47, whereas Mpp6 binds directly and independently of other cofactors. Crystallographic analyses reveal that the N-terminal domains of Rrp6 and Rrp47 form a highly intertwined structural unit. Rrp6 and Rrp47 synergize to create a composite and conserved surface groove that binds the N-terminus of Mtr4. Mutation of conserved residues within Rrp6 and Mtr4 at the structural interface disrupts their interaction and inhibits growth of strains expressing a C-terminal GFP fusion of Mtr4. These studies provide detailed structural insight into the interaction between the Rrp6-Rrp47 complex and Mtr4, revealing an important link between Mtr4 and the core exosome.
Collapse
Affiliation(s)
- Benjamin Schuch
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Monika Feigenbutz
- Molecular Biology and Biotechnology Department, The University of Sheffield, Sheffield, UK
| | - Debora L Makino
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sebastian Falk
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Claire Basquin
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Phil Mitchell
- Molecular Biology and Biotechnology Department, The University of Sheffield, Sheffield, UK
| | - Elena Conti
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
15
|
Barbosa RL, Legrand P, Wien F, Pineau B, Thompson A, Guimarães BG. RRP6 from Trypanosoma brucei: crystal structure of the catalytic domain, association with EAP3 and activity towards structured and non-structured RNA substrates. PLoS One 2014; 9:e89138. [PMID: 24558481 PMCID: PMC3928423 DOI: 10.1371/journal.pone.0089138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/20/2014] [Indexed: 11/19/2022] Open
Abstract
RRP6 is a 3′–5′ exoribonuclease associated to the eukaryotic exosome, a multiprotein complex essential for various RNA processing and degradation pathways. In Trypanosoma brucei, RRP6 associates with the exosome in stoichiometric amounts and was localized in both cytoplasm and nucleus, in contrast to yeast Rrp6 which is exclusively nuclear. Here we report the biochemical and structural characterization of T. brucei RRP6 (TbRRP6) and its interaction with the so-called T. brucei Exosome Associated Protein 3 (TbEAP3), a potential orthologue of the yeast Rrp6 interacting protein, Rrp47. Recombinant TbEAP3 is a thermo stable homodimer in solution, however it forms a heterodimeric complex with TbRRP6 with 1∶1 stoichiometry. The crystallographic structure of the TbRRP6 catalytic core exposes for the first time the native catalytic site of this RNase and also reveals a disulfide bond linking two helices of the HRDC domain. RNA degradation assays show the distributive exoribonuclease activity of TbRRP6 and novel findings regarding the structural range of its RNA substrates. TbRRP6 was able to degrade single and double-stranded RNAs and also RNA substrates containing stem-loops including those with 3′ stem-loop lacking single-stranded extensions. Finally, association with TbEAP3 did not significantly interfere with the TbRRP6 catalytic activity in vitro.
Collapse
Affiliation(s)
| | | | - Frank Wien
- Synchrotron SOLEIL, Gif-sur Yvette, France
| | | | | | | |
Collapse
|
16
|
Januszyk K, Lima CD. The eukaryotic RNA exosome. Curr Opin Struct Biol 2014; 24:132-40. [PMID: 24525139 DOI: 10.1016/j.sbi.2014.01.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/24/2022]
Abstract
The eukaryotic RNA exosome is an essential multi-subunit ribonuclease complex that contributes to the degradation or processing of nearly every class of RNA in both the nucleus and cytoplasm. Its nine-subunit core shares structural similarity to phosphorolytic exoribonucleases such as bacterial PNPase. PNPase and the RNA exosome core feature a central channel that can accommodate single stranded RNA although unlike PNPase, the RNA exosome core is devoid of ribonuclease activity. Instead, the core associates with Rrp44, an endoribonuclease and processive 3'→5' exoribonuclease, and Rrp6, a distributive 3'→5' exoribonuclease. Recent biochemical and structural studies suggest that the exosome core is essential because it coordinates Rrp44 and Rrp6 recruitment, RNA can pass through the central channel, and the association with the core modulates Rrp44 and Rrp6 activities.
Collapse
Affiliation(s)
- Kurt Januszyk
- Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, NY, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, NY, USA; Howard Hughes Medical Institute, Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, NY, USA.
| |
Collapse
|
17
|
Schneider C, Tollervey D. Threading the barrel of the RNA exosome. Trends Biochem Sci 2013; 38:485-93. [PMID: 23910895 PMCID: PMC3838930 DOI: 10.1016/j.tibs.2013.06.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 12/22/2022]
Abstract
A wide range of in vivo targets for the exosome complex has been established. RNA polymerase III transcripts have emerged as major substrates. The human nucleus has spatially localized forms of the exosome, with matching cofactors. Structural analyses reveal a highly conserved RNA path through the eukaryotic exosome.
In eukaryotes, the exosome complex degrades RNA backbones and plays key roles in RNA processing and surveillance. It was predicted that RNA substrates are threaded through a central channel. This pathway is conserved between eukaryotic and archaeal complexes, even though nuclease activity was lost from the nine-subunit eukaryotic core (EXO-9) and transferred to associated proteins. The exosome cooperates with nuclear and cytoplasmic cofactors, including RNA helicases Mtr4 and Ski2, respectively. Structures of an RNA-bound exosome and both helicases revealed how substrates are channeled through EXO-9 to the associated nuclease Rrp44. Recent high-throughput analyses provided fresh insights relating exosome structure to its diverse in vivo functions. They also revealed surprisingly high degradation rates for newly synthesized RNAs, particularly RNA polymerase III transcripts.
Collapse
Affiliation(s)
- Claudia Schneider
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|
18
|
|
19
|
Fadda A, Färber V, Droll D, Clayton C. The roles of 3'-exoribonucleases and the exosome in trypanosome mRNA degradation. RNA (NEW YORK, N.Y.) 2013; 19:937-947. [PMID: 23697549 PMCID: PMC3683928 DOI: 10.1261/rna.038430.113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
The degradation of eukaryotic mRNAs can be initiated by deadenylation, decapping, or endonuclease cleavage. This is followed by 5'-3' degradation by homologs of Xrn1, and/or 3'-5' degradation by the exosome. We previously reported that, in African trypanosome Trypanosoma brucei, most mRNAs are deadenylated prior to degradation, and that depletion of the major 5'-3' exoribonuclease XRNA preferentially stabilizes unstable mRNAs. We now show that depletion of either CAF1 or CNOT10, two components of the principal deadenylation complex, strongly inhibits degradation of most mRNAs. RNAi targeting another deadenylase, PAN2, or RRP45, a core component of the exosome, preferentially stabilized mRNAs with intermediate half-lives. RRP45 depletion resulted in a 5' bias of mRNA sequences, suggesting action by a distributive 3'-5' exoribonuclease. Results suggested that the exosome is involved in the processing of trypanosome snoRNAs. There was no correlation between effects on half-lives and on mRNA abundance.
Collapse
|
20
|
Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 2013; 495:70-5. [DOI: 10.1038/nature11870] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/21/2012] [Indexed: 01/18/2023]
|
21
|
Chlebowski A, Lubas M, Jensen TH, Dziembowski A. RNA decay machines: the exosome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:552-60. [PMID: 23352926 DOI: 10.1016/j.bbagrm.2013.01.006] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
The multisubunit RNA exosome complex is a major ribonuclease of eukaryotic cells that participates in the processing, quality control and degradation of virtually all classes of RNA in Eukaryota. All this is achieved by about a dozen proteins with only three ribonuclease activities between them. At first glance, the versatility of the pathways involving the exosome and the sheer multitude of its substrates are astounding. However, after fifteen years of research we have some understanding of how exosome activity is controlled and applied inside the cell. The catalytic properties of the eukaryotic exosome are fairly well described and attention is now drawn to how the interplay between these activities impacts cell physiology. Also, it has become evident that exosome function relies on many auxiliary factors, which are intensely studied themselves. In this way, the focus of exosome research is slowly leaving the test tube and moving back into the cell. The exosome also has an interesting evolutionary history, which is evident within the eukaryotic lineage but only fully appreciated when considering similar protein complexes found in Bacteria and Archaea. Thus, while we keep this review focused on the most comprehensively described yeast and human exosomes, we shall point out similarities or dissimilarities to prokaryotic complexes and proteins where appropriate. The article is divided into three parts. In Part One we describe how the exosome is built and how it manifests in cells of different organisms. In Part Two we detail the enzymatic properties of the exosome, especially recent data obtained for holocomplexes. Finally, Part Three presents an overview of the RNA metabolism pathways that involve the exosome. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
22
|
Abstract
Most RNAs in eukaryotic cells are produced as precursors that undergo processing at the 3' and/or 5' end to generate the mature transcript. In addition, many transcripts are degraded not only as part of normal recycling, but also when recognized as aberrant by the RNA surveillance machinery. The exosome, a conserved multiprotein complex containing two nucleases, is involved in both the 3' processing and the turnover of many RNAs in the cell. A series of factors, including the TRAMP (Trf4-Air2-Mtr4 polyadenylation) complex, Mpp6 and Rrp47, help to define the targets to be processed and/or degraded and assist in exosome function. The majority of the data on the exosome and RNA maturation/decay have been derived from work performed in the yeast Saccharomyces cerevisiae. In the present paper, we provide an overview of the exosome and its role in RNA processing/degradation and discuss important new insights into exosome composition and function in human cells.
Collapse
|
23
|
Abstract
The composition of the multisubunit eukaryotic RNA exosome was described more than a decade ago, and structural studies conducted since that time have contributed to our mechanistic understanding of factors that are required for 3'-to-5' RNA processing and decay. This chapter describes the organization of the eukaryotic RNA exosome with a focus on presenting results related to the noncatalytic nine-subunit exosome core as well as the hydrolytic exo- and endoribonuclease Rrp44 (Dis3) and the exoribonuclease Rrp6. This is achieved in large part by describing crystal structures of Rrp44, Rrp6, and the nine-subunit exosome core with an emphasis on how these molecules interact to endow the RNA exosome with its catalytic activities.
Collapse
Affiliation(s)
- Elizabeth V Wasmuth
- Structural Biology Program, Sloan-Kettering Institute, New York, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, USA
| | | |
Collapse
|
24
|
Wolin SL, Sim S, Chen X. Nuclear noncoding RNA surveillance: is the end in sight? Trends Genet 2012; 28:306-13. [PMID: 22475369 DOI: 10.1016/j.tig.2012.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/13/2022]
Abstract
Nuclear noncoding RNA (ncRNA) surveillance pathways play key roles in shaping the steady-state transcriptomes of eukaryotic cells. Defective and unneeded ncRNAs are primarily degraded by exoribonucleases that rely on protein cofactors to identify these RNAs. Recent studies have begun to elucidate both the mechanisms by which these cofactors recognize aberrant RNAs and the features that mark RNAs for degradation. One crucial RNA determinant is the presence of an accessible end; in addition, the failure of aberrant RNAs to fold into compact structures and assemble with specific binding proteins probably also contributes to their recognition and subsequent degradation. To date, ncRNA surveillance has been most extensively studied in budding yeast. However, mammalian cells possess nucleases and cofactors that have no known yeast counterparts, indicating that RNA surveillance pathways may be more complex in metazoans. Importantly, there is evidence that the failure of ncRNA surveillance pathways contributes to human disease.
Collapse
Affiliation(s)
- Sandra L Wolin
- Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| | | | | |
Collapse
|
25
|
Halbach F, Rode M, Conti E. The crystal structure of S. cerevisiae Ski2, a DExH helicase associated with the cytoplasmic functions of the exosome. RNA (NEW YORK, N.Y.) 2012; 18:124-34. [PMID: 22114319 PMCID: PMC3261734 DOI: 10.1261/rna.029553.111] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ski2 is a cytoplasmic RNA helicase that functions together with the exosome in the turnover and quality control of mRNAs. Ski2 is conserved in eukaryotes and is related to the helicase Mtr4, a cofactor of the nuclear exosome involved in the processing and quality control of a variety of structured RNAs. We have determined the 2.4 Å resolution crystal structure of the 113 kDa helicase region of Saccharomyces cerevisiae Ski2. The structure shows that Ski2 has an overall architecture similar to that of Mtr4, with a core DExH region and an extended insertion domain. The insertion is not required for the formation of the Ski2-Ski3-Ski8 complex, but is instead an RNA-binding domain. While this is reminiscent of the Mtr4 insertion, there are specific structural and biochemical differences between the two helicases. The insertion of yeast Mtr4 consists of a β-barrel domain that is flexibly attached to a helical stalk, contains a KOW signature motif, and binds in vitro-transcribed tRNA(i)(Met), but not single-stranded RNA. The β-barrel domain of yeast Ski2 does not contain a KOW motif and is tightly packed against the helical stalk, forming a single structural unit maintained by a zinc-binding site. Biochemically, the Ski2 insertion has broad substrate specificity, binding both single-stranded and double-stranded RNAs. We speculate that the Ski2 and Mtr4 insertion domains have evolved with different properties tailored to the type of transcripts that are the substrates of the cytoplasmic and nuclear exosome.
Collapse
Affiliation(s)
- Felix Halbach
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Michaela Rode
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
- Corresponding author.E-mail .
| |
Collapse
|
26
|
Lubas M, Chlebowski A, Dziembowski A, Jensen TH. Biochemistry and Function of RNA Exosomes. EUKARYOTIC RNASES AND THEIR PARTNERS IN RNA DEGRADATION AND BIOGENESIS, PART A 2012; 31:1-30. [DOI: 10.1016/b978-0-12-404740-2.00001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
|
28
|
Abstract
The authors analyse the eukaryotic exosome structure, published in EMBO reports , in light of the known archaeal and prokaryotic exosomes, and discuss its striking flexibility and the conservation of the RNA channelling mechanism.
Collapse
Affiliation(s)
- Borislava Tsanova
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
29
|
Tomecki R, Drazkowska K, Dziembowski A. Mechanisms of RNA degradation by the eukaryotic exosome. Chembiochem 2010; 11:938-45. [PMID: 20301164 DOI: 10.1002/cbic.201000025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rafal Tomecki
- Department of Biophysics, Institute of Biochemistry and Biophysics, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
30
|
St-André O, Lemieux C, Perreault A, Lackner DH, Bähler J, Bachand F. Negative regulation of meiotic gene expression by the nuclear poly(a)-binding protein in fission yeast. J Biol Chem 2010; 285:27859-68. [PMID: 20622014 DOI: 10.1074/jbc.m110.150748] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Meiosis is a cellular differentiation process in which hundreds of genes are temporally induced. Because the expression of meiotic genes during mitosis is detrimental to proliferation, meiotic genes must be negatively regulated in the mitotic cell cycle. Yet, little is known about mechanisms used by mitotic cells to repress meiosis-specific genes. Here we show that the poly(A)-binding protein Pab2, the fission yeast homolog of mammalian PABPN1, controls the expression of several meiotic transcripts during mitotic division. Our results from chromatin immunoprecipitation and promoter-swapping experiments indicate that Pab2 controls meiotic genes post-transcriptionally. Consistently, we show that the nuclear exosome complex cooperates with Pab2 in the negative regulation of meiotic genes. We also found that Pab2 plays a role in the RNA decay pathway orchestrated by Mmi1, a previously described factor that functions in the post-transcriptional elimination of meiotic transcripts. Our results support a model in which Mmi1 selectively targets meiotic transcripts for degradation via Pab2 and the exosome. Our findings have therefore uncovered a mode of gene regulation whereby a poly(A)-binding protein promotes RNA degradation in the nucleus to prevent untimely expression.
Collapse
Affiliation(s)
- Olivier St-André
- RNA Group, Université de Sherbrooke, Department of Biochemistry, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Müller M, Padmanabhan PK, Rochette A, Mukherjee D, Smith M, Dumas C, Papadopoulou B. Rapid decay of unstable Leishmania mRNAs bearing a conserved retroposon signature 3'-UTR motif is initiated by a site-specific endonucleolytic cleavage without prior deadenylation. Nucleic Acids Res 2010; 38:5867-83. [PMID: 20453029 PMCID: PMC2943621 DOI: 10.1093/nar/gkq349] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have previously shown that the Leishmania genome possess two widespread families of extinct retroposons termed Short Interspersed DEgenerated Retroposons (SIDER1/2) that play a role in post-transcriptional regulation. Moreover, we have demonstrated that SIDER2 retroposons promote mRNA degradation. Here we provide new insights into the mechanism by which unstable Leishmania mRNAs harboring a SIDER2 retroposon in their 3′-untranslated region are degraded. We show that, unlike most eukaryotic transcripts, SIDER2-bearing mRNAs do not undergo poly(A) tail shortening prior to rapid turnover, but instead, they are targeted for degradation by a site-specific endonucleolytic cleavage. The main cleavage site was mapped in two randomly selected SIDER2-containing mRNAs in vivo between an AU dinucleotide at the 5′-end of the second 79-nt signature (signature II), which represents the most conserved sequence amongst SIDER2 retroposons. Deletion of signature II abolished endonucleolytic cleavage and deadenylation-independent decay and increased mRNA stability. Interestingly, we show that overexpression of SIDER2 anti-sense RNA can increase sense transcript abundance and stability, and that complementarity to the cleavage region is required for protecting SIDER2-containing transcripts from degradation. These results establish a new paradigm for how unstable mRNAs are degraded in Leishmania and could serve as the basis for a better understanding of mRNA decay pathways in general.
Collapse
Affiliation(s)
- Michaela Müller
- Infectious Disease Research Centre, CHUL Research Centre and Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Januszyk K, Lima CD. Structural components and architectures of RNA exosomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:9-28. [PMID: 21713674 DOI: 10.1007/978-1-4419-7841-7_2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A large body of structural work conducted over the past ten years has elucidated mechanistic details related to 3' to 5' processing and decay of RNA substrates by the RNA exosome. This chapter will focus on the structural organization of eukaryotic exosomes and their evolutionary cousins in bacteria and archaea with an emphasis on mechanistic details related to substrate recognition and to 3' to 5' phosphorolytic exoribonucleolytic activities of bacterial and archaeal exosomes as well as the hydrolytic exoribonucleolytic and endoribonucleolytic activities of eukaryotic exosomes. These points will be addressed in large part through presentation of crystal structures of phosphorolytic enzymes such as bacterial RNase PH, PNPase and archaeal exosomes and crystal structures of the eukaryotic exosome and exosome sub-complexes in addition to standalone structures of proteins that catalyze activities associated with the eukaryotic RNA exosome, namely Rrp44, Rrp6 and their bacterial counterparts.
Collapse
Affiliation(s)
- Kurt Januszyk
- Structural Biology Program, Sloan-Kettering Institute, New York, New York, USA
| | | |
Collapse
|
33
|
Clayton C, Estevez A. The exosomes of trypanosomes and other protists. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:39-49. [PMID: 21713676 DOI: 10.1007/978-1-4419-7841-7_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The archaeal exosome contains three heterodimeric RNase PH subunits, forming a hexamer with RNase activity; on top sits a trimer of two different SI domain proteins. In animals and yeast, six different, but related subunits form the RNase PH-like core, but these lack enzyme activity; there are three different Si-domain proteins and enzyme activity is provided by the endo/exonuc lease Rrp44 or-mainly in the nuclear exosome-the Rnase D enzyme Rrp6. Trypanosomes diverged from yeast and mammals very early in eukaryotic evolution. The trypanosome exosome is similar in subunit composition to the human exosome, but instead of being an optional component, trypanosome RRP6 is present in the nucleus and cytoplasm and is required for exosome stability. As in human cells and yeast, the trypanosome exosome has been shown to be required for processing and quality control of rRNA and to be involved in mRNA degradation. Electron microscopy results for a Leishmania exosome suggest that RRP6 is located on the side of the RnasePH ring, interacting with several exosome core proteins. Results of a search for exosome subunits in the genomes of widely diverged protists revealed varied exosome complexity; the Giardia exosome may be as simple as that of Archaea.
Collapse
Affiliation(s)
- Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany,
| | | |
Collapse
|
34
|
Catalytic Properties of the Eukaryotic Exosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:63-78. [DOI: 10.1007/978-1-4419-7841-7_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Bonneau F, Basquin J, Ebert J, Lorentzen E, Conti E. The Yeast Exosome Functions as a Macromolecular Cage to Channel RNA Substrates for Degradation. Cell 2009; 139:547-59. [DOI: 10.1016/j.cell.2009.08.042] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/15/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
|
36
|
Schwede A, Manful T, Jha BA, Helbig C, Bercovich N, Stewart M, Clayton C. The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic Acids Res 2009; 37:5511-28. [PMID: 19596809 PMCID: PMC2760810 DOI: 10.1093/nar/gkp571] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Removal of the poly(A) tail is the first step in the degradation of many eukaryotic mRNAs. In metazoans and yeast, the Ccr4/Caf1/Not complex has the predominant deadenylase activity, while the Pan2/Pan3 complex may trim poly(A) tails to the correct size, or initiate deadenylation. In trypanosomes, turnover of several constitutively-expressed or long-lived mRNAs is not affected by depletion of the 5′–3′ exoribonuclease XRNA, but is almost completely inhibited by depletion of the deadenylase CAF1. In contrast, two highly unstable mRNAs, encoding EP procyclin and a phosphoglycerate kinase, PGKB, accumulate when XRNA levels are reduced. We here show that degradation of EP mRNA was partially inhibited after CAF1 depletion. RNAi-targeting trypanosome PAN2 had a mild effect on global deadenylation, and on degradation of a few mRNAs including EP. By amplifying and sequencing degradation intermediates, we demonstrated that a reduction in XRNA had no effect on degradation of a stable mRNA encoding a ribosomal protein, but caused accumulation of EP mRNA fragments that had lost substantial portions of the 5′ and 3′ ends. The results support a model in which trypanosome mRNAs can be degraded by at least two different, partially independent, cytoplasmic degradation pathways attacking both ends of the mRNA.
Collapse
Affiliation(s)
- Angela Schwede
- Zentrum für Molekulare Biologie (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Lorentzen E, Basquin J, Conti E. Structural organization of the RNA-degrading exosome. Curr Opin Struct Biol 2008; 18:709-13. [PMID: 18955140 DOI: 10.1016/j.sbi.2008.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/22/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
The RNA exosome participates in the degradation and processing of a wide range of RNA molecules. Recent advances in understanding how the exosome is organized and functions largely stem from structural studies. Crystal structures of archaeal exosomes bound to RNA and of the corresponding nine-subunit human exosome core show that the archaeal and eukaryotic complexes have a similar molecular architecture, but have a diverged catalytic mechanism. The crystal structures of two hydrolytic RNases that associate with the exosome provide the framework for their catalytic activity. Negative-stain EM reconstructions give us a first glimpse of how they associate with the core complex. Together, these structural studies have implications for the mechanism of RNA recruitment and degradation by the exosome complexes.
Collapse
Affiliation(s)
- Esben Lorentzen
- Institute of Structural Molecular Biology, Birkbeck College London, Malet St, WC1E 7HX London, UK
| | | | | |
Collapse
|
38
|
Genome-based analysis of Chlamydomonas reinhardtii exoribonucleases and poly(A) polymerases predicts unexpected organellar and exosomal features. Genetics 2008; 179:125-36. [PMID: 18493045 DOI: 10.1534/genetics.107.086223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzymes from several gene families modify RNA molecules at their extremities. These reactions occur in several cellular compartments and affect every class of RNA. To assess the diversity of a subclass of these enzymes, we searched Chlamydomonas for open reading frames (ORFs) potentially encoding exoribonucleases, poly(A) polymerases, and proteins known to associate with and/or regulate them. The ORFs were further analyzed for indications of protein localization to the nucleus, cytosol, mitochondrion, and/or chloroplast. By comparing predicted proteins with homologs in Arabidopsis and yeast, we derived several tentative conclusions regarding RNA 5'- and 3'-end metabolism in Chlamydomonas. First, the alga possesses only one each of the following likely organellar enzymes: polynucleotide phosphorylase, hydrolytic exoribonuclease, poly(A) polymerase, and CCA transferase, a surprisingly small complement. Second, although the core of the nuclear/cytosolic exosome decay complex is well conserved, neither nucleus-specific activators nor the cytosolic exosome activators are present. Finally, our discovery of nine noncanonical poly(A) polymerases, a divergent family retaining the catalytic domains of conventional poly(A) polymerases, leads to the hypothesis that polyadenylation may play an especially important regulatory role throughout the Chlamydomonas cell, stabilizing some transcripts and targeting degradation machinery to others.
Collapse
|
39
|
Schmid M, Jensen TH. The exosome: a multipurpose RNA-decay machine. Trends Biochem Sci 2008; 33:501-10. [PMID: 18786828 DOI: 10.1016/j.tibs.2008.07.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/03/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
Abstract
The diversity of RNAs in the cell continues to amaze. In addition to the 'classic' species of mRNA, tRNA, rRNA, snRNA and snoRNA, it is now clear that the majority of genomic information is transcribed into RNA molecules. The resulting complexity of the transcriptome poses a serious challenge to cells because they must manage numerous RNA-processing reactions, yet, at the same time, eradicate surplus and aberrant material without destroying functional RNA. The 3'-->5' exonucleolytic RNA exosome is emerging as a major facilitator of such events. Recent structural and functional data regarding this fascinating complex and its many co-factors illuminate its diverse biochemical properties and indicate mechanisms by which RNAs are targeted for either processing or degradation.
Collapse
Affiliation(s)
- Manfred Schmid
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, University of Aarhus, C.F. Møllers Alle, Bldg. 130, 8000 Aarhus C., Denmark
| | | |
Collapse
|