1
|
Chen S, Tran TTT, Yeh AYC, Yang H, Chen J, Yang Y, Wang X. The Globodera rostochiensis Gr29D09 Effector with a Role in Defense Suppression Targets the Potato Hexokinase 1 Protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:25-35. [PMID: 37717227 DOI: 10.1094/mpmi-07-23-0095-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The potato cyst nematode (Globodera rostochiensis) is an obligate root pathogen of potatoes. G. rostochiensis encodes several highly expanded effector gene families, including the Gr4D06 family; however, little is known about the function of this effector family. We cloned four 29D09 genes from G. rostochiensis (named Gr29D09v1/v2/v3/v4) that share high sequence similarity and are homologous to the Hg29D09 and Hg4D06 effector genes from the soybean cyst nematode (Heterodera glycines). Phylogenetic analysis revealed that Gr29D09 genes belong to a subgroup of the Gr4D06 family. We showed that Gr29D09 genes are expressed exclusively within the nematode's dorsal gland cell and are dramatically upregulated in parasitic stages, indicating involvement of Gr29D09 effectors in nematode parasitism. Transgenic potato lines overexpressing Gr29D09 variants showed increased susceptibility to G. rostochiensis. Transient expression assays in Nicotiana benthamiana demonstrated that Gr29D09v3 could suppress reactive oxygen species (ROS) production and defense gene expression induced by flg22 and cell death mediated by immune receptors. These results suggest a critical role of Gr29D09 effectors in defense suppression. The use of affinity purification coupled with nanoliquid chromatography-tandem mass spectrometry identified potato hexokinase 1 (StHXK1) as a candidate target of Gr29D09. The Gr29D09-StHXK1 interaction was further confirmed using in planta protein-protein interaction assays. Plant HXKs have been implicated in defense regulation against pathogen infection. Interestingly, we found that StHXK1 could enhance flg22-induced ROS production, consistent with a positive role of plant HXKs in defense. Altogether, our results suggest that targeting StHXK1 by Gr29D09 effectors may impair the positive function of StHXK1 in plant immunity, thereby aiding nematode parasitism. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Shiyan Chen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Tien Thi Thuy Tran
- School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Athena Yi-Chun Yeh
- School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Huijun Yang
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture, Agricultural Research Service, Ithaca, NY, U.S.A
| | - Jiansong Chen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture, Agricultural Research Service, Ithaca, NY, U.S.A
| | - Xiaohong Wang
- School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture, Agricultural Research Service, Ithaca, NY, U.S.A
| |
Collapse
|
2
|
Ste-Croix DT, Bélanger RR, Mimee B. Single Nematode Transcriptomic Analysis, Using Long-Read Technology, Reveals Two Novel Virulence Gene Candidates in the Soybean Cyst Nematode, Heterodera glycines. Int J Mol Sci 2023; 24:ijms24119440. [PMID: 37298400 DOI: 10.3390/ijms24119440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The soybean cyst nematode (Heterodera glycines, SCN), is the most damaging disease of soybean in North America. While management of this pest using resistant soybean is generally still effective, prolonged exposure to cultivars derived from the same source of resistance (PI 88788) has led to the emergence of virulence. Currently, the underlying mechanisms responsible for resistance breakdown remain unknown. In this study, we combined a single nematode transcriptomic profiling approach with long-read sequencing to reannotate the SCN genome. This resulted in the annotation of 1932 novel transcripts and 281 novel gene features. Using a transcript-level quantification approach, we identified eight novel effector candidates overexpressed in PI 88788 virulent nematodes in the late infection stage. Among these were the novel gene Hg-CPZ-1 and a pioneer effector transcript generated through the alternative splicing of the non-effector gene Hetgly21698. While our results demonstrate that alternative splicing in effectors does occur, we found limited evidence of direct involvement in the breakdown of resistance. However, our analysis highlighted a distinct pattern of effector upregulation in response to PI 88788 resistance indicative of a possible adaptation process by SCN to host resistance.
Collapse
Affiliation(s)
- Dave T Ste-Croix
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Richard R Bélanger
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
| | - Benjamin Mimee
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
3
|
Chen J, Chen S, Xu C, Yang H, Achom M, Wang X. A key virulence effector from cyst nematodes targets host autophagy to promote nematode parasitism. THE NEW PHYTOLOGIST 2023; 237:1374-1390. [PMID: 36349395 DOI: 10.1111/nph.18609] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Autophagy, an intracellular degradation system conserved in eukaryotes, has been increasingly recognized as a key battlefield in plant-pathogen interactions. However, the role of plant autophagy in nematode parasitism is mostly unknown. We report here the identification of a novel and conserved effector, Nematode Manipulator of Autophagy System 1 (NMAS1), from plant-parasitic cyst nematodes (Heterodera and Globodera spp.). We used molecular and genetic analyses to demonstrate that NMAS1 is required for nematode parasitism. The NMAS1 effectors are potent suppressors of reactive oxygen species (ROS) induced by flg22 and cell death mediated by immune receptors in Nicotiana benthamiana, suggesting a key role of NMAS1 effectors in nematode virulence. Arabidopsis atg mutants defective in autophagy showed reduced susceptibility to nematode infection. The NMAS1 effectors contain predicted AuTophaGy-related protein 8 (ATG8)-interacting motif (AIM) sequences. In planta protein-protein interaction assays further demonstrated that NMAS1 effectors specifically interact with host plant ATG8 proteins. Interestingly, mutation in AIM2 of GrNMAS1 from the potato cyst nematode Globodera rostochiensis abolishes its interaction with potato StATG8 proteins and its activity in ROS suppression. Collectively, our results reveal for the first time that cyst nematodes employ a conserved AIM-containing virulence effector capable of targeting a key component of host autophagy to promote disease.
Collapse
Affiliation(s)
- Jiansong Chen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shiyan Chen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Chunling Xu
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Huijun Yang
- Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service, Ithaca, NY, 14853, USA
| | - Mingkee Achom
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaohong Wang
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Chen S, Mitchum MG, Wang X. Characterization and response of two potato receptor-like kinases to cyst nematode infection. PLANT SIGNALING & BEHAVIOR 2022; 17:2148372. [PMID: 36416182 PMCID: PMC9704377 DOI: 10.1080/15592324.2022.2148372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Plant-parasitic cyst nematodes (Heterodera and Globodera spp.) secrete CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) effector proteins, which act as ligand mimics of plant CLE peptides to promote successful nematode infection. Previous studies of the Arabidopsis-beet cyst nematode (BCN; H. schachtii) pathosystem showed that Arabidopsis CLE receptors including CLAVATA1 (CLV1), CLV2, and RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) are required for BCN CLE signaling. Studies further revealed that nematode CLE signaling through GmCLV2 and StCLV2, an Arabidopsis CLV2 orthologue from soybean (Glycines max) and potato (Solanum tuberosum), respectively, is required for the soybean cyst nematode (SCN; H. glycines) and the potato cyst nematode (PCN; G. rostochiensis) to induce disease in their respective host plant. In this study, we identified and characterized two additional potato receptors, StRPK2 and StCLV1, homologues of Arabidopsis RPK2 and CLV1, for a role in PCN parasitism. Using promoter-reporter lines we showed that both StRPK2 and StCLV1 are expressed in the potato root but vary in their spatial expression patterns. Interestingly, StRPK2 but not StCLV1 was found to be expressed and upregulated at PCN infection sites. Nematode infection assays on StRPK2-knockdown lines revealed a decrease in nematode infection. Collectively, our results suggest that parallel CLE signaling pathways involving StCLV2 and StRPK2 are important for PCN parasitism and that manipulation of nematode CLE signaling may represent a viable means to engineer nematode resistance in crop plants including potato.
Collapse
Affiliation(s)
- Shiyan Chen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA30602, USA
| | - Xiaohong Wang
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service, Ithaca, NY, USA
| |
Collapse
|
5
|
Chen S, Cui L, Wang X. A plant cell wall-associated kinase encoding gene is dramatically downregulated during nematode infection of potato. PLANT SIGNALING & BEHAVIOR 2022; 17:2004026. [PMID: 34965851 PMCID: PMC8928814 DOI: 10.1080/15592324.2021.2004026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plant cell wall associated kinases (WAKs) and WAK-like kinases (WAKLs) have been increasingly recognized as important regulators of plant immunity against various plant pathogens. However, the role of the WAK/WAKL family in plant-nematode interactions remains to be determined. Here, we analyzed a WAK-encoding gene (Soltu.DM.02G029720.1) from potato (Solanum tuberosum). The Soltu.DM.02G029720.1 encoded protein contains domains characteristic of WAK/WAKL proteins and shows the highest similarity to SlWAKL2 from tomato (S. lycopersicum). We thus named the gene as StWAKL2. Phylogenetic analysis of a wide range of plant WAKs/WAKLs further revealed close similarity of StWAKL2 to three WAK/WAKL proteins demonstrated to play a role in disease resistance. To gain insights into the potential regulation and function of StWAKL2, transgenic potato lines containing the StWAKL2 promoter fused to the β-glucuronidase (GUS) reporter gene were generated and used to investigate StWAKL2 expression during plant development and upon nematode infection. Histochemical analyses revealed that StWAKL2 has specific expression patterns in potato leaf and root tissues. During nematode infection, GUS activity was mostly undetected at nematode infection sites over the course of nematode parasitism, although strong GUS activity was observed in root tissues adjacent to the infection region. Furthermore, mining of the transcriptomic data derived from cyst nematode infection of Arabidopsis roots identified a few WAK/WAKL genes, including a StWAKL2 homologue, found to be significantly down-regulated in nematode-induced feeding sites. These results indicated that specific suppression of WAK/WAKL genes in nematode-induced feeding sites might be crucial for cyst nematodes to achieve successful infection of host plants. Further studies are needed to uncover the role of WAK/WAKL genes in plant defenses against nematode infection.
Collapse
Affiliation(s)
- Shiyan Chen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lili Cui
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Xiaohong Wang
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service, Ithaca, NY, USA
- CONTACT Xiaohong Wang School of Integrative Plant Science, Cornell University, USDA-ARS, Ithaca, NY14853, USA
| |
Collapse
|
6
|
de Obeso Fernández Del Valle A, Gómez-Montalvo J, Maciver SK. Acanthamoeba castellanii exhibits intron retention during encystment. Parasitol Res 2022; 121:2615-2622. [PMID: 35776211 DOI: 10.1007/s00436-022-07578-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Intron retention (IR) refers to the mechanism of alternative splicing in which an intron is not excised from the mature transcript. IR in the cosmopolitan free-living amoeba Acanthamoeba castellanii has not been studied. We performed an analysis of RNA sequencing data during encystment to identify genes that presented differentially retained introns during this process. We show that IR increases during cyst formation, indicating a potential mechanism of gene regulation that could help downregulate metabolism. We identify 69 introns from 67 genes that are differentially retained comparing the trophozoite stage and encystment after 24 and 48 h. These genes include several hypothetical proteins. We show different patterns of IR during encystment taking as examples a lipase, a peroxin-3 protein, an Fbox domain containing protein, a proteasome subunit, a polynucleotide adenylyltransferase, and a tetratricopeptide domain containing protein. A better understanding of IR in Acanthamoeba, and even other protists, could help elucidate changes in life cycle and combat disease such as Acanthamoeba keratitis in which the cyst is key for its persistence.
Collapse
Affiliation(s)
- Alvaro de Obeso Fernández Del Valle
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Mexico.
| | - Jesús Gómez-Montalvo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Mexico
| | - Sutherland K Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, Scotland, UK
| |
Collapse
|
7
|
Jian H, Sun H, Liu R, Zhang W, Shang L, Wang J, Khassanov V, Lyu D. Construction of drought stress regulation networks in potato based on SMRT and RNA sequencing data. BMC PLANT BIOLOGY 2022; 22:381. [PMID: 35909124 PMCID: PMC9341072 DOI: 10.1186/s12870-022-03758-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Potato (Solanum tuberosum) is the fourth most important food crop in the world and plays an important role in food security. Drought stress has a significantly negative impact on potato growth and production. There are several publications involved drought stress in potato, this research contributes to enrich the knowledge. RESULTS In this study, next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing technology were used to study the transcription profiles in potato in response to 20%PEG6000 simulates drought stress. The leaves of the variety "Désirée" from in vitro plantlets after drought stress at six time points from 0 to 48 hours were used to perform NGS and SMRT sequencing. According to the sequencing data, a total of 12,798 differentially expressed genes (DEGs) were identified in six time points. The real-time (RT)-PCR results are significantly correlated with the sequencing data, confirming the accuracy of the sequencing data. Gene ontology and KEGG analysis show that these DEGs participate in response to drought stress through galactose metabolism, fatty acid metabolism, plant-pathogen interaction, glutathione metabolism and other pathways. Through the analysis of alternative splicing of 66,888 transcripts, the functional pathways of these transcripts were enriched, and 51,098 transcripts were newly discovered from alternative splicing events and 47,994 transcripts were functionally annotated. Moreover, 3445 lncRNAs were predicted and enrichment analysis of corresponding target genes was also performed. Additionally, Alternative polyadenylation was analyzed by TADIS, and 26,153 poly (A) sites from 13,010 genes were detected in the Iso-Seq data. CONCLUSION Our research greatly enhanced potato drought-induced gene annotations and provides transcriptome-wide insights into the molecular basis of potato drought resistance.
Collapse
Affiliation(s)
- Hongju Jian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715 China
| | - Haonan Sun
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Rongrong Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Wenzhe Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Lina Shang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Jichun Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715 China
| | - Vadim Khassanov
- S. Seifullin Kazakh Agrotechnical University, Zhenis Avenue, 010011 Astana, Republic of Kazakhstan
| | - Dianqiu Lyu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715 China
| |
Collapse
|
8
|
Masonbrink RE, Maier TR, Hudson M, Severin A, Baum T. A chromosomal assembly of the soybean cyst nematode genome. Mol Ecol Resour 2021; 21:2407-2422. [PMID: 34036752 DOI: 10.1111/1755-0998.13432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 01/02/2023]
Abstract
The soybean cyst nematode (Heterodera glycines) is a sedentary plant parasite that exceeds billion USD annually in yield losses. This problem is exacerbated by H. glycines populations overcoming the limited sources of natural resistance in soybean and by the lack of effective and safe alternative treatments. Although there are genetic determinants that render soybeans resistant to nematode genotypes, resistant soybeans are increasingly ineffective because their multiyear usage has selected for virulent H. glycines populations. Successful H. glycines infection relies on the comprehensive re-engineering of soybean root cells into a syncytium, as well as the long-term suppression of host defences to ensure syncytial viability. At the forefront of these complex molecular interactions are effectors, the proteins secreted by H. glycines into host root tissues. The mechanisms that control genomic effector acquisition, diversification, and selection are important insights needed for the development of essential novel control strategies. As a foundation to obtain this understanding, we created a nine-scaffold, 158 Mb pseudomolecule assembly of the H. glycines genome using PacBio, Chicago, and Hi-C sequencing. A Mikado consensus gene prediction produced an annotation of 22,465 genes using short- and long-read expression data. To evaluate assembly and annotation quality, we cross-examined synteny among H. glycines assemblies, and compared BUSCO across related species. To describe the predicted proteins involved in H. glycines' secretory pathway, we contrasted expression between preparasitic and parasitic stages with functional gene information. Here, we present the results from our assembly and annotation of the H. glycines genome and contribute this resource to the scientific community.
Collapse
Affiliation(s)
- Rick E Masonbrink
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, USA
| | - Tom R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Matthew Hudson
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Andrew Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, USA
| | - Thomas Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| |
Collapse
|
9
|
Elashry AM, Habash SS, Vijayapalani P, Brocke-Ahmadinejad N, Blümel R, Seetharam A, Schoof H, Grundler FMW. Transcriptome and Parasitome Analysis of Beet Cyst Nematode Heterodera schachtii. Sci Rep 2020; 10:3315. [PMID: 32094373 PMCID: PMC7039985 DOI: 10.1038/s41598-020-60186-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 12/20/2019] [Indexed: 11/17/2022] Open
Abstract
Beet cyst nematodes depend on a set of secretory proteins (effectors) for the induction and maintenance of their syncytial feeding sites in plant roots. In order to understand the relationship between the beet cyst nematode H. schachtii and its host, identification of H. schachtii effectors is crucial and to this end, we sequenced a whole animal pre-infective J2-stage transcriptome in addition to pre- and post-infective J2 gland cell transcriptome using Next Generation Sequencing (NGS) and identified a subset of sequences representing putative effectors. Comparison between the transcriptome of H. schachtii and previously reported related cyst nematodes and root-knot nematodes revealed a subset of esophageal gland related sequences and putative effectors in common across the tested species. Structural and functional annotation of H. schachtii transcriptome led to the identification of nearly 200 putative effectors. Six putative effector expressions were quantified using qPCR and three of them were functionally analyzed using RNAi. Phenotyping of the RNAi nematodes indicated that all tested genes decrease the level of nematodes pathogenicity and/or the average female size, thereby regulating cyst nematode parasitism. These discoveries contribute to further understanding of the cyst nematode parasitism.
Collapse
Affiliation(s)
- Abdelnaser M Elashry
- INRES Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, Bonn, 53115, Germany. .,Strube research GmbH & Co. KG, Hauptstrasse 1, 38387, Söllingen, Germany.
| | - Samer S Habash
- INRES Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, Bonn, 53115, Germany
| | | | - Nahal Brocke-Ahmadinejad
- INRES Crop Bioinformatics, University of Bonn, Katzenburgweg 2, 53115, Bonn, Germany.,Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Roman Blümel
- INRES Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, Bonn, 53115, Germany.,Bayer Crop Science, Alfred-Nobel-Str. 50, 40789, Monheim, Germany
| | - Arun Seetharam
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA.,Genome Informatics Facility, Office of Biotechnology, 448 Bessey Hall, Iowa State University, Ames, USA
| | - Heiko Schoof
- INRES Crop Bioinformatics, University of Bonn, Katzenburgweg 2, 53115, Bonn, Germany
| | - Florian M W Grundler
- INRES Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, Bonn, 53115, Germany
| |
Collapse
|
10
|
Butler KJ, Chen S, Smith JM, Wang X, Bent AF. Soybean Resistance Locus Rhg1 Confers Resistance to Multiple Cyst Nematodes in Diverse Plant Species. PHYTOPATHOLOGY 2019; 109:2107-2115. [PMID: 31403912 DOI: 10.1094/phyto-07-19-0225-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cyst nematodes consistently threaten agricultural production, causing billions of dollars in losses globally. The Rhg1 (resistance to Heterodera glycines 1) locus of soybean (Glycine max) is the most popular resistance source used against soybean cyst nematodes (H. glycines). Rhg1 is a complex locus that has multiple repeats of an ≈30-kilobase segment carrying three genes that contribute to resistance. We investigated whether soybean Rhg1 could function in different plant families, conferring resistance to their respective cyst nematode parasites. Transgenic Arabidopsis thaliana and potato (Solanum tuberosum) plants expressing the three soybean Rhg1 genes were generated. The recipient Brassicaceae and Solanaceae plant species exhibited elevated resistance to H. schachtii and Globodera rostochiensis and to G. pallida, respectively. However, some negative consequences including reduced root growth and tuber biomass were observed upon Rhg1 expression in heterologous species. One of the genes at Rhg1 encodes a toxic version of an alpha-SNAP protein that has been demonstrated to interfere with vesicle trafficking. Using a transient expression assay for Nicotiana benthamiana, native Arabidopsis and potato alpha-SNAPs (soluble NSF [N-ethylamine sensitive factor] attachment protein) were found to compensate for the toxicity of soybean Rhg1 alpha-SNAP proteins. Hence, future manipulation of the balance between Rhg1 alpha-SNAP and the endogenous wild-type alpha-SNAPs (as well as the recently discovered soybean NSF-RAN07) may mitigate impacts of Rhg1 on plant productivity. The multispecies efficacy of soybean Rhg1 demonstrates that the encoded mechanisms can function across plant and cyst nematode species and offers a possible avenue for engineered resistance in diverse crop species.
Collapse
Affiliation(s)
- Katelyn J Butler
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biology, Anderson University, Anderson, IN 46012
| | - Shiyan Chen
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - John M Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Xiaohong Wang
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853
- Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
11
|
Dandurand LM, Zasada IA, Wang X, Mimee B, De Jong W, Novy R, Whitworth J, Kuhl JC. Current Status of Potato Cyst Nematodes in North America. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:117-133. [PMID: 31100997 DOI: 10.1146/annurev-phyto-082718-100254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potato cyst nematodes (PCNs) Globodera rostochiensis and Globodera pallida are internationally recognized quarantine pests. Although not widely distributed in either the United States or Canada, both are present and are regulated by the national plant protection organizations (NPPOs) of each country. G. rostochiensis was first discovered in New York in the 1940s, and G. pallida was first detected in a limited area of Idaho in 2006. In Canada, G. rostochiensis and G. pallida were first detected in Newfoundland in 1962 and 1977, respectively, and further detections of G. rostochiensis occurred in British Columbia and Québec, most recently in 2006. Adherence to a stringent NPPO-agreed-upon phytosanitary program has prevented the spread of PCNs to other potato-growing areas in both countries. The successful research and regulatory PCN programs in both countries rely on a network of state, federal, university, and private industry cooperatorspursuing a common goal of containment, management/eradication, and regulation. The regulatory and research efforts of these collaborative groups spanning from the 1940s to the present are highlighted in this review.
Collapse
Affiliation(s)
- Louise-Marie Dandurand
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho 83844, USA
| | - Inga A Zasada
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, Oregon 97330, USA;
| | - Xiaohong Wang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, New York 14853, USA
| | - Benjamin Mimee
- St-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, St-Jean-sur-Richelieu, Québec J3B 3E6, Canada
| | - Walter De Jong
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Richard Novy
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, Idaho 83210, USA
| | - Jonathan Whitworth
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, Idaho 83210, USA
| | - Joseph C Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, Idaho 83844, USA
| |
Collapse
|
12
|
Lu S, Edwards MC. Molecular Characterization and Functional Analysis of PR-1-Like Proteins Identified from the Wheat Head Blight Fungus Fusarium graminearum. PHYTOPATHOLOGY 2018; 108:510-520. [PMID: 29117786 DOI: 10.1094/phyto-08-17-0268-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The group 1 pathogenesis-related (PR-1) proteins originally identified from plants and their homologs are also found in other eukaryotic kingdoms. Studies on nonplant PR-1-like (PR-1L) proteins have been pursued widely in humans and animals but rarely in filamentous ascomycetes. Here, we report the characterization of four PR-1L proteins identified from the ascomycete fungus Fusarium graminearum, the primary cause of Fusarium head blight of wheat and barley (designated FgPR-1L). Molecular cloning revealed that the four FgPR-1L proteins are all encoded by small open reading frames (612 to 909 bp) that are often interrupted by introns, in contrast to plant PR-1 genes that lack introns. Sequence analysis indicated that all FgPR-1L proteins contain the PR-1-specific three-dimensional structure, and one of them features a C-terminal transmembrane (TM) domain that has not been reported for any stand-alone PR-1 proteins. Transcriptional analysis revealed that the four FgPR-1L genes are expressed in axenic cultures and in planta with different spatial or temporal expression patterns. Phylogenetic analysis indicated that fungal PR-1L proteins fall into three major groups, one of which harbors FgPR-1L-2-related TM-containing proteins from both phytopathogenic and human-pathogenic ascomycetes. Low-temperature sodium dodecyl sulfate polyacrylamide gel electrophoresis and proteolytic assays indicated that the recombinant FgPR-1L-4 protein exists as a monomer and is resistant to subtilisin of the serine protease family. Functional analysis confirmed that deletion of the FgPR-1L-4 gene from the fungal genome results in significantly reduced virulence on susceptible wheat. This study provides the first example that the F. graminearum-wheat interaction involves a pathogen-derived PR-1L protein that affects fungal virulence on the host.
Collapse
Affiliation(s)
- Shunwen Lu
- United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND 58102-2765
| | - Michael C Edwards
- United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND 58102-2765
| |
Collapse
|
13
|
Gardner M, Dhroso A, Johnson N, Davis EL, Baum TJ, Korkin D, Mitchum MG. Novel global effector mining from the transcriptome of early life stages of the soybean cyst nematode Heterodera glycines. Sci Rep 2018; 8:2505. [PMID: 29410430 PMCID: PMC5802810 DOI: 10.1038/s41598-018-20536-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/12/2018] [Indexed: 11/08/2022] Open
Abstract
Soybean cyst nematode (SCN) Heterodera glycines is an obligate parasite that relies on the secretion of effector proteins to manipulate host cellular processes that favor the formation of a feeding site within host roots to ensure its survival. The sequence complexity and co-evolutionary forces acting upon these effectors remain unknown. Here we generated a de novo transcriptome assembly representing the early life stages of SCN in both a compatible and an incompatible host interaction to facilitate global effector mining efforts in the absence of an available annotated SCN genome. We then employed a dual effector prediction strategy coupling a newly developed nematode effector prediction tool, N-Preffector, with a traditional secreted protein prediction pipeline to uncover a suite of novel effector candidates. Our analysis distinguished between effectors that co-evolve with the host genotype and those conserved by the pathogen to maintain a core function in parasitism and demonstrated that alternative splicing is one mechanism used to diversify the effector pool. In addition, we confirmed the presence of viral and microbial inhabitants with molecular sequence information. This transcriptome represents the most comprehensive whole-nematode sequence currently available for SCN and can be used as a tool for annotation of expected genome assemblies.
Collapse
Affiliation(s)
- Michael Gardner
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, USA
| | - Andi Dhroso
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA
| | - Nathan Johnson
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA
| | - Eric L Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, USA
| | - Dmitry Korkin
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA.
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, USA.
| |
Collapse
|
14
|
Kikuchi T, Eves-van den Akker S, Jones JT. Genome Evolution of Plant-Parasitic Nematodes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:333-354. [PMID: 28590877 DOI: 10.1146/annurev-phyto-080516-035434] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plant parasitism has evolved independently on at least four separate occasions in the phylum Nematoda. The application of next-generation sequencing (NGS) to plant-parasitic nematodes has allowed a wide range of genome- or transcriptome-level comparisons, and these have identified genome adaptations that enable parasitism of plants. Current genome data suggest that horizontal gene transfer, gene family expansions, evolution of new genes that mediate interactions with the host, and parasitism-specific gene regulation are important adaptations that allow nematodes to parasitize plants. Sequencing of a larger number of nematode genomes, including plant parasites that show different modes of parasitism or that have evolved in currently unsampled clades, and using free-living taxa as comparators would allow more detailed analysis and a better understanding of the organization of key genes within the genomes. This would facilitate a more complete understanding of the way in which parasitism has shaped the genomes of plant-parasitic nematodes.
Collapse
Affiliation(s)
- Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Sebastian Eves-van den Akker
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
- Department of Biological Chemistry, The John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - John T Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom
- School of Biology, University of St. Andrews, North Haugh, St. Andrews, KY16 9TZ, United Kingdom
| |
Collapse
|
15
|
Guo X, Wang J, Gardner M, Fukuda H, Kondo Y, Etchells JP, Wang X, Mitchum MG. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation. PLoS Pathog 2017; 13:e1006142. [PMID: 28158306 PMCID: PMC5319780 DOI: 10.1371/journal.ppat.1006142] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/21/2017] [Accepted: 12/19/2016] [Indexed: 11/27/2022] Open
Abstract
Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular procambium/cambium are regulated by CLE-receptor kinase-WOX signaling modules. Previous data showed that cyst nematode CLE-like effector proteins delivered into host cells through a stylet, act as ligand mimics of plant A-type CLE peptides and are pivotal for successful parasitism. Here we report the identification of a new class of CLE peptides from cyst nematodes with functional similarity to the B-type CLE peptide TDIF (tracheary element differentiation inhibitory factor) encoded by the CLE41 and CLE44 genes in Arabidopsis. We further demonstrate that the TDIF-TDR (TDIF receptor)-WOX4 pathway, which promotes procambial meristem cell proliferation, is involved in beet cyst nematode Heterodera schachtii parasitism. We observed activation of the TDIF pathway in developing feeding sites, reduced nematode infection in cle41 and tdr-1 wox4-1 mutants, and compromised syncytium size in cle41, tdr-1, wox4-1 and tdr-1 wox4-1 mutants. By qRT-PCR and promoter:GUS analyses, we showed that the expression of WOX4 is decreased in a clv1-101 clv2-101 rpk2-5 mutant, suggesting that WOX4 is a potential downstream target of nematode CLEs. Exogenous treatment with both nematode A-type and B-type CLE peptides induced massive cell proliferation in wild type roots, suggesting that the two types of CLEs may regulate cell proliferation during feeding site formation. These findings highlight an important role of the procambial cell proliferation pathway in cyst nematode feeding site formation. Cyst nematodes are one of the most economically important groups of plant-parasitic nematodes worldwide. These parasites not only damage root systems during infection, but their obligate sedentary endoparasitic lifestyle requires them to induce the formation of a unique feeding cell within host roots where they drain life-sustaining nutrients that ultimately lead to plant disease symptoms such as stunting, chlorosis, wilting, and yield loss. The formation of a feeding cell by the nematode requires manipulation of host developmental pathways. For this, the nematode secretes peptides into host cells that function as mimics of plant peptides to commandeer host developmental programs for their own benefit. Currently, the downstream signaling pathways activated to initiate developmental cascades that are required for cellular programming into a feeding cell are not known. Here, we discovered a new class of plant peptide mimics secreted by cyst nematodes and identified the transcription factor WOX4 as a downstream target of nematode peptide signaling to reveal for the first time an important role for the vascular stem cell pathway in feeding cell formation. Understanding the molecular basis of plant-nematode interactions can lead to the development of novel strategies to control these major agricultural pests.
Collapse
Affiliation(s)
- Xiaoli Guo
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianying Wang
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Michael Gardner
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - J. Peter Etchells
- Department of Biological Sciences, Durham University, Durham, United Kingdom
| | - Xiaohong Wang
- School of Integrative Plant Science, Cornell University and Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Ithaca, New York, United States of America
| | - Melissa Goellner Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
16
|
Molecular cloning and characterization of two novel genes from hexaploid wheat that encode double PR-1 domains coupled with a receptor-like protein kinase. Mol Genet Genomics 2017; 292:435-452. [DOI: 10.1007/s00438-017-1287-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/03/2017] [Indexed: 11/26/2022]
|
17
|
Betz R, Walter S, Requena N. Alternative splicing - an elegant way to diversify the function of repeat-containing effector proteins? THE NEW PHYTOLOGIST 2016; 212:306-309. [PMID: 27641961 DOI: 10.1111/nph.14157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Ruben Betz
- Molecular Phytopathology Department, Botanical Institute, Karlsruhe Institute of Technology, Hertzstrasse 16, D-76187, Karlsruhe, Germany
| | - Stefanie Walter
- Molecular Phytopathology Department, Botanical Institute, Karlsruhe Institute of Technology, Hertzstrasse 16, D-76187, Karlsruhe, Germany
| | - Natalia Requena
- Molecular Phytopathology Department, Botanical Institute, Karlsruhe Institute of Technology, Hertzstrasse 16, D-76187, Karlsruhe, Germany.
| |
Collapse
|
18
|
Toruño TY, Stergiopoulos I, Coaker G. Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:419-41. [PMID: 27359369 PMCID: PMC5283857 DOI: 10.1146/annurev-phyto-080615-100204] [Citation(s) in RCA: 411] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants possess large arsenals of immune receptors capable of recognizing all pathogen classes. To cause disease, pathogenic organisms must be able to overcome physical barriers, suppress or evade immune perception, and derive nutrients from host tissues. Consequently, to facilitate some of these processes, pathogens secrete effector proteins that promote colonization. This review covers recent advances in the field of effector biology, focusing on conserved cellular processes targeted by effectors from diverse pathogens. The ability of effectors to facilitate pathogen entry into the host interior, suppress plant immune perception, and alter host physiology for pathogen benefit is discussed. Pathogens also deploy effectors in a spatial and temporal manner, depending on infection stage. Recent advances have also enhanced our understanding of effectors acting in specific plant organs and tissues. Effectors are excellent cellular probes that facilitate insight into biological processes as well as key points of vulnerability in plant immune signaling networks.
Collapse
Affiliation(s)
- Tania Y Toruño
- Department of Plant Pathology, University of California, Davis, California; , ,
| | | | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, California; , ,
| |
Collapse
|
19
|
Fosu-Nyarko J, Nicol P, Naz F, Gill R, Jones MGK. Analysis of the Transcriptome of the Infective Stage of the Beet Cyst Nematode, H. schachtii. PLoS One 2016; 11:e0147511. [PMID: 26824923 PMCID: PMC4733053 DOI: 10.1371/journal.pone.0147511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/05/2016] [Indexed: 01/08/2023] Open
Abstract
The beet cyst nematode, Heterodera schachtii, is a major root pest that significantly impacts the yield of sugar beet, brassicas and related species. There has been limited molecular characterisation of this important plant pathogen: to identify target genes for its control the transcriptome of the pre-parasitic J2 stage of H. schachtii was sequenced using Roche GS FLX. Ninety seven percent of reads (i.e., 387,668) with an average PHRED score > 22 were assembled with CAP3 and CLC Genomics Workbench into 37,345 and 47,263 contigs, respectively. The transcripts were annotated by comparing with gene and genomic sequences of other nematodes and annotated proteins on public databases. The annotated transcripts were much more similar to sequences of Heterodera glycines than to those of Globodera pallida and root knot nematodes (Meloidogyne spp.). Analysis of these transcripts showed that a subset of 2,918 transcripts was common to free-living and plant parasitic nematodes suggesting that this subset is involved in general nematode metabolism and development. A set of 148 contigs and 183 singletons encoding putative homologues of effectors previously characterised for plant parasitic nematodes were also identified: these are known to be important for parasitism of host plants during migration through tissues or feeding from cells or are thought to be involved in evasion or modulation of host defences. In addition, the presence of sequences from a nematode virus is suggested. The sequencing and annotation of this transcriptome significantly adds to the genetic data available for H. schachtii, and identifies genes primed to undertake required roles in the critical pre-parasitic and early post-parasitic J2 stages. These data provide new information for identifying potential gene targets for future protection of susceptible crops against H. schachtii.
Collapse
Affiliation(s)
- John Fosu-Nyarko
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
- NemGenix Pty Ltd, Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Australia
- * E-mail: ; (JFN); (MGKJ)
| | - Paul Nicol
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Fareeha Naz
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Reetinder Gill
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Michael G. K. Jones
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
- * E-mail: ; (JFN); (MGKJ)
| |
Collapse
|
20
|
Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses. PLoS One 2015; 10:e0115042. [PMID: 25606855 PMCID: PMC4301866 DOI: 10.1371/journal.pone.0115042] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/18/2014] [Indexed: 12/01/2022] Open
Abstract
The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.
Collapse
|
21
|
Chen S, Lang P, Chronis D, Zhang S, De Jong WS, Mitchum MG, Wang X. In planta processing and glycosylation of a nematode CLAVATA3/ENDOSPERM SURROUNDING REGION-like effector and its interaction with a host CLAVATA2-like receptor to promote parasitism. PLANT PHYSIOLOGY 2015; 167:262-72. [PMID: 25416475 PMCID: PMC4281011 DOI: 10.1104/pp.114.251637] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have been identified in several cyst nematodes, including the potato cyst nematode (PCN); however, the mechanistic details of this cross-kingdom mimicry are poorly understood. Plant CLEs are posttranslationally modified and proteolytically processed to function as bioactive ligands critical to various aspects of plant development. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry analysis, we show that the in planta mature form of proGrCLE1, a multidomain CLE effector secreted by PCN during infection, is a 12-amino acid arabinosylated glycopeptide (named GrCLE1-1Hyp4,7g) with striking structural similarity to mature plant CLE peptides. This glycopeptide is more resistant to hydrolytic degradation and binds with higher affinity to a CLAVATA2-like receptor (StCLV2) from potato (Solanum tuberosum) than its nonglycosylated forms. We further show that StCLV2 is highly up-regulated at nematode infection sites and that transgenic potatoes with reduced StCLV2 expression are less susceptible to PCN infection, indicating that interference of the CLV2-mediated signaling pathway confers nematode resistance in crop plants. These results strongly suggest that phytonematodes have evolved to utilize host cellular posttranslational modification and processing machinery for the activation of CLE effectors following secretion into plant cells and highlight the significance of arabinosylation in regulating nematode CLE effector activity. Our finding also provides evidence that multidomain CLEs are modified and processed similarly to single-domain CLEs, adding new insight into CLE maturation in plants.
Collapse
Affiliation(s)
- Shiyan Chen
- Department of Plant Pathology and Plant-Microbe Biology (S.C., P.L., X.W.), Proteomics and Mass Spectrometry Facility, Institute of Biotechnology and Life Science Technologies (S.Z.), and Department of Plant Breeding and Genetics (W.S.D.J.), Cornell University, Ithaca, New York 14853;Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Ithaca, New York 14853 (D.C., X.W.); andDivision of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (M.G.M.)
| | - Ping Lang
- Department of Plant Pathology and Plant-Microbe Biology (S.C., P.L., X.W.), Proteomics and Mass Spectrometry Facility, Institute of Biotechnology and Life Science Technologies (S.Z.), and Department of Plant Breeding and Genetics (W.S.D.J.), Cornell University, Ithaca, New York 14853;Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Ithaca, New York 14853 (D.C., X.W.); andDivision of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (M.G.M.)
| | - Demosthenis Chronis
- Department of Plant Pathology and Plant-Microbe Biology (S.C., P.L., X.W.), Proteomics and Mass Spectrometry Facility, Institute of Biotechnology and Life Science Technologies (S.Z.), and Department of Plant Breeding and Genetics (W.S.D.J.), Cornell University, Ithaca, New York 14853;Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Ithaca, New York 14853 (D.C., X.W.); andDivision of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (M.G.M.)
| | - Sheng Zhang
- Department of Plant Pathology and Plant-Microbe Biology (S.C., P.L., X.W.), Proteomics and Mass Spectrometry Facility, Institute of Biotechnology and Life Science Technologies (S.Z.), and Department of Plant Breeding and Genetics (W.S.D.J.), Cornell University, Ithaca, New York 14853;Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Ithaca, New York 14853 (D.C., X.W.); andDivision of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (M.G.M.)
| | - Walter S De Jong
- Department of Plant Pathology and Plant-Microbe Biology (S.C., P.L., X.W.), Proteomics and Mass Spectrometry Facility, Institute of Biotechnology and Life Science Technologies (S.Z.), and Department of Plant Breeding and Genetics (W.S.D.J.), Cornell University, Ithaca, New York 14853;Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Ithaca, New York 14853 (D.C., X.W.); andDivision of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (M.G.M.)
| | - Melissa G Mitchum
- Department of Plant Pathology and Plant-Microbe Biology (S.C., P.L., X.W.), Proteomics and Mass Spectrometry Facility, Institute of Biotechnology and Life Science Technologies (S.Z.), and Department of Plant Breeding and Genetics (W.S.D.J.), Cornell University, Ithaca, New York 14853;Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Ithaca, New York 14853 (D.C., X.W.); andDivision of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (M.G.M.)
| | - Xiaohong Wang
- Department of Plant Pathology and Plant-Microbe Biology (S.C., P.L., X.W.), Proteomics and Mass Spectrometry Facility, Institute of Biotechnology and Life Science Technologies (S.Z.), and Department of Plant Breeding and Genetics (W.S.D.J.), Cornell University, Ithaca, New York 14853;Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Ithaca, New York 14853 (D.C., X.W.); andDivision of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211 (M.G.M.)
| |
Collapse
|
22
|
Genomic characterisation of the effector complement of the potato cyst nematode Globodera pallida. BMC Genomics 2014; 15:923. [PMID: 25342461 PMCID: PMC4213498 DOI: 10.1186/1471-2164-15-923] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/13/2014] [Indexed: 01/07/2023] Open
Abstract
Background The potato cyst nematode Globodera pallida has biotrophic interactions with its host. The nematode induces a feeding structure – the syncytium – which it keeps alive for the duration of the life cycle and on which it depends for all nutrients required to develop to the adult stage. Interactions of G. pallida with the host are mediated by effectors, which are produced in two sets of gland cells. These effectors suppress host defences, facilitate migration and induce the formation of the syncytium. Results The recent completion of the G. pallida genome sequence has allowed us to identify the effector complement from this species. We identify 128 orthologues of effectors from other nematodes as well as 117 novel effector candidates. We have used in situ hybridisation to confirm gland cell expression of a subset of these effectors, demonstrating the validity of our effector identification approach. We have examined the expression profiles of all effector candidates using RNAseq; this analysis shows that the majority of effectors fall into one of three clusters of sequences showing conserved expression characteristics (invasive stage nematode only, parasitic stage only or invasive stage and adult male only). We demonstrate that further diversity in the effector pool is generated by alternative splicing. In addition, we show that effectors target a diverse range of structures in plant cells, including the peroxisome. This is the first identification of effectors from any plant pathogen that target this structure. Conclusion This is the first genome scale search for effectors, combined to a life-cycle expression analysis, for any plant-parasitic nematode. We show that, like other phylogenetically unrelated plant pathogens, plant parasitic nematodes deploy hundreds of effectors in order to parasitise plants, with different effectors required for different phases of the infection process. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-923) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Abubucker S, McNulty SN, Rosa BA, Mitreva M. Identification and characterization of alternative splicing in parasitic nematode transcriptomes. Parasit Vectors 2014; 7:151. [PMID: 24690220 PMCID: PMC3997825 DOI: 10.1186/1756-3305-7-151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/14/2014] [Indexed: 12/05/2022] Open
Abstract
Background Alternative splicing (AS) of mRNA is a vital mechanism for enhancing genomic complexity in eukaryotes. Spliced isoforms of the same gene can have diverse molecular and biological functions and are often differentially expressed across various tissues, times, and conditions. Thus, AS has important implications in the study of parasitic nematodes with complex life cycles. Transcriptomic datasets are available from many species, but data must be revisited with splice-aware assembly protocols to facilitate the study of AS in helminthes. Methods We sequenced cDNA from the model worm Caenorhabditis elegans using 454/Roche technology for use as an experimental dataset. Reads were assembled with Newbler software, invoking the cDNA option. Several combinations of parameters were tested and assembled transcripts were verified by comparison with previously reported C. elegans genes and transcript isoforms and with Illumina RNAseq data. Results Thoughtful adjustment of program parameters increased the percentage of assembled transcripts that matched known C. elegans sequences, decreased mis-assembly rates (i.e., cis- and trans-chimeras), and improved the coverage of the geneset. The optimized protocol was used to update de novo transcriptome assemblies from nine parasitic nematode species, including important pathogens of humans and domestic animals. Our assemblies indicated AS rates in the range of 20-30%, typically with 2-3 transcripts per AS locus, depending on the species. Transcript isoforms from the nine species were translated and searched for similarity to known proteins and functional domains. Some 21 InterPro domains, including several involved in nucleotide and chromatin binding, were statistically correlated with AS genetic loci. In most cases, the Roche/454 data explored in this study are the only sequences available from the species in question; however, the recently published genome of the human hookworm Necator americanus provided an additional opportunity to validate our results. Conclusions Our optimized assembly parameters facilitated the first survey of AS among parasitic nematodes. The nine transcriptome assemblies, their protein translations, and basic annotations are available from Nematode.net as a resource for the research community. These should be useful for studies of specific genes and gene families of interest as well as for curating draft genome assemblies as they become available.
Collapse
Affiliation(s)
| | | | | | - Makedonka Mitreva
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St, Louis, MO 63108, USA.
| |
Collapse
|
24
|
Chronis D, Chen S, Lang P, Tran T, Thurston D, Wang X. In vitro Nematode Infection on Potato Plant. Bio Protoc 2014. [DOI: 10.21769/bioprotoc.1016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
25
|
Mitchum MG, Hussey RS, Baum TJ, Wang X, Elling AA, Wubben M, Davis EL. Nematode effector proteins: an emerging paradigm of parasitism. THE NEW PHYTOLOGIST 2013; 199:879-894. [PMID: 23691972 DOI: 10.1111/nph.12323] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/05/2013] [Indexed: 05/18/2023]
Abstract
Phytonematodes use a stylet and secreted effectors to modify host cells and ingest nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode effectors, with a particular focus on proteinaceous stylet-secreted effectors of sedentary endoparasitic phytonematodes, for which a wealth of information has surfaced in the past 10 yr. We provide an update on the effector repertoires of several of the most economically important genera of phytonematodes and discuss current approaches to dissecting their function. Lastly, we highlight the latest breakthroughs in effector discovery that promise to shed new light on effector diversity and function across the phylum Nematoda.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Richard S Hussey
- Department of Plant Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Xiaohong Wang
- USDA-ARS, Robert W. Holley Center for Agriculture and Health and Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Axel A Elling
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Martin Wubben
- USDA-ARS, Crop Science Research Laboratory, Genetics and Precision Agriculture Research Unit and Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Eric L Davis
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
26
|
Chronis D, Chen S, Lu S, Hewezi T, Carpenter SCD, Loria R, Baum TJ, Wang X. A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:185-96. [PMID: 23346875 DOI: 10.1111/tpj.12125] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/08/2013] [Accepted: 01/17/2013] [Indexed: 05/19/2023]
Abstract
Nematode effector proteins originating from esophageal gland cells play central roles in suppressing plant defenses and in formation of the plant feeding cells that are required for growth and development of cyst nematodes. A gene (GrUBCEP12) encoding a unique ubiquitin carboxyl extension protein (UBCEP) that consists of a signal peptide for secretion, a mono-ubiquitin domain, and a 12 amino acid carboxyl extension protein (CEP12) domain was cloned from the potato cyst nematode Globodera rostochiensis. This GrUBCEP12 gene was expressed exclusively within the nematode's dorsal esophageal gland cell, and was up-regulated in the parasitic second-stage juvenile, correlating with the time when feeding cell formation is initiated. We showed that specific GrUBCEP12 knockdown via RNA interference reduced nematode parasitic success, and that over-expression of the secreted Gr(Δ) (SP) UBCEP12 protein in potato resulted in increased nematode susceptibility, providing direct evidence that this secreted effector is involved in plant parasitism. Using transient expression assays in Nicotiana benthamiana, we found that Gr(Δ) (SP) UBCEP12 is processed into free ubiquitin and a CEP12 peptide (GrCEP12) in planta, and that GrCEP12 suppresses resistance gene-mediated cell death. A target search showed that expression of RPN2a, a gene encoding a subunit of the 26S proteasome, was dramatically suppressed in Gr(Δ) (SP) UBCEP12 but not GrCEP12 over-expression plants when compared with control plants. Together, these results suggest that, when delivered into host plant cells, Gr(Δ) (SP) UBCEP12 becomes two functional units, one acting to suppress plant immunity and the other potentially affecting the host 26S proteasome, to promote feeding cell formation.
Collapse
Affiliation(s)
- Demosthenis Chronis
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture, Agricultural Research Service, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lu S, Faris JD, Sherwood R, Edwards MC. Dimerization and protease resistance: new insight into the function of PR-1. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:105-10. [PMID: 22921679 DOI: 10.1016/j.jplph.2012.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/04/2012] [Accepted: 08/04/2012] [Indexed: 05/26/2023]
Abstract
The group 1 pathogenesis-related (PR-1) proteins have long been considered hallmarks of hypersensitive response/defense pathways in plants, but their biochemical functions are still obscure despite resolution of the NMR/X-ray structures of several PR-1-like proteins, including P14a (the prototype PR-1). We report here the characterization of two basic PR-1 proteins (PR-1-1 and PR-1-5) recently identified from hexaploid wheat (Triticum aestivum). Both proteins were expressed in Pichia pastoris as a single major species of ∼15 kDa. Sequence identity of the expressed PR-1 proteins was verified by MALDI-TOF/TOF analysis. Accumulation of the native PR-1-5 protein in pathogen-challenged wheat was confirmed by protein gel blot analysis. Low-temperature SDS-PAGE and yeast two-hybrid assays revealed that PR-1-1 exists primarily as a monomer whereas PR-1-5 forms homodimers. Both PR-1 proteins are resistant to proteases compared to bovine serum albumin, but PR-1-1 shows resistance mainly to subtilisin and protease K (serine proteases) whereas PR-1-5 shows resistance to subtilisin, protease K and papain (a cysteine protease). Site-specific mutations at the five putative active sites in the PR-1 domain all affected dimerization, with the mutations at Glu-72 and Glu-102 (in the PR-1-5 numeration) also diminishing protease resistance. Sequence analysis revealed that the Glu-72 and Glu-102 residues are located in motif-like sequences that are conserved in both PR-1 and the human apoptosis-related caspase proteins. These findings prompt us to examine the function of PR-1 for a role in protease-mediated programmed cell death pathways in plants.
Collapse
Affiliation(s)
- Shunwen Lu
- USDA-ARS, Cereal Crops Research Unit, Fargo, ND 58102, USA.
| | | | | | | |
Collapse
|
28
|
de novo analysis and functional classification of the transcriptome of the root lesion nematode, Pratylenchus thornei, after 454 GS FLX sequencing. Int J Parasitol 2012; 42:225-37. [PMID: 22309969 DOI: 10.1016/j.ijpara.2011.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 11/20/2022]
Abstract
The migratory endoparasitic root lesion nematode Pratylenchus thornei is a major pest of the cereals wheat and barley. In what we believe to be the first global transcriptome analysis for P. thornei, using Roche GS FLX sequencing, 787,275 reads were assembled into 34,312 contigs using two assembly programs, to yield 6,989 contigs common to both. These contigs were annotated, resulting in functional assignments for 3,048. Specific transcripts studied in more detail included carbohydrate active enzymes potentially involved in cell wall degradation, neuropeptides, putative plant nematode parasitism genes, and transcripts that could be secreted by the nematode. Transcripts for cell wall degrading enzymes were similar to bacterial genes, suggesting that they were acquired by horizontal gene transfer. Contigs matching 14 parasitism genes found in sedentary endoparasitic nematodes were identified. These genes are thought to function in suppression of host defenses and in feeding site development, but their function in P. thornei may differ. Comparison of the common contigs from P. thornei with other nematodes showed that 2,039 were common to sequences of the Heteroderidae, 1,947 to the Meloidogynidae, 1,218 to Radopholus similis, 1,209 matched expressed sequence tags (ESTs) of Pratylenchus penetrans and Pratylenchus vulnus, and 2,940 to contigs of Pratylenchus coffeae. There were 2,014 contigs common to Caenarhabditis elegans, with 15.9% being common to all three groups. Twelve percent of contigs with matches to the Heteroderidae and the Meloidogynidae had no homology to any C. elegans protein. Fifty-seven percent of the contigs did not match known sequences and some could be unique to P. thornei. These data provide substantial new information on the transcriptome of P. thornei, those genes common to migratory and sedentary endoparasitic nematodes, and provide additional understanding of genes required for different forms of parasitism. The data can also be used to identify potential genes to study host interactions and for crop protection.
Collapse
|
29
|
Haegeman A, Mantelin S, Jones JT, Gheysen G. Functional roles of effectors of plant-parasitic nematodes. Gene 2011; 492:19-31. [PMID: 22062000 DOI: 10.1016/j.gene.2011.10.040] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/12/2011] [Accepted: 10/20/2011] [Indexed: 11/17/2022]
Abstract
Plant pathogens have evolved a variety of different strategies that allow them to successfully infect their hosts. Plant-parasitic nematodes secrete numerous proteins into their hosts. These proteins, called effectors, have various functions in the plant cell. The most studied effectors to date are the plant cell wall degrading enzymes, which have an interesting evolutionary history since they are believed to have been acquired from bacteria or fungi by horizontal gene transfer. Extensive genome, transcriptome and proteome studies have shown that plant-parasitic nematodes secrete many additional effectors. The function of many of these is less clear although during the last decade, several research groups have determined the function of some of these effectors. Even though many effectors remain to be investigated, it has already become clear that they can have very diverse functions. Some are involved in suppression of plant defences, while others can specifically interact with plant signalling or hormone pathways to promote the formation of nematode feeding sites. In this review, the most recent progress in the understanding of the function of plant-parasitic nematode effectors is discussed.
Collapse
Affiliation(s)
- Annelies Haegeman
- Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|
30
|
Lu SW, Chen S, Wang J, Yu H, Chronis D, Mitchum MG, Wang X. Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globodera rostochiensis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1128-42. [PMID: 19656047 DOI: 10.1094/mpmi-22-9-1128] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant CLAVATA3/ESR-related (CLE) peptides have diverse roles in plant growth and development. Here, we report the isolation and functional characterization of five new CLE genes from the potato cyst nematode Globodera rostochiensis. Unlike typical plant CLE peptides that contain a single CLE motif, four of the five Gr-CLE genes encode CLE proteins with multiple CLE motifs. These Gr-CLE genes were found to be specifically expressed within the dorsal esophageal gland cell of nematode parasitic stages, suggesting a role for their encoded proteins in plant parasitism. Overexpression phenotypes of Gr-CLE genes in Arabidopsis mimicked those of plant CLE genes, and Gr-CLE proteins could rescue the Arabidopsis clv3-2 mutant phenotype when expressed within meristems. A short root phenotype was observed when synthetic GrCLE peptides were exogenously applied to roots of Arabidopsis or potato similar to the overexpression of Gr-CLE genes in Arabidopsis and potato hairy roots. These results reveal that G. rostochiensis CLE proteins with either single or multiple CLE motifs function similarly to plant CLE proteins and that CLE signaling components are conserved in both Arabidopsis and potato roots. Furthermore, our results provide evidence to suggest that the evolution of multiple CLE motifs may be an important mechanism for generating functional diversity in nematode CLE proteins to facilitate parasitism.
Collapse
Affiliation(s)
- Shun-Wen Lu
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | |
Collapse
|