1
|
Bhattacharya S. Episomal and chromosomal DNA replication and recombination in Entamoeba histolytica. Front Mol Biosci 2023; 10:1212082. [PMID: 37363402 PMCID: PMC10285105 DOI: 10.3389/fmolb.2023.1212082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Entamoeba histolytica is the causative agent of amoebiasis. DNA replication studies in E. histolytica first started with the ribosomal RNA genes located on episomal circles. Unlike most plasmids, Entamoeba histolytica rDNA circles lacked a fixed origin. Replication initiated from multiple sites on the episome, and these were preferentially used under different growth conditions. In synchronized cells the early origins mapped within the rDNA transcription unit, while at later times an origin in the promoter-proximal upstream intergenic spacer was activated. This is reminiscent of eukaryotic chromosomal replication where multiple potential origins are used. Biochemical studies on replication and recombination proteins in Entamoeba histolytica picked up momentum once the genome sequence was available. Sequence search revealed homologs of DNA replication and recombination proteins, including meiotic genes. The replicative DNA polymerases identified included the α, δ, ε of polymerase family B; lesion repair polymerases Rev1 and Rev3; a translesion repair polymerase of family A, and five families of polymerases related to family B2. Biochemical analysis of EhDNApolA confirmed its polymerase activity with expected kinetic constants. It could perform strand displacement, and translesion synthesis. The purified EhDNApolB2 had polymerase and exonuclease activities, and could efficiently bypass some types of DNA lesions. The single DNA ligase (EhDNAligI) was similar to eukaryotic DNA ligase I. It was a high-fidelity DNA ligase, likely involved in both replication and repair. Its interaction with EhPCNA was also demonstrated. The recombination-related proteins biochemically characterized were EhRad51 and EhDmc1. Both shared the canonical properties of a recombinase and could catalyse strand exchange over long DNA stretches. Presence of Dmc1 indicates the likelihood of meiosis in this parasite. Direct evidence of recombination in Entamoeba histolytica was provided by use of inverted repeat sequences located on plasmids or chromosomes. In response to a variety of stress conditions, and during encystation in Entamoeba invadens, recombination-related genes were upregulated and homologous recombination was enhanced. These data suggest that homologous recombination could have critical roles in trophozoite growth and stage conversion. Availability of biochemically characterized replication and recombination proteins is an important resource for exploration of novel anti-amoebic drug targets.
Collapse
|
2
|
Biswas P, Das M, Pal S, Ghosh R, Dam S. EhSir2c, a Sir2 homolog from the human pathogen Entamoeba histolytica interacts with a DNA repair protein, EhRAD23: Protein-protein interaction, docking and functional study. J Biomol Struct Dyn 2023; 41:263-279. [PMID: 34809531 DOI: 10.1080/07391102.2021.2004925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chromosome segregation is a crucial phenomenon in the cell cycle and defects in genome segregation result in an abnormality in various cellular events. Unlike higher eukaryotes, chromosome segregation and a number of cell cycle events are unusual in the protozoan parasite Entamoeba histolytica (E. histolytica). Characterization of Sir2 proteins from E. histolytica may reveal its unique cellular events as they play role in diverse cellular processes including chromosome segregation. E. histolytica has four homologs of Sir2 proteins. EhSir2a and EhSir2b show sequence similarity towards eukaryotic Sir2 homologs, whereas EhSir2c and EhSir2d are more like prokaryotic sirtuins. Using both computational and experimental methods, EhSir2c has been characterized in this study. The three-dimensional structure of EhSir2c is predicted by homology modelling. The protein interactors of EhSir2c have been identified by yeast-two-hybrid screening against the cDNA library of E. histolytica. We have identified a novel interactor, EhRAD23 which is a homolog of UV excision repair protein RAD23. The interaction of EhSir2c and EhRAD23 was validated by pull-down assay. UV-C irradiation up-regulates the relative expression of EhSir2c, suggesting the necessity of EhSir2c in UV-induced stress in this parasite.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pinaki Biswas
- Department of Microbiology, The University of Burdwan, Burdwan, India
| | - Moubonny Das
- Department of Microbiology, The University of Burdwan, Burdwan, India
| | - Suchetana Pal
- Department of Microbiology, The University of Burdwan, Burdwan, India
| | - Raktim Ghosh
- Department of Microbiology, The University of Burdwan, Burdwan, India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan, Burdwan, India
| |
Collapse
|
3
|
Kumar D, Yadav GP, Dalbhagat CG, Mishra HN. Effects of Cold Plasma on Food Poisoning Microbes and Food Contaminants including Toxins and Allergens: A Review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Devesh Kumar
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Gorenand Prasad Yadav
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Chandrakant Genu Dalbhagat
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| |
Collapse
|
4
|
Molecular characterization of EhAK6, an endonuclease V domain-containing aurora kinase protein from Entamoeba histolytica: Protein-protein interaction, docking and functional aspect. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
5
|
Avendaño-Borromeo B, Narayanasamy RK, García-Rivera G, Labra-Barrios ML, Lagunes-Guillén AE, Munguía-Chávez B, Castañón-Sánchez CA, Orozco E, Luna-Arias JP. Identification of the gene encoding the TATA box-binding protein-associated factor 1 (TAF1) and its putative role in the heat shock response in the protozoan parasite Entamoeba histolytica. Parasitol Res 2018; 118:517-538. [PMID: 30552577 DOI: 10.1007/s00436-018-6170-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/29/2018] [Indexed: 11/26/2022]
Abstract
Transcription factor IID (TFIID) is a cornerstone in the transcription initiation in eukaryotes. It is composed of TBP and approximately 14 different subunits named TBP-associated factors (TAFs). TFIID has a key role in transcription of many genes involved in cell proliferation, cell growth, cell cycle, cell cycle checkpoint, and various other processes as well. Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, represents a major global health concern. Our research group has previously reported the genes coding the TATA box-binding protein (EhTBP) and TBP-related factor 1 (EhTRF1), which displayed different mRNA levels in trophozoites under different stress conditions. In this work, we identified the TBP-associated factor 1 (Ehtaf1) gene in the E. histolytica genome, which possess a well-conserved DUF domain and a Bromo domain located in the middle and C-terminus of the protein, respectively. The EhTAF1-DUF domain tertiary structure is similar to the corresponding HsTAF1 DUF domain. RT-qPCR experiments with RNA isolated from trophozoites harvested at different time points of the growth curve and under different stress conditions revealed that the Ehtaf1 gene was found slightly upregulated in the death phase of growth curve, but under heat shock stress, it was found upregulated 10 times, suggesting that Ehtaf1 might have an important role in the heat shock stress response. We also found that EhTAF1 is expressed in the nucleus and cytoplasm at 37 °C, but under heat shock stress, it is overexpressed in both the nucleus and cytoplasm, and partially colocalized with EhHSP70 in cytoplasm.
Collapse
Affiliation(s)
- Bartolo Avendaño-Borromeo
- Departamento de Biología Celular, Cinvestav-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - Ravi Kumar Narayanasamy
- Departamento de Biología Celular, Cinvestav-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - María Luisa Labra-Barrios
- Departamento de Biología Celular, Cinvestav-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - Anel E Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - Bibiana Munguía-Chávez
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - Carlos Alberto Castañón-Sánchez
- Laboratorio de Investigación Biomédica, Subdirección de Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Oaxaca, Aldama S/N, San Bartolo Coyotepec, 71256, Oaxaca, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Cinvestav-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Azuara-Liceaga E, Betanzos A, Cardona-Felix CS, Castañeda-Ortiz EJ, Cárdenas H, Cárdenas-Guerra RE, Pastor-Palacios G, García-Rivera G, Hernández-Álvarez D, Trasviña-Arenas CH, Diaz-Quezada C, Orozco E, Brieba LG. The Sole DNA Ligase in Entamoeba histolytica Is a High-Fidelity DNA Ligase Involved in DNA Damage Repair. Front Cell Infect Microbiol 2018; 8:214. [PMID: 30050869 PMCID: PMC6052137 DOI: 10.3389/fcimb.2018.00214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/07/2018] [Indexed: 01/03/2023] Open
Abstract
The protozoan parasite Entamoeba histolytica is exposed to reactive oxygen and nitric oxide species that have the potential to damage its genome. E. histolytica harbors enzymes involved in DNA repair pathways like Base and Nucleotide Excision Repair. The majority of DNA repairs pathways converge in their final step in which a DNA ligase seals the DNA nicks. In contrast to other eukaryotes, the genome of E. histolytica encodes only one DNA ligase (EhDNAligI), suggesting that this ligase is involved in both DNA replication and DNA repair. Therefore, the aim of this work was to characterize EhDNAligI, its ligation fidelity and its ability to ligate opposite DNA mismatches and oxidative DNA lesions, and to study its expression changes and localization during and after recovery from UV and H2O2 treatment. We found that EhDNAligI is a high-fidelity DNA ligase on canonical substrates and is able to discriminate erroneous base-pairing opposite DNA lesions. EhDNAligI expression decreases after DNA damage induced by UV and H2O2 treatments, but it was upregulated during recovery time. Upon oxidative DNA damage, EhDNAligI relocates into the nucleus where it co-localizes with EhPCNA and the 8-oxoG adduct. The appearance and disappearance of 8-oxoG during and after both treatments suggest that DNA damaged was efficiently repaired because the mainly NER and BER components are expressed in this parasite and some of them were modulated after DNA insults. All these data disclose the relevance of EhDNAligI as a specialized and unique ligase in E. histolytica that may be involved in DNA repair of the 8-oxoG lesions.
Collapse
Affiliation(s)
- Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico,*Correspondence: Elisa Azuara-Liceaga
| | - Abigail Betanzos
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico,Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cesar S. Cardona-Felix
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico,Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | | | - Helios Cárdenas
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Rosa E. Cárdenas-Guerra
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Guillermo Pastor-Palacios
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - David Hernández-Álvarez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Carlos H. Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | - Corina Diaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis G. Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico,Luis G. Brieba
| |
Collapse
|
7
|
Narayanasamy RK, Castañón-Sanchez CA, Luna-Arias JP, García-Rivera G, Avendaño-Borromeo B, Labra-Barrios ML, Valdés J, Herrera-Aguirre ME, Orozco E. The Entamoeba histolytica TBP and TRF1 transcription factors are GAAC-box binding proteins, which display differential gene expression under different stress stimuli and during the interaction with mammalian cells. Parasit Vectors 2018. [PMID: 29514716 PMCID: PMC5842622 DOI: 10.1186/s13071-018-2698-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Entamoeba histolytica is the protozoan parasite responsible for human amebiasis. It causes up to 100,000 deaths worldwide each year. This parasite has two closely related basal transcription factors, the TATA-box binding protein (EhTBP) and the TBP-related factor 1 (EhTRF1). TBP binds to the canonical TATTTAAA-box, as well as to different TATA variants. TRF1 also binds to the TATTTAAA-box. However, their binding capacity to diverse core promoter elements, including the GAAC-element, and their role in gene regulation in this parasite remains unknown. METHODS EMSA experiments were performed to determine the binding capacity of recombinant TBP and TRF1 to TATA variants, GAAC and GAAC-like boxes. For the functional analysis under different stress stimuli (e.g. growth curve, serum depletion, heat-shock, and UV-irradiation) and during the interaction with mammalian cells (erythrocytes, MDCK cell monolayers, and hepatocytes of hamsters), RT-qPCR, and gene knockdown were performed. RESULTS Both transcription factors bound to the different TATA variants tested, as well as to the GAAC-boxes, suggesting that they are GAAC-box-binding proteins. The K D values determined for TBP and TRF1 for the different TATA variants and GAAC-box were in the range of 10-12 M to 10-11 M. During the death phase of growth or in serum depletion, Ehtbp mRNA levels significantly increased, whereas the mRNA level of Ehtrf1 did not change under these conditions. Ehtrf1 gene expression was negatively regulated by UV-irradiation and heat-shock stress, with no changes in Ehtbp gene expression. Moreover, Ehtrf1 gene also showed a negative regulation during erythrophagocytosis, liver abscess formation, and a transient expression level increase at the initial phase of MDCK cell destruction. Finally, the Ehtbp gene knockdown displayed a drastic decrease in the efficiency of erythrophagocytosis in G3 trophozoites. CONCLUSIONS To our knowledge, this study reveals that these basal transcription factors are able to bind multiple core promoter elements. However, their immediate change in gene expression level in response to different stimuli, as well as during the interaction with mammalian cells, and the diminishing of erythrophagocytosis by silencing the Ehtbp gene indicate the different physiological roles of these transcription factors in E. histolytica.
Collapse
Affiliation(s)
- Ravi Kumar Narayanasamy
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Carlos Alberto Castañón-Sanchez
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional (ENMH-IPN), Guillermo Massieu Helguera 239, Col. La Escalera, C.P, 07320, Ciudad de México, Mexico.,Laboratorio de Investigación Biomédica, Subdirección de Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Oaxaca, Aldama S/N, San Bartolo Coyotepec, C.P, 71256, Oaxaca, Mexico
| | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico.
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Bartolo Avendaño-Borromeo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - María Luisa Labra-Barrios
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - María Esther Herrera-Aguirre
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P, 07360, Ciudad de México, Mexico
| |
Collapse
|
8
|
Nagaraja S, Ankri S. Utilization of Different Omic Approaches to Unravel Stress Response Mechanisms in the Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:19. [PMID: 29473019 PMCID: PMC5809450 DOI: 10.3389/fcimb.2018.00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
During its life cycle, the unicellular parasite Entamoeba histolytica is challenged by a wide variety of environmental stresses, such as fluctuation in glucose concentration, changes in gut microbiota composition, and the release of oxidative and nitrosative species from neutrophils and macrophages. The best mode of survival for this parasite is to continuously adapt itself to the dynamic environment of the host. Our ability to study the stress-induced responses and adaptive mechanisms of this parasite has been transformed through the development of genomics, proteomics or metabolomics (omics sciences). These studies provide insights into different facets of the parasite's behavior in the host. However, there is a dire need for multi-omics data integration to better understand its pathogenic nature, ultimately paving the way to identify new chemotherapeutic targets against amebiasis. This review provides an integration of the most relevant omics information on the mechanisms that are used by E. histolytica to resist environmental stresses.
Collapse
Affiliation(s)
- Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
9
|
Kelso AA, Goodson SD, Chavan S, Say AF, Turchick A, Sharma D, Ledford LL, Ratterman E, Leskoske K, King AV, Attaway CC, Bandera Y, Foulger SH, Mazin AV, Temesvari LA, Sehorn MG. Characterization of the recombination activities of the Entamoeba histolytica Rad51 recombinase. Mol Biochem Parasitol 2016; 210:71-84. [PMID: 27678398 DOI: 10.1016/j.molbiopara.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/10/2016] [Accepted: 09/02/2016] [Indexed: 11/29/2022]
Abstract
The protozoan parasite responsible for human amoebiasis is Entamoeba histolytica. An important facet of the life cycle of E. histolytica involves the conversion of the mature trophozoite to a cyst. This transition is thought to involve homologous recombination (HR), which is dependent upon the Rad51 recombinase. Here, a biochemical characterization of highly purified ehRad51 protein is presented. The ehRad51 protein preferentially binds ssDNA, forms a presynaptic filament and possesses ATP hydrolysis activity that is stimulated by the presence of DNA. Evidence is provided that ehRad51 catalyzes robust DNA strand exchange over at least 5.4 kilobase pairs. Although the homologous DNA pairing activity of ehRad51 is weak, it is strongly enhanced by the presence of two HR accessory cofactors, calcium and Hop2-Mnd1. The biochemical system described herein was used to demonstrate the potential for targeting ehRad51 with two small molecule inhibitors of human RAD51. We show that 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) inhibited ehRad51 by interfering with DNA binding and attenuated encystation in Entamoeba invadens, while B02 had no effect on ehRad51 strand exchange activity. These results provide insight into the underlying mechanism of homology-directed DNA repair in E. histolytica.
Collapse
Affiliation(s)
- Andrew A Kelso
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Steven D Goodson
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Suchitra Chavan
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Amanda F Say
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Audrey Turchick
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Deepti Sharma
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - LeAnna L Ledford
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Erin Ratterman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Kristin Leskoske
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Ada V King
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | | - Yura Bandera
- Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634, USA; Department of Material Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Stephen H Foulger
- Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634, USA; Department of Material Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Lesly A Temesvari
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; Clemson University School of Health Research, Clemson, SC 29634, USA
| | - Michael G Sehorn
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634, USA; Clemson University School of Health Research, Clemson, SC 29634, USA.
| |
Collapse
|
10
|
Kelso AA, Say AF, Sharma D, Ledford LL, Turchick A, Saski CA, King AV, Attaway CC, Temesvari LA, Sehorn MG. Entamoeba histolytica Dmc1 Catalyzes Homologous DNA Pairing and Strand Exchange That Is Stimulated by Calcium and Hop2-Mnd1. PLoS One 2015; 10:e0139399. [PMID: 26422142 PMCID: PMC4589404 DOI: 10.1371/journal.pone.0139399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/12/2015] [Indexed: 01/03/2023] Open
Abstract
Meiosis depends on homologous recombination (HR) in most sexually reproducing organisms. Efficient meiotic HR requires the activity of the meiosis-specific recombinase, Dmc1. Previous work shows Dmc1 is expressed in Entamoeba histolytica, a eukaryotic parasite responsible for amoebiasis throughout the world, suggesting this organism undergoes meiosis. Here, we demonstrate Dmc1 protein is expressed in E. histolytica. We show that purified ehDmc1 forms presynaptic filaments and catalyzes ATP-dependent homologous DNA pairing and DNA strand exchange over at least several thousand base pairs. The DNA pairing and strand exchange activities are enhanced by the presence of calcium and the meiosis-specific recombination accessory factor, Hop2-Mnd1. In combination, calcium and Hop2-Mnd1 dramatically increase the rate of DNA strand exchange activity of ehDmc1. The biochemical system described herein provides a basis on which to better understand the role of ehDmc1 and other HR proteins in E. histolytica.
Collapse
Affiliation(s)
- Andrew A. Kelso
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Amanda F. Say
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Deepti Sharma
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - LeAnna L. Ledford
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Audrey Turchick
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Christopher A. Saski
- Clemson University Genomics and Computational Biology Laboratory, Institute for Translational Genomics, Clemson, South Carolina, United States of America
| | - Ada V. King
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Christopher C. Attaway
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Lesly A. Temesvari
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Clemson University School of Health Research, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Michael G. Sehorn
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
- Clemson University School of Health Research, Clemson, South Carolina, United States of America
- Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
11
|
UV irradiation responses in Giardia intestinalis. Exp Parasitol 2015; 154:25-32. [PMID: 25825252 DOI: 10.1016/j.exppara.2015.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/20/2015] [Accepted: 03/22/2015] [Indexed: 11/20/2022]
Abstract
The response to ultraviolet light (UV) radiation, a natural stressor to the intestinal protozoan parasite Giardia intestinalis, was studied to deepen the understanding of how the surrounding environment affects the parasite during transmission. UV radiation at 10 mJ/cm(2) kills Giardia cysts effectively whereas trophozoites and encysting parasites can recover from UV treatment at 100 mJ/cm(2) and 50 mJ/cm(2) respectively. Staining for phosphorylated histone H2A showed that UV treatment induces double-stranded DNA breaks and flow cytometry analyses revealed that UV treatment of trophozoites induces DNA replication arrest. Active DNA replication coupled to DNA repair could be an explanation to why UV light does not kill trophozoites and encysting cells as efficiently as the non-replicating cysts. We also examined UV-induced gene expression responses in both trophozoites and cysts using RNA sequencing (RNA seq). UV radiation induces small overall changes in gene expression in Giardia but cysts show a stronger response than trophozoites. Heat shock proteins, kinesins and Nek kinases are up-regulated, whereas alpha-giardins and histones are down-regulated in UV treated trophozoites. Expression of variable surface proteins (VSPs) is changed in both trophozoites and cysts. Our data show that Giardia cysts have limited ability to repair UV-induced damage and this may have implications for drinking- and waste-water treatment when setting criteria for the use of UV disinfection to ensure safe water.
Collapse
|
12
|
del Socorro Charcas-Lopez M, Garcia-Morales L, Pezet-Valdez M, Lopez-Camarillo C, Zamorano-Carrillo A, Marchat LA. Expression of EhRAD54, EhRAD51, and EhBLM proteins during DNA repair by homologous recombination in Entamoeba histolytica. Parasite 2014; 21:7. [PMID: 24534563 PMCID: PMC3927307 DOI: 10.1051/parasite/2014006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/07/2014] [Indexed: 12/04/2022] Open
Abstract
Entamoeba histolytica, the protozoan responsible for human amoebiasis, exhibits a great genome plasticity that is probably related to homologous recombination events. It contains the RAD52 epistasis group genes, including Ehrad51 and Ehrad54, and the Ehblm gene, which are key homologous recombination factors in other organisms. Ehrad51 and Ehrad54 genes are differentially transcribed in trophozoites when DNA double-strand breaks are induced by ultraviolet-C irradiation. Moreover, the EhRAD51 recombinase is overexpressed at 30 min in the nucleus. Here, we extend our analysis of the homologous recombination mechanism in E. histolytica by studying EhRAD51, EhRAD54, and EhBLM expression in response to DNA damage. Bioinformatic analyses show that EhRAD54 has the molecular features of homologous proteins, indicating that it may have similar functions. Western blot assays evidence the differential expression of EhRAD51, EhRAD54, and EhBLM at different times after DNA damage, suggesting their potential roles in the different steps of homologous recombination in this protozoan.
Collapse
Affiliation(s)
- Ma. del Socorro Charcas-Lopez
-
Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera No. 239, Fracc. La Escalera, Ticoman México D.F. C.P. 07320 Mexico
| | - Lorena Garcia-Morales
-
Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera No. 239, Fracc. La Escalera, Ticoman México D.F. C.P. 07320 Mexico
| | - Marisol Pezet-Valdez
-
Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera No. 239, Fracc. La Escalera, Ticoman México D.F. C.P. 07320 Mexico
| | - Cesar Lopez-Camarillo
-
Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo No. 290, Col. del Valle México D.F. C.P. 03110 Mexico
| | - Absalom Zamorano-Carrillo
-
Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera No. 239, Fracc. La Escalera, Ticoman México D.F. C.P. 07320 Mexico
-
Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera No. 239, Fracc. La Escalera, Ticoman México D.F. C.P. 07320 Mexico
| | - Laurence A. Marchat
-
Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera No. 239, Fracc. La Escalera, Ticoman México D.F. C.P. 07320 Mexico
-
Programa de Doctorado en Biotecnología, Escuela Nacional de Medicina y Homeopatía del IPN, Guillermo Massieu Helguera No. 239, Fracc. La Escalera, Ticoman México D.F. C.P. 07320 Mexico
| |
Collapse
|
13
|
Santi-Rocca J, Smith S, Weber C, Pineda E, Hon CC, Saavedra E, Olivos-García A, Rousseau S, Dillies MA, Coppée JY, Guillén N. Endoplasmic reticulum stress-sensing mechanism is activated in Entamoeba histolytica upon treatment with nitric oxide. PLoS One 2012; 7:e31777. [PMID: 22384074 PMCID: PMC3286455 DOI: 10.1371/journal.pone.0031777] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 01/18/2012] [Indexed: 12/14/2022] Open
Abstract
The Endoplasmic Reticulum stores calcium and is a site of protein synthesis and modification. Changes in ER homeostasis lead to stress responses with an activation of the unfolded protein response (UPR). The Entamoeba histolytica endomembrane system is simple compared to those of higher eukaryotes, as a canonical ER is not observed. During amoebiasis, an infection of the human intestine and liver by E. histolytica, nitric oxide (NO) triggers an apoptotic-like event preceded by an impairment of energy production and a loss of important parasite pathogenic features. We address the question of how this ancient eukaryote responds to stress induced by immune components (i.e. NO) and whether stress leads to ER changes and subsequently to an UPR. Gene expression analysis suggested that NO triggers stress responses marked by (i) dramatic up-regulation of hsp genes although a bona fide UPR is absent; (ii) induction of DNA repair and redox gene expression and iii) up-regulation of glycolysis-related gene expression. Enzymology approaches demonstrate that NO directly inhibits glycolysis and enhance cysteine synthase activity. Using live imaging and confocal microscopy we found that NO dramatically provokes extensive ER fragmentation. ER fission in E. histolytica appears as a protective response against stress, as it has been recently proposed for neuron self-defense during neurologic disorders. Chronic ER stress is also involved in metabolic diseases including diabetes, where NO production reduces ER calcium levels and activates cell death. Our data highlighted unique cellular responses of interest to understand the mechanisms of parasite death during amoebiasis.
Collapse
Affiliation(s)
- Julien Santi-Rocca
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
López-Camarillo C, Lopez-Casamichana M, Weber C, Guillen N, Orozco E, Marchat LA. DNA repair mechanisms in eukaryotes: Special focus in Entamoeba histolytica and related protozoan parasites. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2009; 9:1051-1056. [PMID: 19591963 DOI: 10.1016/j.meegid.2009.06.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/22/2009] [Accepted: 06/29/2009] [Indexed: 01/11/2023]
Abstract
Eukaryotic cell viability highly relies on genome stability and DNA integrity maintenance. The cellular response to DNA damage mainly consists of six biological conserved pathways known as homologous recombination repair (HRR), non-homologous end-joining (NHEJ), base excision repair (BER), mismatch repair (MMR), nucleotide excision repair (NER), and methyltransferase repair that operate in a concerted way to minimize genetic information loss due to a DNA lesion. Particularly, protozoan parasites survival depends on DNA repair mechanisms that constantly supervise chromosomes to correct damaged nucleotides generated by cytotoxic agents, host immune pressure or cellular processes. Here we reviewed the current knowledge about DNA repair mechanisms in the most relevant human protozoan pathogens. Additionally, we described the recent advances to understand DNA repair mechanisms in Entamoeba histolytica with special emphasis in the use of genomic approaches based on bioinformatic analysis of parasite genome sequence and microarrays technology.
Collapse
Affiliation(s)
- César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México DF, Mexico.
| | | | | | | | | | | |
Collapse
|