1
|
Sasidharan S, Saudagar P. An anti-leishmanial compound 4',7-dihydroxyflavone elicits ROS-mediated apoptosis-like death in Leishmania parasite. FEBS J 2023. [PMID: 36871140 DOI: 10.1111/febs.16770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The treatment for leishmaniasis is currently plagued by side effects such as toxicity and the emergence of drug resistance to the available repertoire of drugs, as well as the expense of these drugs. Considering such rising concerns, we report the anti-leishmanial activity and mechanism of a flavone compound 4',7-dihydroxyflavone (TI 4). Four flavanoids were initially screened for anti-leishmanial activity and cytotoxicity. The results showed that the compound TI 4 exhibited higher activity and selectivity index at the same time as maintaining low cytotoxicity. Preliminary microscopic studies and fluorescence-activated cell sorting analysis reported that the parasite underwent apoptosis on TI 4 treatment. Further in-depth studies revealed high reactive oxygen species (ROS) production and thiol levels in the parasites, suggesting ROS-mediated apoptosis in the parasites upon TI 4 treatment. Other apoptotic indicators such as intracellular Ca2+ and mitochondrial membrane potential also indicated the onset of apoptosis in the treated parasites. The mRNA expression levels signified that the redox metabolism genes were upregulated by two-fold along with the apoptotic genes. In summary, the use of TI 4 on Leishmania parasites induces ROS-mediated apoptosis; therefore, the compound has immense potential to be an anti-leishmanial drug. However, in vivo studies would be required to ascertain its safety and efficacy before we can exploit the compound against the growing leishmaniasis crisis.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, India
| |
Collapse
|
2
|
Sasidharan S, Saudagar P. Knockout of Tyrosine Aminotransferase Gene by Homologous Recombination Arrests Growth and Disrupts Redox Homeostasis in Leishmania Parasite. Parasitol Res 2022; 121:3229-3241. [PMID: 36056961 DOI: 10.1007/s00436-022-07642-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
Abstract
Tyrosine aminotransferase is a well-characterized enzyme in the Leishmania parasite, but the role of TAT in the parasite functioning remains largely unknown. In this study, we attempt to gain a better understanding of the enzyme's role in the parasite by gene knockout and overexpression of the TAT gene. The overexpression of TAT protein was well tolerated by the parasites in two independent repeats. Single knockout of TAT gene by homologous recombination, LdTAT+/- displayed distinct retardation in the proliferation rates and entered the death phase immediately. Morphology of LdTAT+/- parasites had important structural defects as they rounded up with elongated flagella. Gene regulation studies suggested the upregulation of key apoptotic and redox metabolism genes in LdTAT+/-. Moreover, LdTAT+/- cells accumulated higher ROS, thiols, intracellular Ca2+ concentrations, and mitochondrial membrane depolarization signifying the onset of apoptosis. Tocopherol levels were reduced by 50% in LdTAT+/- suggesting the involvement of TAT in tocopherol biosynthesis in the parasite. Overall, our results provide the first evidence that gene knockout of TAT results in apoptosis and that TAT is required for the survival and viability of Leishmania donovani.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
3
|
Sasidharan S, Tripathi T, Saudagar P. Critical Insight into Plausible Acquired Tocopherol Pathway in Neglected Human Trypanosomatids. ACS OMEGA 2021; 6:31396-31403. [PMID: 34869966 PMCID: PMC8637591 DOI: 10.1021/acsomega.1c05046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/27/2021] [Indexed: 06/02/2023]
Abstract
Despite global therapeutic advancements, tropical parasitic infections like trypanosomiasis and leishmaniasis continue to be a major health concern in developing countries. These two tropical infectious diseases lead to enormous economic loss, significant disability, and morbidity, accounting for over one million deaths per year worldwide. The causative parasites, which shuttle between an insect vector and a mammalian host, thrive either in the bloodstream or in the intramacrophage environments. Essentially, the parasites live in an environment of oxidative stress and therefore require metabolic pathways to counterbalance the host immune response and survive the adverse conditions. Apart from the trypanothione pathway elucidated in the parasites, there exists a tocopherol pathway that functions to scavenge the reactive chemical species. This pathway, unique to photosynthetic organisms, is essential for the parasite's survival, though the enzymes involved remain largely uncharacterized. Consequently, an understanding of the origin of the pathway and where and how the interconnected tocopherol pathway functions may result in the identification of promising and potential therapeutic interventions to combat these deadly diseases. Recent works underline the presence of the tocopherol pathway in trypanosomatids and hypothesize that trypanosomatids may be tocopherol prototrophs. This review focuses on the biosynthesis of tocopherols in Trypanosoma and Leishmania in light of the current evidence.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department
of Biotechnology, National Institute of
Technology Warangal, Warangal 506004, India
| | - Timir Tripathi
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Prakash Saudagar
- Department
of Biotechnology, National Institute of
Technology Warangal, Warangal 506004, India
| |
Collapse
|
4
|
Haindrich AC, Ernst V, Naguleswaran A, Oliveres QF, Roditi I, Rentsch D. Nutrient availability regulates proline/alanine transporters in Trypanosoma brucei. J Biol Chem 2021; 296:100566. [PMID: 33745971 PMCID: PMC8094907 DOI: 10.1016/j.jbc.2021.100566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022] Open
Abstract
Trypanosoma brucei is a species of unicellular parasite that can cause severe diseases in livestock and humans, including African trypanosomiasis and Chagas disease. Adaptation to diverse environments and changes in nutritional conditions is essential for T. brucei to establish an infection when changing hosts or during invasion of different host tissues. One such adaptation is the ability of T. brucei to rapidly switch its energy metabolism from glucose metabolism in the mammalian blood to proline catabolism in the insect stages and vice versa. However, the mechanisms that support the parasite's response to nutrient availability remain unclear. Using RNAseq and qRT-PCR, we investigated the response of T. brucei to amino acid or glucose starvation and found increased mRNA levels of several amino acid transporters, including all genes of the amino acid transporter AAT7-B subgroup. Functional characterization revealed that AAT7-B members are plasma membrane-localized in T. brucei and when expressed in Saccharomyces cerevisiae supported the uptake of proline, alanine, and cysteine, while other amino acids were poorly recognized. All AAT7-B members showed a preference for proline, which is transported with high or low affinity. RNAi-mediated AAT7-B downregulation resulted in a reduction of intracellular proline concentrations and growth arrest under low proline availability in cultured procyclic form parasites. Taken together, these results suggest a role of AAT7-B transporters in the response of T. brucei to proline starvation and proline catabolism.
Collapse
Affiliation(s)
| | - Viona Ernst
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | | | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Trypanosoma cruzi synthesizes proline via a Δ1-pyrroline-5-carboxylate reductase whose activity is fine-tuned by NADPH cytosolic pools. Biochem J 2020; 477:1827-1845. [PMID: 32315030 DOI: 10.1042/bcj20200232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022]
Abstract
In Trypanosoma cruzi, the etiological agent of Chagas disease, the amino acid proline participates in processes related to T. cruzi survival and infection, such as ATP production, cell differentiation, host-cell invasion, and in protection against osmotic, nutritional, and thermal stresses and oxidative imbalance. However, little is known about proline biosynthesis in this parasite. Δ1-Pyrroline-5-carboxylate reductase (P5CR, EC 1.5.1.2) catalyzes the biosynthesis of proline from Δ1-pyrroline-5-carboxylate (P5C) with concomitant NADPH oxidation. Herein, we show that unlike other eukaryotes, T. cruzi biosynthesizes proline from P5C, which is produced exclusively from glutamate. We found that TcP5CR is an NADPH-dependent cytosolic enzyme with a Kmapp for P5C of 27.7 μM and with a higher expression in the insect-resident form of the parasite. High concentrations of the co-substrate NADPH partially inhibited TcP5CR activity, prompting us to analyze multiple kinetic inhibition models. The model that best explained the obtained data included a non-competitive substrate inhibition mechanism (Kiapp=45±0.7μM). Therefore, TcP5CR is a candidate as a regulatory factor of this pathway. Finally, we show that P5C can exit trypanosomatid mitochondria in conditions that do not compromise organelle integrity. These observations, together with previously reported results, lead us to propose that in T. cruzi TcP5CR participates in a redox shuttle between the mitochondria and the cytoplasm. In this model, cytoplasmic redox equivalents from NADPH pools are transferred to the mitochondria using proline as a reduced metabolite, and shuttling to fuel electrons to the respiratory chain through proline oxidation by its cognate dehydrogenase.
Collapse
|
6
|
Giordana L, Nowicki C. Two phylogenetically divergent isocitrate dehydrogenases are encoded in Leishmania parasites. Molecular and functional characterization of Leishmania mexicana isoenzymes with specificity towards NAD + and NADP .. Mol Biochem Parasitol 2020; 240:111320. [PMID: 32980452 DOI: 10.1016/j.molbiopara.2020.111320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
Leishmania parasites are of great relevance to public health because they are the causative agents of various long-term and health-threatening diseases in humans. Dependent on the manifestation, drugs either require difficult and lengthy administration, are toxic, expensive, not very effective or have lost efficacy due to the resistance developed by these pathogens against clinical treatments. The intermediary metabolism of Leishmania parasites is characterized by several unusual features, among which whether the Krebs cycle operates in a cyclic and/or in a non-cyclic mode is included. Our survey of the genomes of Leishmania species and monoxenous parasites such as those of the genera Crithidia and Leptomonas (http://www.tritrypdb.org) revealed that two genes encoding putative isocitrate dehydrogenases (IDHs) -with distantly related sequences- are strictly conserved among these parasites. Thus, in this study, we aimed to functionally characterize the two leishmanial IDH isoenzymes, for which we selected the genes LmxM10.0290 (Lmex_IDH-90) and LmxM32.2550 (Lmex_IDH-50) from L. mexicana. Phylogenetic analysis showed that Lmex_IDH-50 clustered with members of Subfamily I, which contains mainly archaeal and bacterial IDHs, and that Lmex_IDH-90 was a close relative of eukaryotic enzymes comprised within Subfamily II IDHs. 3-D homology modeling predicted that both IDHs exhibited the typical folding motifs recognized as canonical for prokaryotic and eukaryotic counterparts, respectively. Both IDH isoforms displayed dual subcellular localization, in the cytosol and the mitochondrion. Kinetic studies showed that Lmex_IDH-50 exclusively catalyzed the reduction of NAD+, while Lmex_IDH-90 solely used NADP+ as coenzyme. Besides, Lmex_IDH-50 differed from Lmex_IDH-90 by exhibiting a nearly 20-fold lower apparent Km value towards isocitrate (2.0 μM vs 43 μM). Our findings showed, for the first time, that the genus Leishmania differentiates not only from other trypanosomatids such as Trypanosoma cruzi and Trypanosoma brucei, but also from most living organisms, by exhibiting two functional homo-dimeric IDHs, highly specific towards NAD+ and NADP+, respectively. It is tempting to argue that any or both types of IDHs might be directly or indirectly linked to the Krebs cycle and/or to the de novo synthesis of glutamate. Our results about the biochemical and structural features of leishmanial IDHs show the relevance of deepening our knowledge of the metabolic processes in these pathogenic parasites to potentially identify new therapeutic targets.
Collapse
Affiliation(s)
- Lucila Giordana
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB-CONICET), Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Cristina Nowicki
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB-CONICET), Junín 956, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Sasidharan S, Saudagar P. Flavones reversibly inhibit Leishmania donovani tyrosine aminotransferase by binding to the catalytic pocket: An integrated in silico-in vitro approach. Int J Biol Macromol 2020; 164:2987-3004. [PMID: 32798546 DOI: 10.1016/j.ijbiomac.2020.08.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
The current drugs for treating Leishmaniasis are toxic, non-economical and with the emergence of drug resistance makes the need for novel therapeutics urgent and necessary. In the current study, we report the identification of compounds TI 1-5 against tyrosine aminotransferase of L. donovani from a curated ZINC15 database containing 183,659 compounds. These flavonoid compounds had binding energies < -8 kcal/mol and interacted with the active site residues S151, K286, C290, and P291. Assessment of physicochemical descriptors and ADMET properties established the drug likeliness of these compounds. The all-atom molecular dynamic simulations of the TAT-TI complexes exhibited stable geometrical properties and further trajectory analysis revealed the high-affinity interactions of TI 1, 3, 4, and 5 with the active site residues. DFT calculations reported the high electrophilic nature of TI 2 while other TI compounds demonstrated good kinetic stability and reactivity. From in vitro studies, TI 3 and TI 4 had the highest inhibition with Ki values of 0.9 ± 0.2 μM and 0.30 ± 0.1 μM, respectively. Taken together, the results from this study indicate the potentiality of TI 1, 3, 4, and 5 as anti-leishmanial leads, and these compounds can be exploited to manage the growing Leishmaniasis crisis in the world.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, 506004, Telangana, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, 506004, Telangana, India.
| |
Collapse
|
8
|
Mapping the metabolism of five amino acids in bloodstream form Trypanosoma brucei using U- 13C-labelled substrates and LC-MS. Biosci Rep 2019; 39:BSR20181601. [PMID: 31028136 PMCID: PMC6522824 DOI: 10.1042/bsr20181601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/04/2022] Open
Abstract
The metabolism of the parasite Trypanosoma brucei has been the focus of numerous studies since the 1940s. Recently it was shown, using metabolomics coupled with heavy-atom isotope labelled glucose, that the metabolism of the bloodstream form parasite is more complex than previously thought. The present study also raised a number of questions regarding the origin of several metabolites, for example succinate, only a proportion of which derives from glucose. In order to answer some of these questions and explore the metabolism of bloodstream form T. brucei in more depth we followed the fate of five heavy labelled amino acids – glutamine, proline, methionine, cysteine and arginine – using an LC–MS based metabolomics approach. We found that some of these amino acids have roles beyond those previously thought and we have tentatively identified some unexpected metabolites which need to be confirmed and their function determined.
Collapse
|
9
|
Abstract
Amino acids participate in several critical processes in the biology of trypanosomatids, such as osmoregulation, cell differentiation, and host cell invasion. Some of them provide reducing power for mitochondrial ATP synthesis. It was previously shown that alanine, which is formed mainly by the amination of pyruvate, is a metabolic end product formed when parasites are replicating in a medium rich in glucose and amino acids. It was shown as well that this amino acid can also be used for the regulation of cell volume and resistance to osmotic stress. In this work, we demonstrate that, despite it being an end product of its metabolism, Trypanosoma cruzi can take up and metabolize l-Ala through a low-specificity nonstereoselective active transport system. The uptake was dependent on the temperature in the range between 10 and 40°C, which allowed us to calculate an activation energy of 66.4 kJ/mol and estimate the number of transporters per cell at ~436,000. We show as well that, once taken up by the cells, l-Ala can be completely oxidized to CO2, supplying electrons to the electron transport chain, maintaining the electrochemical proton gradient across the mitochondrial inner membrane, and supporting ATP synthesis in T. cruzi epimastigotes. Our data demonstrate a dual role for Ala in the parasite's bioenergetics, by being a secreted end product of glucose catabolism and taken up as nutrient for oxidative mitochondrial metabolism.IMPORTANCE It is well known that trypanosomatids such as the etiological agent of Chagas' disease, Trypanosoma cruzi, produce alanine as a main end product of their energy metabolism when they grow in a medium containing glucose and amino acids. In this work, we investigated if under starvation conditions (which happen during the parasite life cycle) the secreted alanine could be recovered from the extracellular medium and used as an energy source. Herein we show that indeed, in parasites submitted to metabolic stress, this metabolite can be taken up and used as an energy source for ATP synthesis, allowing the parasite to extend its survival under starvation conditions. The obtained results point to a dual role for Ala in the parasite's bioenergetics, by being a secreted end product of glucose catabolism and taken up as nutrient for oxidative mitochondrial metabolism.
Collapse
|
10
|
Verma R, Kushwaha V, Pandey S, Thota JR, Vishwakarma P, Parmar N, Yadav PK, Tewari P, Kar S, Shukla PK, Murthy PK. Leishmania donovani molecules recognized by sera of filaria infected host facilitate filarial infection. Parasitol Res 2018; 117:2901-2912. [DOI: 10.1007/s00436-018-5981-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022]
|
11
|
The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens 2018; 7:pathogens7020036. [PMID: 29614775 PMCID: PMC6027508 DOI: 10.3390/pathogens7020036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts.
Collapse
|
12
|
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative Metabolism of Free-living Bodo saltans
and Parasitic Trypanosomatids. J Eukaryot Microbiol 2016; 63:657-78. [DOI: 10.1111/jeu.12315] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Fred R. Opperdoes
- de Duve Institute; Université Catholique de Louvain; Brussels B-1200 Belgium
| | - Anzhelika Butenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Pavel Flegontov
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- A.A. Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow 127 051 Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; Institute of Environmental Technologies; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Julius Lukeš
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; University of South Bohemia; České Budějovice (Budweis) 370 05 Czech Republic
- Canadian Institute for Advanced Research; Toronto ON M5G 1Z8 Canada
| |
Collapse
|
13
|
Wen J, Nowicki C, Blankenfeldt W. Structural basis for the relaxed substrate selectivity of Leishmania mexicana broad specificity aminotransferase. Mol Biochem Parasitol 2015; 202:34-7. [PMID: 26456583 DOI: 10.1016/j.molbiopara.2015.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 11/29/2022]
Abstract
Leishmania species are early branching eukaryotic parasites that cause difficult-to-treat tissue-damaging diseases known as leishmaniases. As a hallmark of their parasitic lifestyle, Leishmaniae express a number of aminotransferases that are involved in important cellular processes and exhibit broader substrate specificity than their mammalian host's counterparts. Here, we have determined the crystal structure of the broad specificity aminotransferase from Leishmania mexicana (LmexBSAT) at 1.91Å resolution. LmexBSAT is a homodimer and belongs to the α-branch of family-I aminotransferases. Despite the fact that the protein was crystallized in the absence of substrates and has lost the pyridoxal-5'-phosphate (PLP) cofactor during crystallization, the structure resembles the closed, ligand-bound form of related enzymes such as chicken cytosolic aspartate aminotransferase. Its broader substrate specificity seems to be rooted in increased flexibility of a substrate-binding arginine (R291) and the interactions of this residue with the N-terminus of the second chain of the dimer.
Collapse
Affiliation(s)
- Jiang Wen
- Technische Universität Dortmund, Fakultät Chemie, Otto-Hahn-Str. 6, 44227 Dortmund, Germany; Physical Biochemistry, Max Planck Institute for Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Cristina Nowicki
- IQUIFIB (CONICET-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires), Junín 956, 1113 Buenos Aires, Argentina.
| | - Wulf Blankenfeldt
- Physical Biochemistry, Max Planck Institute for Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany.
| |
Collapse
|
14
|
Quiñones W, Cáceres AJ, Ruiz MT, Concepción JL. Glycosomal membrane proteins and lipids from Leishmania mexicana. Comp Biochem Physiol B Biochem Mol Biol 2015; 182:27-36. [DOI: 10.1016/j.cbpb.2014.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/18/2014] [Accepted: 11/29/2014] [Indexed: 11/29/2022]
|
15
|
Mantilla BS, Paes LS, Pral EMF, Martil DE, Thiemann OH, Fernández-Silva P, Bastos EL, Silber AM. Role of Δ1-pyrroline-5-carboxylate dehydrogenase supports mitochondrial metabolism and host-cell invasion of Trypanosoma cruzi. J Biol Chem 2015; 290:7767-90. [PMID: 25623067 PMCID: PMC4367278 DOI: 10.1074/jbc.m114.574525] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/30/2014] [Indexed: 01/03/2023] Open
Abstract
Proline is crucial for energizing critical events throughout the life cycle of Trypanosoma cruzi, the etiological agent of Chagas disease. The proline breakdown pathway consists of two oxidation steps, both of which produce reducing equivalents as follows: the conversion of proline to Δ(1)-pyrroline-5-carboxylate (P5C), and the subsequent conversion of P5C to glutamate. We have identified and characterized the Δ(1)-pyrroline-5-carboxylate dehydrogenase from T. cruzi (TcP5CDH) and report here on how this enzyme contributes to a central metabolic pathway in this parasite. Size-exclusion chromatography, two-dimensional gel electrophoresis, and small angle x-ray scattering analysis of TcP5CDH revealed an oligomeric state composed of two subunits of six protomers. TcP5CDH was found to complement a yeast strain deficient in PUT2 activity, confirming the enzyme's functional role; and the biochemical parameters (Km, kcat, and kcat/Km) of the recombinant TcP5CDH were determined, exhibiting values comparable with those from T. cruzi lysates. In addition, TcP5CDH exhibited mitochondrial staining during the main stages of the T. cruzi life cycle. mRNA and enzymatic activity levels indicated the up-regulation (6-fold change) of TcP5CDH during the infective stages of the parasite. The participation of P5C as an energy source was also demonstrated. Overall, we propose that this enzymatic step is crucial for the viability of both replicative and infective forms of T. cruzi.
Collapse
Affiliation(s)
- Brian S Mantilla
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Lisvane S Paes
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Elizabeth M F Pral
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Daiana E Martil
- the Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, and
| | - Otavio H Thiemann
- the Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, and
| | - Patricio Fernández-Silva
- the Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza Spain
| | - Erick L Bastos
- Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, 13560-590 São Paulo, Brazil, and
| | - Ariel M Silber
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil,
| |
Collapse
|
16
|
Kim DH, Achcar F, Breitling R, Burgess KE, Barrett MP. LC-MS-based absolute metabolite quantification: application to metabolic flux measurement in trypanosomes. Metabolomics 2015; 11:1721-1732. [PMID: 26491423 PMCID: PMC4605981 DOI: 10.1007/s11306-015-0827-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/25/2015] [Indexed: 01/15/2023]
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the protozoan parasite, Trypanosoma brucei. In the mammalian bloodstream, the trypanosome's metabolism differs significantly from that of its host. For example, the parasite relies exclusively on glycolysis for energy source. Recently, computational and mathematical models of trypanosome metabolism have been generated to assist in understanding the parasite metabolism with the aim of facilitating drug development. Optimisation of these models requires quantitative information, including metabolite concentrations and/or metabolic fluxes that have been hitherto unavailable on a large scale. Here, we have implemented an LC-MS-based method that allows large scale quantification of metabolite levels by using U-13C-labelled E.coli extracts as internal standards. Known amounts of labelled E. coli extract were added into the parasite samples, as well as calibration standards, and used to obtain calibration curves enabling us to convert intensities into concentrations. This method allowed us to reliably quantify the changes of 43 intracellular metabolites and 32 extracellular metabolites in the medium over time. Based on the absolute quantification, we were able to compute consumption and production fluxes. These quantitative data can now be used to optimise computational models of parasite metabolism.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA UK
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Fiona Achcar
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA UK
| | - Rainer Breitling
- Manchester Centre of Synthetic Biology for Fine and Speciality Chemicals, Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, M1 7DN UK
| | - Karl E. Burgess
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH UK
| | - Michael P. Barrett
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA UK
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, G61 1QH UK
| |
Collapse
|
17
|
Moreno MA, Alonso A, Alcolea PJ, Abramov A, de Lacoba MG, Abendroth J, Zhang S, Edwards T, Lorimer D, Myler PJ, Larraga V. Tyrosine aminotransferase from Leishmania infantum: A new drug target candidate. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:347-54. [PMID: 25516846 PMCID: PMC4266777 DOI: 10.1016/j.ijpddr.2014.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The tyrosine aminotransferase from Leishmania infantum has a cytoplasmic distribution and is able to use the oxoacid ketomethiobutyrate, as a co-substrate. L. infantum tyrosine aminotransferase is over-expressed in infective and nitric oxide resistant parasites. The structural differences with the mammalian TAT, together with cellular distribution, expression pattern and activity, support that LiTAT is a drug target candidate. The structure-based model of the pharmacophore of LiTAT with specific substrate ketomethiobutyrate has been generated.
Leishmania infantum is the etiological agent of zoonotic visceral leishmaniasis in the Mediterranean basin. The disease is fatal without treatment, which has been based on antimonial pentavalents for more than 60 years. Due to resistances, relapses and toxicity to current treatment, the development of new drugs is required. The structure of the L. infantum tyrosine aminotransferase (LiTAT) has been recently solved showing important differences with the mammalian orthologue. The characterization of LiTAT is reported herein. This enzyme is cytoplasmic and is over-expressed in the more infective stages and nitric oxide resistant parasites. Unlike the mammalian TAT, LiTAT is able to use ketomethiobutyrate as co-substrate. The pharmacophore model of LiTAT with this specific co-substrate is described herein. This may allow the identification of new inhibitors present in the databases. All the data obtained support that LiTAT is a good target candidate for the development of new anti-leishmanial drugs.
Collapse
Affiliation(s)
- Miguel Angel Moreno
- Departamento de Microbiología Molecular y Servicio de Bioinformática y Bioestadística, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), calle Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Ana Alonso
- Departamento de Microbiología Molecular y Servicio de Bioinformática y Bioestadística, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), calle Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Pedro Jose Alcolea
- Departamento de Microbiología Molecular y Servicio de Bioinformática y Bioestadística, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), calle Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Ariel Abramov
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA ; Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - Mario García de Lacoba
- Departamento de Microbiología Molecular y Servicio de Bioinformática y Bioestadística, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), calle Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA ; Emerald Bio Inc., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Sunny Zhang
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA ; Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - Thomas Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA ; Emerald Bio Inc., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Don Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA ; Emerald Bio Inc., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Peter John Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA ; Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA ; Department of Global Health, University of Washington, Seattle, WA 98125, USA ; Department of Biomedical Informatics & Medical Education, University of Washington, Seattle, WA 98125, USA
| | - Vicente Larraga
- Departamento de Microbiología Molecular y Servicio de Bioinformática y Bioestadística, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), calle Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
18
|
Moreno MA, Abramov A, Abendroth J, Alonso A, Zhang S, Alcolea PJ, Edwards T, Lorimer D, Myler PJ, Larraga V. Structure of tyrosine aminotransferase from Leishmania infantum. Acta Crystallogr F Struct Biol Commun 2014; 70:583-7. [PMID: 24817714 PMCID: PMC4014323 DOI: 10.1107/s2053230x14007845] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/08/2014] [Indexed: 11/12/2022] Open
Abstract
The trypanosomatid parasite Leishmania infantum is the causative agent of visceral leishmaniasis (VL), which is usually fatal unless treated. VL has an incidence of 0.5 million cases every year and is an important opportunistic co-infection in HIV/AIDS. Tyrosine aminotransferase (TAT) has an important role in the metabolism of trypanosomatids, catalyzing the first step in the degradation pathway of aromatic amino acids, which are ultimately converted into their corresponding L-2-oxoacids. Unlike the enzyme in Trypanosoma cruzi and mammals, L. infantum TAT (LiTAT) is not able to transaminate ketoglutarate. Here, the structure of LiTAT at 2.35 Å resolution is reported, and it is confirmed that the presence of two Leishmania-specific residues (Gln55 and Asn58) explains, at least in part, this specific reactivity. The difference in substrate specificity between leishmanial and mammalian TAT and the importance of this enzyme in parasite metabolism suggest that it may be a useful target in the development of new drugs against leishmaniasis.
Collapse
Affiliation(s)
- M. A. Moreno
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - A. Abramov
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - J. Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Emerald Bio Inc., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - A. Alonso
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - S. Zhang
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - P. J. Alcolea
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - T. Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Emerald Bio Inc., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - D. Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Emerald Bio Inc., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - P. J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
- Department of Global Health and Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98125, USA
| | - V. Larraga
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
19
|
Trypanosoma cruzi bromodomain factor 3 binds acetylated α-tubulin and concentrates in the flagellum during metacyclogenesis. EUKARYOTIC CELL 2014; 13:822-31. [PMID: 24747213 DOI: 10.1128/ec.00341-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bromodomains are highly conserved acetyl-lysine binding domains found mainly in proteins associated with chromatin and nuclear acetyltransferases. The Trypanosoma cruzi genome encodes at least four bromodomain factors (TcBDFs). We describe here bromodomain factor 3 (TcBDF3), a bromodomain-containing protein localized in the cytoplasm. TcBDF3 cytolocalization was determined, using purified antibodies, by Western blot and immunofluorescence analyses in all life cycle stages of T. cruzi. In epimastigotes and amastigotes, it was detected in the cytoplasm, the flagellum, and the flagellar pocket, and in trypomastigotes only in the flagellum. Subcellular localization of TcBDF3 was also determined by digitonin extraction, ultrastructural immunocytochemistry, and expression of TcBDF3 fused to cyan fluorescent protein (CFP). Tubulin can acquire different posttranslational modifications, which modulate microtubule functions. Acetylated α-tubulin has been found in the axonemes of flagella and cilia, as well as in the subpellicular microtubules of trypanosomatids. TcBDF3 and acetylated α-tubulin partially colocalized in isolated cytoskeletons and flagella from T. cruzi epimastigotes and trypomastigotes. Interaction between the two proteins was confirmed by coimmunoprecipitation and far-Western blot assays with synthetic acetylated α-tubulin peptides and recombinant TcBDF3.
Collapse
|
20
|
Giordana L, Mantilla BS, Santana M, Silber AM, Nowicki C. Cystathionine γ-lyase, an Enzyme Related to the Reverse Transsulfuration Pathway, is Functional in Leishmania
spp. J Eukaryot Microbiol 2014; 61:204-13. [DOI: 10.1111/jeu.12100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/14/2013] [Accepted: 11/27/2013] [Indexed: 01/14/2023]
Affiliation(s)
- Lucila Giordana
- Facultad de Farmacia y Bioquímica; Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET; Universidad de Buenos Aires; Junín 956 C1113AAD Buenos Aires Argentina
| | - Brian Suárez Mantilla
- Departamento de Parasitologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; Av Prof Lineu Prestes 1374 05508-000 São Paulo Brazil
| | - Marianela Santana
- Facultad de Farmacia y Bioquímica; Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET; Universidad de Buenos Aires; Junín 956 C1113AAD Buenos Aires Argentina
| | - Ariel M. Silber
- Departamento de Parasitologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; Av Prof Lineu Prestes 1374 05508-000 São Paulo Brazil
| | - Cristina Nowicki
- Facultad de Farmacia y Bioquímica; Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET; Universidad de Buenos Aires; Junín 956 C1113AAD Buenos Aires Argentina
| |
Collapse
|
21
|
Okada K, Angkawidjaja C, Koga Y, Takano K, Kanaya S. Characteristic features of kynurenine aminotransferase allosterically regulated by (alpha)-ketoglutarate in cooperation with kynurenine. PLoS One 2012; 7:e40307. [PMID: 22792273 PMCID: PMC3391261 DOI: 10.1371/journal.pone.0040307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/05/2012] [Indexed: 12/05/2022] Open
Abstract
Kynurenine aminotransferase from Pyrococcus horikoshii OT3 (PhKAT), which is a homodimeric protein, catalyzes the conversion of kynurenine (KYN) to kynurenic acid (KYNA). We analyzed the transaminase reaction mechanisms of this protein with pyridoxal-5′-phosphate (PLP), KYN and α-ketoglutaric acid (2OG) or oxaloacetic acid (OXA). 2OG significantly inhibited KAT activities in kinetic analyses, suggesting that a KYNA biosynthesis is allosterically regulated by 2OG. Its inhibitions evidently were unlocked by KYN. 2OG and KYN functioned as an inhibitor and activator in response to changes in the concentrations of KYN and 2OG, respectively. The affinities of one subunit for PLP or 2OG were different from that of the other subunit, as confirmed by spectrophotometry and isothermal titration calorimetry, suggesting that the difference of affinities between subunits might play a role in regulations of the KAT reaction. Moreover, we identified two active and allosteric sites in the crystal structure of PhKAT-2OG complexes. The crystal structure of PhKAT in complex with four 2OGs demonstrates that two 2OGs in allosteric sites are effector molecules which inhibit the KYNA productions. Thus, the combined data lead to the conclusion that PhKAT probably is regulated by allosteric control machineries, with 2OG as the allosteric inhibitor.
Collapse
Affiliation(s)
- Ken Okada
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Osaka, Japan.
| | | | | | | | | |
Collapse
|
22
|
Saunders EC, Ng WW, Chambers JM, Ng M, Naderer T, Krömer JO, Likic VA, McConville MJ. Isotopomer profiling of Leishmania mexicana promastigotes reveals important roles for succinate fermentation and aspartate uptake in tricarboxylic acid cycle (TCA) anaplerosis, glutamate synthesis, and growth. J Biol Chem 2011; 286:27706-17. [PMID: 21636575 DOI: 10.1074/jbc.m110.213553] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Leishmania parasites proliferate within nutritionally complex niches in their sandfly vector and mammalian hosts. However, the extent to which these parasites utilize different carbon sources remains poorly defined. In this study, we have followed the incorporation of various (13)C-labeled carbon sources into the intracellular and secreted metabolites of Leishmania mexicana promastigotes using gas chromatography-mass spectrometry and (13)C NMR. [U-(13)C]Glucose was rapidly incorporated into intermediates in glycolysis, the pentose phosphate pathway, and the cytoplasmic carbohydrate reserve material, mannogen. Enzymes involved in the upper glycolytic pathway are sequestered within glycosomes, and the ATP and NAD(+) consumed by these reactions were primarily regenerated by the fermentation of phosphoenolpyruvate to succinate (glycosomal succinate fermentation). The initiating enzyme in this pathway, phosphoenolpyruvate carboxykinase, was exclusively localized to the glycosome. Although some of the glycosomal succinate was secreted, most of the C4 dicarboxylic acids generated during succinate fermentation were further catabolized in the TCA cycle. A high rate of TCA cycle anaplerosis was further suggested by measurement of [U-(13)C]aspartate and [U-(13)C]alanine uptake and catabolism. TCA cycle anaplerosis is apparently needed to sustain glutamate production under standard culture conditions. Specifically, inhibition of mitochondrial aconitase with sodium fluoroacetate resulted in the rapid depletion of intracellular glutamate pools and growth arrest. Addition of high concentrations of exogenous glutamate alleviated this growth arrest. These findings suggest that glycosomal and mitochondrial metabolism in Leishmania promastigotes is tightly coupled and that, in contrast to the situation in some other trypanosomatid parasites, the TCA cycle has crucial anabolic functions.
Collapse
Affiliation(s)
- Eleanor C Saunders
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Grisard EC, Stoco PH, Wagner G, Sincero TCM, Rotava G, Rodrigues JB, Snoeijer CQ, Koerich LB, Sperandio MM, Bayer-Santos E, Fragoso SP, Goldenberg S, Triana O, Vallejo GA, Tyler KM, Dávila AMR, Steindel M. Transcriptomic analyses of the avirulent protozoan parasite Trypanosoma rangeli. Mol Biochem Parasitol 2010; 174:18-25. [PMID: 20600354 DOI: 10.1016/j.molbiopara.2010.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/24/2010] [Accepted: 06/11/2010] [Indexed: 11/25/2022]
Abstract
Two species of the genus Trypanosoma infective to humans have been extensively studied at a cell and molecular level, but study of the third, Trypanosoma rangeli, remains in relative infancy. T. rangeli is non-pathogenic, but is frequently mistaken for the related Chagas disease agent Trypanosoma cruzi with which it shares vectors, hosts, significant antigenicity and a sympatric distribution over a wide geographical area. In this study, we present the T. rangeli gene expression profile as determined by the generation of ESTs (Expressed Sequence Tags) and ORESTES (Open Reading Frame ESTs). A total of 4208 unique high quality sequences were analyzed, composed from epimastigote and trypomastigote forms of SC-58 and Choachí strains, representing the two major phylogenetic lineages of this species. Comparative analyses with T. cruzi and other parasitic kinetoplastid species allowed the assignment of putative biological functions to most of the sequences generated and the establishment of an annotated T. rangeli gene expression database. Even though T. rangeli is apathogenic to mammals, genes associated with virulence in other pathogenic kinetoplastids were found. Transposable elements and genes associated mitochondrial gene expression, specifically RNA editing components, are also described for the first time. Our studies confirm the close phylogenetic relationship between T. cruzi and T. rangeli and enable us to make an estimate for the size of the T. rangeli genome repertoire ( approximately 8500 genes).
Collapse
Affiliation(s)
- Edmundo C Grisard
- Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Spitznagel D, Ebikeme C, Biran M, Nic a' Bháird N, Bringaud F, Henehan GTM, Nolan DP. Alanine aminotransferase of Trypanosoma brucei--a key role in proline metabolism in procyclic life forms. FEBS J 2009; 276:7187-99. [PMID: 19895576 DOI: 10.1111/j.1742-4658.2009.07432.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
African trypanosomes possess high levels of alanine aminotransferase (EC 2.6.1.2), although the function of their activity remains enigmatic, especially in slender bloodstream forms where the metabolism of ketoacids does not occur. Therefore, the gene for alanine aminotransferase enzyme in Trypanosoma brucei (TbAAT) was characterized and its function assessed using a combination of RNA interference and gene knockout approaches. Surprisingly, as much as 95% or more of the activity appears to be unnecessary for growth of either bloodstream or procyclic forms respiring on glucose. A combination of RNA interference and NMR spectroscopy revealed an important role for the activity in procyclic forms respiring on proline. Under these conditions, the major end product of proline metabolism is alanine, and a reduction in TbAAT activity led to a proportionate decrease in the amount of alanine excreted along with an increase in the doubling time of the cells. These results provide evidence of a role for alanine aminotransferase in the metabolism of proline in African trypanosomes by linking glutamate produced by the initial oxidative steps of the pathway with pyruvate produced by the final oxidative step of the pathway. This step appears to be essential when proline is the primary carbon source, which is likely to be the physiological situation in the tsetse fly vector.
Collapse
Affiliation(s)
- Diana Spitznagel
- School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|